CASE PRESENTATION: SEVERE FUNCTIONAL MITRAL REGURGITATION

Rebecca T. Hahn, MD
Director of Interventional Echocardiography
Columbia University

1

Case Presentation

56 year old with known CAD and S/P MI complicated by VSD, S/P CABG and VSD patch closure, presents with progressive shortness of breath

- On examination:
- $\mathrm{BP}=92 / 55 \mathrm{mmHg}$, pulse $=60 \mathrm{bpm}$
- Lungs: decreased breath sounds at the bases with bronchial breath sounds in mid lung field
- Cardiac: normal S1 with prominent S2. 3/6 high pitched "seagull" type early systolic murmur, loudest over the apex but radiating throughout the chest
- Extremities: $2+$ pitting edema at ankles bilaterally
- Medications:
- Coreg, Lasix, Aldactone, Lisinopril, Lipitor

2

Transthoracic Echocardiogram

3

5

Two large commissural jets of MR
3D EROA = 50 mm 2

Courtesy of Paul Grayburn
7

What would you do next?

> 1. Increase medical therapy
> 2. Biventricular pacemaker
> 3. Proceed with Mitral Clip

Follow-up Study
 LVIDs $=4.0 \mathrm{~cm}$

1. Moderate Mitral Regurgitation
2. Mild-moderate TR
3. $\mathrm{PASP}=45 \mathrm{mmHg}$

9

11

Before

After

Indications for Cardiac Resynchronization Therapy
A Comparison of the Major International Guidelines
Camilla Normand, BM BCH, ${ }^{\text {a,b }}$ Cecilia Linde, MD, PuD, ${ }^{c}$ Jagmeet Singh, MD, PHD, ${ }^{4}$ Kenneth Dickstein, MD, PuD ${ }^{2, b}$

```
\begin{tabular}{|c|c|c|}
\hline Society & Guideline (Ref. \#) & Year \\
\hline ESC Heart Failure Association & Guidelines for the diagnosis and treatment of acute and chronic HF (15) & 2016 \\
\hline ESC European Heart Rhythm Association & Guidelines on cardiac pacing and CRT (14) & 2013 \\
\hline American College of Cardiology Foundation/ American Heart Association & Guidelines for the management of HF (37) & 2013 \\
\hline Canadian Cardiovascular Society & Comprehensive update of the Canadian Cardiovascular Society Guidelines for the Management of HF (16) & 2017 \\
\hline National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand & Update to guidelines for the prevention, detection and management of chronic HF in Australia, 2006 (20) & 2011 \\
\hline National Institute of Health and Care Excellence & ICD and CRT for arrhythmia and HF (38) & 2014 \\
\hline
\end{tabular}

CRT = cardiac resynchronization therapy; ESC = European Society of Cardiology; \(\mathrm{HF}=\) heart failure; \(\mathrm{ICD}=\) implantable cardioverter-defibrillator.

Normand C et al. J Am Coll Cardiol HF 2018;6:308-16


\section*{TRICUSPID REGURGITATION CASE}

\author{
Rebecca T. Hahn \\ Susheel Kodali \\ Vinnie Bapat \\ Isaac George \\ Columbia University
}

0

\section*{Mrs VG}
- 92 year-old female
- History of presenting illness
- Worsening fatigue and exertional dyspnea in the 18 months prior to index admission
- No episodes of acute decompensated right-sided heart failure

\section*{Past Medical History}
- Hypertension, hyperlipidemia
- Type II diabetes mellitus (on oral hypoglycemics)
- Hypothyroidism
- Persistent atrial fibrillation
- on Apixaban
- CABG 1992 (SVG-LAD, SVG-OM)
- Unstable angina with BMS to SVG of OM on 7/6/2017
- 30 days of dual antiplatelet therapy
- Chronic kidney disease (baseline creatinine \(1.6 \mathrm{mg} / \mathrm{dL}\) )
- Severe TR, mild MR and moderate AS

\section*{Physical Exam}
- Marked JVD
- Hepatomegly
- Peripheral edema

\section*{Transthoracic echocardiography \\ NYPH/CUMC 10/11/2017}
- Normal left ventricular size and systolic function
- Moderately increased right ventricular size with preserved systolic function
- Severe tricuspid incompetence
- Moderate aortic stenosis (AVA \(1.4 \mathrm{~cm}^{2}\) )


4


\section*{Baseline TEE}


*w \({ }^{\text {ow }}\)


6


\section*{Baseline TEE}


Largest coaptation gap = 8 mm

IVC


3D Assessment


3D annular area \(=15.38 \mathrm{~cm}^{2}\) (dimensions \(=4.45 \mathrm{~cm}\) by 4.28 cm )


\section*{3D Color Doppler}


3D color Doppler EROA (averaged
over 11 frames) \(=0.91 \mathrm{~cm}^{2}\)

\section*{Grading of Tricuspid Regurgitation}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Grading the Severity of Chronic TR by Echocardiography'} \\
\hline Parameturs & mid & Moderato & Sowero \\
\hline \multicolumn{4}{|l|}{Structural} \\
