| 1 | Reasoning with Shapes |  |  |  |  |  |  | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Topic 1: Composing and Decomposing Shapes |  |  |  |  |  |  |  | - |
| MATHia Unit | MATHia Workspace | Overview | ccss |  |  |  |  |  |
| Lines, Rays, Segments, and Angles | Naming Lines, Rays, Segments, and Angles | Students practice identifying geometric entities from their names, writing names for various geometric entities, and identifying when an entity has multiple possible names. | G.CO. 1 | $\bullet$ |  |  |  |  |
|  | Working with Measures of Segments and Angles | Students practice writing measure statements for segments and angles using appropriate notation. | G.CO. 1 | $\bullet$ |  |  |  |  |
| Properties of Circles | Introduction to Circles | Students watch an animation defining some of the terminology of circle parts. They then identify chords, tangents, points of tangency, and secants of circles. Next, students sort inscribed and central angles. Finally, they classify minor and major arcs as well as semicircles. | $\begin{aligned} & \text { G.C. } 1 \\ & \text { G.C. } 2 \end{aligned}$ |  | $\bullet$ |  | $\bullet$ |  |
| Angles in Circles | Determining Central and Inscribed Angles in Circles | Students calculate the measure of an arc or an angle using the definition of a central angle, the Arc Addition Postulate, or the Inscribed Angle Theorem. | G.C. 2 | $\bullet$ |  |  |  |  |
|  | Angles of an Inscribed Quadrilateral | Students are shown an inscribed quadrilateral and prove the Inscribed Quadrilateral-Opposite Angles Conjecture. They then use the theorem to determine the measure of an angle in an inscribed quadrilateral given the measure of the opposite angle. | G.C. 3 |  |  | $\bullet$ |  |  |

Topic 2: Justifying Line and Angle Relationships

|  |  |  |  | ¢ | $\stackrel{\text { IJ }}{\frac{\pi}{4}}$ |  |  | $\stackrel{\text { ¢ }}{\text { ¢ }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MATHia Unit | MATHia Workspace | Overview | ccss |  |  |  |  |  |
| Angle Properties | Calculating and Justifying Angle Measures | Students calculate the measure of the sought angle by following a prescribed path of angle measures. | G.CO. 9 | $\bullet$ |  |  |  |  |
|  | Calculating Angle Measures | Students calculate the measure of the sought angle by following an open solution path. | G.CO. 9 | $\bullet$ |  |  |  |  |
| Introduction <br> to Proofs <br> with <br> Segments <br> and Angles | Introduction to Proofs | Students are introduced to proof by answering questions related to two animations demonstrating the Triangle Sum Theorem and the Vertical Angle Theorem. | G.CO. 1 |  | $\bullet$ |  |  |  |
|  | Connecting Steps in Angle Proofs | Students arrange the steps of more complex proofs into logical order. | G.CO. 9 | $\bullet$ |  |  |  |  |
|  | Completing Measure Proofs | Students complete the steps in a scaffolded proof, supplying appropriate statements and reasons to prove a variety of fundamental angle and segment theorems. | G.CO. 1 | - |  |  |  |  |
|  | Using Angle Theorems | Students use a wide variety of postulates, properties, and theorems to solve mathematical problems related to angles in geometrical figures and diagrams. The Congruent Complements Theorem, Congruent Supplements Theorem, Angle Addition Postulate, angle bisection, Vertical Angle Theorem, and the Transitive Property are all discussed. | G.CO. 9 |  |  | $\bullet$ |  |  |
| Lines Cut by a Transversal | Classifying Angles Formed by Transversals | Students follow worked examples and complete sorting activities as they learn to identify angles and angle pairs formed by lines cut by a transversal. | G.CO. 9 |  |  | $\bullet$ | $\bullet$ |  |
|  | Calculating Angle Measures Formed by Transversals | Calculate the measure of the sought angle by using angle relationships formed by two lines cut by a single transversal. | G.CO. 9 | $\bullet$ |  |  |  |  |
|  | Calculating Angles Formed by Multiple Transversals | Calculate the measure of the sought angle by using angle relationships formed by three parallel lines cut by a single transversal or two parallel lines cut by two transversals. | G.CO. 9 | $\bullet$ |  |  |  |  |
| Parallel Lines Theorems | Proving Parallel Lines Theorems | Students apply basic angle theorems to prove the alternate interior, alternate exterior, same side interior, and side side exterior parallel line theorems. | G.CO. 9 | $\bullet$ |  |  |  |  |
|  | Proving the Converses of Parallel Lines Theorems | Students apply basic angle theorems to prove the alternate interior converse, alternate exterior converse, same side interior converse, and side side exterior converse parallel line theorems. | G.CO. 9 | $\bullet$ |  |  |  |  |


| Topic 3: Using Congruence Theorems |  |  |  |  |  |  |  | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MATHia Unit | MATHia Workspace | Overview | ccss |  |  |  |  |  |
| Triangle Congruence | Introduction to Triangle Congruence | Students practice writing and identifying triangle congruency statements, as well as corresponding sides and angles, given a diagram of congruent triangles or a triangle congruency statement. They then watch a video that introduces the four theorems of triangle congruence - SAS, SSS, AAS, and ASA. Finally, students use a sorting tool to match images of pairs of triangles with congruency markings to the theorem by which they are proven congruent. | $\begin{aligned} & \text { G.CO. } 7 \\ & \text { G.CO. } 8 \end{aligned}$ |  | $\bullet$ |  | - |  |
|  | Proving Triangles Congruent using SAS and SSS | Students prove triangles congruent using the side-angle-side and side-side-side congruence theorems in a variety of diagrams. | G.CO. 10 | $\bullet$ |  |  |  |  |
|  | Proving Triangles Congruent using AAS and ASA | Students prove triangles congruent using the angle-angle-side and angle-side-angle congruence theorems in a variety of diagrams. | G.CO. 10 | $\bullet$ |  |  |  |  |
|  | Proving Triangles Congruent using HL and HA | Students prove triangles congruent using the hypotenuse-leg and hypotenuse-angle congruence theorems in a variety of diagrams. | G.CO. 10 | $\bullet$ |  |  |  |  |
|  | Using Triangle Congruence | Students use SSS, SAS, AAS, and ASA congruence theorems to determine whether two triangles are congruent. They then prove two triangle are congruent by the same group of theorems when given statements about the geometric figures shown. Finally, students complete a two-column proof to identify the reasons for given congruency statements. | G.CO. 10 |  |  | $\bullet$ |  |  |
|  | Proving Theorems using Congruent Triangles | Students use congruent triangle theorems to prove the perpendicular bisector theorem, isosceles triangle base angle theorem and its converse, and the angle bisector theorem. | G.CO. 10 | $\bullet$ |  |  |  |  |
| Triangle Theorems | Proving Triangle Theorems | Students apply previously proved theorems to prove the triangle sum and exterior angle theorems. | G.CO. 10 | $\bullet$ |  |  |  |  |
|  | Using Triangle Theorems | Students apply angle, parallel line, and triangle theorems to prove relationships between elements in more complex diagrams. | G.CO. 10 | $\bullet$ |  |  |  |  |
| Properties of Parallelograms | Understanding Parallelograms | Students are given the properties of parallelograms and use the information to determine the side parallel to a given side of a parallelogram as well as the sides or angles that are congruent to a given side or angle of a parallelogram. They then determine a missing statement to prove a quadrilateral is a parallelogram using the Parallelogram/Congruent-Parallel Side Theorem. Finally, students identify quadrilaterals by properties of their sides, angles, and diagonals. | G.CO. 11 |  |  | $\bullet$ |  |  |
|  | Determining Parts of Quadrilaterals and Parallelograms | Students are given a parallelogram and asked to calculate the length of the bisected diagonals, the measure of the angles, and the length of the opposite side and base. | G.CO. 11 | $\bullet$ |  |  |  |  |
| Parallelogram Proofs | Proofs about Parallelograms | Students apply their knowledge of congruent triangles and parallel lines in order to prove several theorems about parallelograms. | G.CO. 11 | $\bullet$ |  |  |  |  |



## Topic 2: Trigonometry



## Topic 3: Circles and Volume



## 3 Exploring Functions

Topic 1: Functions Derived from Linear Relationships

| mATHia Unit | MATHia Workspace | Overview | ccss |  |  | 3 | $\frac{\pi}{0}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Absolute <br> Value <br> Equations | Graphing Simple Absolute Value Equations Using Number Lines | Students write a simple absolute value equation from a verbal statement, determine the number of solutions, and then represent the solution on a number line. | A.CED. 3 | $\bullet$ |  |  |  |  |
|  | Solving Absolute Value Equations | Students solve multi-step absolute value equations, determine the number of solutions, and then represent the solution on a number line. | A.CED. 3 | $\bullet$ |  |  |  |  |
|  | Reasoning About Absolute Value Inequalities | Students use graphical representations to solve absolute value inequalities. They learn to write equivalent compound inequalities for absolute value inequalities. | A.CED. 3 |  |  | $\bullet$ |  |  |
| Graphs of Piecewise Functions | Introduction to Piecewise Functions | Students are introduced to a linear piecewise function through a realworld scenario and giving the definition of a piecewise function. They then sort sketches of graphs of linear piecewise functions to given scenarios. Finally, students identify the graph of a linear piecewise function after being given the function's equation. | F.IF.7b |  |  | - |  |  |
|  | NEW! Graphing Linear Piecewise Functions | Given a linear piecewise function definition, students represent its piece domain boundaries on a number line and then graph the function. | F.IF.7b | $\bullet$ |  |  | $\bullet$ |  |
|  | Interpreting Piecewise Functions | Students identify the domain in both non-continuous and continuous piecewise functions given an equation and the graph of the function. They are then given a domain and a graph of a piecewise function and are asked to determine the equation the graph with that domain represents. | F.IF.7b |  |  | - |  |  |
|  | NEW! Using Linear Piecewise Functions | Students use graphs of linear piecewise functions to answer questions about scenarios in context. | F.IF.7b | $\bullet$ |  |  |  |  |
|  | Analyzing Step Functions | Students are introduced to step functions in the first problem. They then identify the domain of a given equation of a step function using a problem situation and graph. Next students are asked to identify the step function that represents a given problem situation and graph. | F.IF.7b |  |  | $\bullet$ |  |  |

## Topic 2: Exponentials

|  |  |  |  | - | $\stackrel{(E)}{E}$ |  |  | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MATHia Unit | MATHia Workspace | Overview | ccss |  |  |  |  |  |
| Compare <br> Linear and <br> Exponential <br> Models | Recognizing Linear and Exponential Models | Students compare linear and exponential functions and their graphs in the context of simple interest (linear) and compound interest (exponential). Students solve problems related to the independent and dependent variables of both linear and exponential functions using the graphs and equations. | F.LE.1b <br> F.LE.1c |  |  | - |  |  |
|  | Recognizing Growth and Decay | Students watch two different animations: one shows a model of exponential growth and one shows a model of exponential decay. They analyze how to recognize the difference between the two exponential models before interpreting exponential functions using scenarios of population increase and decrease. | F.LE.1c |  | $\bullet$ |  |  |  |
| Rational Exponents | Properties of Rational Exponents | Students learn the names of the components of radical notation (radical, radicand, index and nth root). They use the properties of powers to make sense of the fact that $x$ to the one-half power and the square root of $x$ are equivalent. Students practice rewrite expressions with radical notation using rational exponents, and then reverse the process and rewrite expressions with rational exponents using radical notation. In these problems, all rational exponents are positive fractions with one as a numerator. | N.RN. 1 |  |  | $\bullet$ |  |  |
|  | Rewriting Expressions with Radical and Rational Exponents | Students expand their understanding of rational exponents to include making sense of fractional exponents with a numerator other than one and negative exponents. Given various expressions with exponents with fractions, exponents with negative values and powers raised to a power, they select a equivalent radical expressions. The process is then reversed, and students convert radical expressions to expressions with positive or negative fractional exponents. | N.RN. 2 |  |  | $\bullet$ |  |  |

## Topic 2: Exponentials (cont'd)

|  |  |  |  | ¢ |  |  |  | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MATHia Unit | MATHia Workspace | Overview | ccss | 은 |  |  |  |  |
| Linear and Exponential Transformations | Introduction to Transforming Exponential Functions | Students use four animations, demonstrating the different ways of transforming an exponential function, to investigate how changing the equation for an exponential function changes the graph of the function. Students answer questions related to horizontal and vertical translations and dilations of exponential functions. | F.BF.B. 3 |  | $\bullet$ |  |  |  |
|  | Shifting Vertically | Students vertically shift graphs of linear and exponential functions. Students use verbal descriptions, graphs, and algebraic representations. | F.BF.B. 3 | $\bullet$ |  |  |  |  |
|  | Reflecting and Dilating using Graphs | Students reflect and dilate graphs of linear and exponential functions. Students use verbal descriptions, graphs, and algebraic representations. | F.BF.B. 3 | $\bullet$ |  |  |  |  |
|  | Shifting Horizontally | Students horizontally shift graphs of linear and exponential functions. Students use verbal descriptions, graphs, and algebraic representations. | F.BF.B. 3 | $\bullet$ |  |  |  |  |
|  | Transforming using Tables of Values | Given a table of values and a table of transformed values, students determine how the basic linear and exponential functions were transformed to create the new functions. | F.BF.B. 3 | $\bullet$ |  |  |  |  |
|  | Using Multiple Transformations | Given a representation of a transformed function, students determine how the basic linear and exponential functions were transformed to create the new functions. | F.BF.B. 3 | $\bullet$ |  |  |  |  |

## Topic 3: Introduction to Quadratic Functions

|  |  |  |  | ¢ | !ex |  |  | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MATHia Unit | MATHia Workspace | Overview | CCSS |  |  |  |  |  |
| Quadratic Models in Factored Form | Modeling Area as Product of Monomial and Binomial | Students complete a table of values and graph from a scenario represented by a quadratic model. Students construct the quadratic function for the scenario as a product of a monomial and a binomial. | A.CED. 1 | $\bullet$ |  |  |  |  |
|  | Modeling Area as Product of Two Binomials | Students complete a table of values and graph from a scenario represented by a quadratic model. Students construct the quadratic function for the scenario as the product of two binomials. | A.CED. 1 | $\bullet$ |  |  |  |  |
|  | Interpreting Maximums of Quadratic Models | Students analyze the graphs of functions modeling scenarios of area and vertical motion to identify the maximum and interpret what it means in terms of the problem. | A.CED. 1 |  |  | $\bullet$ |  |  |
| Quadratic Models in General Form | Modeling Projectile Motion (formerly Modeling Projectile Motion from Ground) | Students use quadratic functions to model projectile motion, and use the solver and the graphs to answer questions. | F.IF. 4 | $\bullet$ |  |  |  |  |
|  | Recognizing Key Features of Vertical Motion Graphs | Students use an interactive Explore Tool to investigate how a vertical motion graph changes when the different values in the vertex, factored, and general form of the quadratic function change. They then use vertical motion graphs to identify the maximum, $x$-intercepts, $y$-intercept, domain, and range of a quadratic function. Finally, students use a vertical motion graph to determine the axis of symmetry and vertex of a quadratic function. | F.IF. 4 |  |  |  | $\bullet$ |  |
| Linear and Quadratic Transformations | Shifting Vertically | Students vertically shift graphs of linear and quadratic functions. Students use verbal descriptions, graphs, and algebraic representations. | F.BF. 3 | $\bullet$ |  |  |  |  |
|  | Reflecting and Dilating using Graphs | Students reflect and dilate graphs of linear and quadratic functions. Students use verbal descriptions, graphs, and algebraic representations. | F.BF. 3 | $\bullet$ |  |  |  |  |
|  | Shifting Horizontally | Students horizontally shift graphs of linear and quadratic functions. Students use verbal descriptions, graphs, and algebraic representations. | F.BF. 3 | $\bullet$ |  |  |  |  |
|  | Transforming Using Tables of Values | Given a table of values and a table of transformed values, students determine how the basic linear and quadratic functions were transformed to create the new functions. | F.BF. 3 | $\bullet$ |  |  |  |  |
|  | Using Multiple Transformations | Given a representation of a transformed function, students determine how the basic linear and quadratic functions were transformed to create the new functions. | F.BF. 3 | $\bullet$ |  |  |  |  |

## 4 Seeing Structure

## Topic 1: Solving Quadratic Equations

| MATHia Unit | MATHia Workspace | Overview | ccss | - |  | 3 | 䢔 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Polynomial Operations | Introduction to Polynomial Arithmetic | Students are introduced to polynomials and identify the difference between different types of polynomials as well as non-polynomials. They then use an Explore Tool to investigate combining like terms when adding polynomial expressions. Finally, students examine the steps to simplifying polynomial expressions that are either added or subtracted before simplifying on their own. | A.APR. 1 |  |  |  | $\bullet$ |
|  | Adding Polynomials | Students add quadratic expressions. | A.APR. 1 | - |  |  |  |
|  | Subtracting Polynomials | Students subtract polynomials. | A.APR. 1 | $\bullet$ |  |  |  |
|  | Using a Factor Table to Multiply Polynomials | Students use factor tables to multiply polynomials. Students combine like terms. | A.APR. 1 | $\bullet$ |  |  |  |
|  | Multiplying Polynomials | Students determine which factor table is appropriate for a given problem, set up the table, and then use the table to multiply polynomials. | A.APR. 1 | $\bullet$ |  |  |  |
| Quadratic <br> Expression <br> Factoring | Using a Factor Table to Multiply Binomials | Students use factor tables to multiply linear expressions. Students combine like terms. | A.APR. 1 | $\bullet$ |  |  |  |
|  | Multiplying Binomials | Students determine which factor table is appropriate for a given problem, set up the table, and then use the table to multiply linear expressions. | A.APR. 1 | $\bullet$ |  |  |  |
|  | Factoring Trinomials with Coefficients of One | Students factor quadratic trinomials with a coefficient of one. | A.APR. 6 | $\bullet$ |  |  |  |
|  | Factoring Trinomials with Coefficients Other than One | Students factor quadratic trinomials with a coefficient other than one. | A.APR. 6 | - |  |  |  |
|  | Factoring using Difference of Squares | Students factor quadratic expressions using difference to two squares. | A.APR. 6 | $\bullet$ |  |  |  |
|  | Factoring Quadratic Expressions | Students factor quadratic expressions using all known factoring methods. | A.APR. 6 | $\bullet$ |  |  |  |

Topic 1: Solving Quadratic Equations (cont'd)


## Topic 1: Solving Quadratic Equations (cont'd)



## Topic 2: Applications of Quadratics

| Operations with Complex Numbers | Introduction to Complex Numbers | Students watch a video introducing them to the imaginary number line and its relation to the real number line. They then practice identifying real and imaginary numbers through the sorting tool. Finally, students are introduced to complex numbers and practice identifying them on the complex plane to help them understand that all numbers are complex, but some are real and some are purely imaginary. | N.CN. 1 |  | $\bullet$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Simplifying Radicals with Negative Radicands | Students simplify radical expressions that result in complex numbers. | N.CN. 1 | $\bullet$ |  |  |  |
|  | Simplifying Powers of $i$ | Students identify expressions that are equivalent to $i,-1,-i$, and 1. They use the definition of $i$ to rewrite higher powers of $i$. | N.CN. 1 |  |  | $\bullet$ |  |
|  | Adding and Subtracting Complex Numbers | Students add and subtract complex numbers. | N.CN. 2 | $\bullet$ |  |  |  |
|  | Multiplying Complex Numbers | Students multiply complex numbers, including problems where the two complex numbers are complex conjugates and problems where they are not. | N.CN. 2 | $\bullet$ |  |  |  |
|  | Solving Quadratic Equations with Complex Roots | Students solve quadratic equations, some of which have real solutions and some of which have imaginary solutions. | N.CN. 7 | $\bullet$ |  |  |  |

Topic 2: Applications of Quadratics (cont'd)


## Topic 3: Circles on a Coordinate Plane



| $5$ | Making Informed Decisions |  |  |  | ¢ |  |  | $\stackrel{\text { ¢ }}{\text { ¢ }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Topic 1: Independence and Conditional Probability |  |  |  |  |  |  |  |  |
| MATHia Unit | MATHia Workspace | Overview | ccss |  |  |  |  |  |
| Independence | Independent Events | Students define "independent events." They investigate different scenarios to determine whether the events given are independent or not independent. Students then investigate compound probability with "and" and use the equation $P(A$ and $B)=P(A) \times P(B)$ to verify whether two events are independent or not. | S.CP. 2 |  | $\bullet$ |  |  |  |
| Conditional Probability | Conditional Probability | Students use an interactive Explore Tool to explore probability using area and random points. Students then explore the idea of conditional probability, using the interactive tool to visualize the conditional probability formula $P(A \mid B)=P(A$ and $B) / P(B)$. Students apply what they know about conditional probability to make predictions and check for independence of events using the Explore Tool. | $\begin{aligned} & \text { S.CP. } 3 \\ & \text { S.CP. } 6 \end{aligned}$ |  |  |  |  | $\bullet$ |

Topic 2: Computing Probabilities