\hline TV morphology & Normal or mildly abnormal leafiets & Moderately abnormal leatets & Severe valve lesions (eg, flail leatet, severe retraction, large pefforation) \\
\hline RV and PA size & Usually normal & Normal or mild cilation & Usually ditad? \\
\hline Inferior vena cava diameter & \[
\begin{aligned}
& \text { Normal } \\
& <2 \mathrm{~cm}
\end{aligned}
\] & Nomal or midy dilated \(2.1-2.5 \mathrm{~cm}\) & \[
\begin{aligned}
& \text { Disted } \\
& >2.5 \mathrm{~cm}
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{Oualtatio Dospoler} \\
\hline Color flow jet area' & Small, narrow, central & Moderate central & Large central jet or eccentric wall-impinging jet of variable size \\
\hline Flow convergence zone & Not visible, transient or small & Intermediate in size and duration & Large throughout systole \\
\hline CWD jet & Faint/partial/parabolic & Dense, parabolic or triangular & Dense, often triangular \\
\hline \multicolumn{4}{|l|}{Samicuantative} \\
\hline Color flow jet area (cmi) & Not defined & Not defined & \(>10\) \\
\hline \(\mathrm{VCW}(\mathrm{cm})^{3}\) & \(<0.3\) & 0.3-0.69 & \(\geq 0.7\) \\
\hline PISA radius (cm)4 & \$0.5 & 0.6-0.9 & \(\times 0.9\) \\
\hline Hepatic vein flow & Systolic dominance & Systolic blunting & Systolic flow reversal \\
\hline Tricuspid inflow & A-wave dominant & Variable & E-wave \(>1.0 \mathrm{~m} / \mathrm{sec}\) \\
\hline \multicolumn{4}{|l|}{Oumatestue} \\
\hline EROA (cm) & \(<020\) & 0.20-0.39 & 20.40 \\
\hline RVVI (mL/beat) & <30 & 30-44 & 245 \\
\hline
\end{tabular}

\section*{TR Grading: Work in Progress}


\section*{TR Quantitation}
- Mean VC \(=1.5 \mathrm{~cm}\)
- EROA by PISA \(=0.63 \mathrm{~cm}^{2}\) and calculated regurgitation volume \(=\) 70.4CC
- 2D Quantitation: annular area \(=13.8 \mathrm{~cm}^{2}\) calculated diastolic stroke volume \(=156 \mathrm{cc}\), regurgitation volume \(=106.8 \mathrm{cc}, \mathrm{EROA}=\) \(0.96 \mathrm{~cm}^{2}\)
- 3D Quantitation: annular area \(=15.38 \mathrm{~cm}^{2}\) (dimensions \(=4.45 \mathrm{~cm}\) by 4.28 cm ) calculated diastolic stroke volume \(=173.8 \mathrm{cc}\), regurgitation volume \(=120.7 \mathrm{Cc}, \mathrm{EROA}=1.08 \mathrm{~cm}^{2}\)
- 3D color Doppler EROA (averaged over 11 frames) \(=0.91 \mathrm{~cm}^{2}\) calculated regurgitation volume \(=101.6 \mathrm{cc}\).
- 3DTV EOA \(=7.50 \mathrm{~cm}^{2}\)

\section*{New Grading Scheme for Severe TR}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Table I Proposed expansion of the 'Severe' grade} \\
\hline Variable & Mild & Moderate & Severe & ssive & Torrential \\
\hline VC (biplane) & \(<3 \mathrm{~mm}\) & \(3-6.9 \mathrm{~mm}\) & 7-13 mm & \(14-20 \mathrm{~mm}\) & \(\geq 21 \mathrm{~mm}\) \\
\hline EROA (PISA) & \(<20 \mathrm{~mm}^{2}\) & \(20-39 \mathrm{~mm}^{2}\) & \(40-59 \mathrm{~mm}^{2}\) & \(60-79 \mathrm{~mm}^{2}\) & \(\geq 80 \mathrm{~mm}^{2}\) \\
\hline 3D VCA or quantitative EROA \({ }^{\text {a }}\) & & & \(75-94 \mathrm{~mm}^{2}\) & \(95-114 \mathrm{~mm}^{2}\) & \(\geq 115 \mathrm{~mm}^{2}\) \\
\hline
\end{tabular}

Rebecca T. Hahn, and Jose L. Zamorano. "The Need for a New Tricuspid Regurgitation Grading Scheme." European Heart Journal - Cardiovascular Imaging 2017


\section*{Assessment/Plan}
- 92F with severe symptomatic TR; prohibitive risk for open surgical repair or replacement (age, previous sternotomy, and multiple comorbidities) with MASSIVE TR
- OPTIONS:
- Caval valve(s) ? IVC too large
- Trialign, Cardioband
?annulus too large
- FORMA
- MitraClip

Not Available
?coaptation gap too broad
- Other?

\section*{Assessment/Plan}

\section*{TRANSATRIAL, TRANSCATHETER TRICUSPID VALVE REPLACEMENT WITH THE 48MM NAVIGATE SYSTEM}


\section*{TTVR: First-in-Human}

\section*{NawiGate)}

FOR IMMEDIATE RELEASE


NaviGate Cardiac Structures Inc. ("NCSI") reports world's first transcatheter tricuspid valved stent is successfully implanted

LAKE FOREST, Calif., Dec. 30, 2016 - NaviGate Cardiac Structures Inc. ("NCSI"] announced today that a novel valved stent that can capture the enlarged annulus in patients suffering from functional tricuspid regurgitation (FTR) was implanted in a patient presenting with massive incompetence of the tricuspid valve.

The patient, a 64 -year-old female with an extensive history of severe tricuspid regurgitation (TR 44) that invariably results in right heart failure (RHF), a lethal condition, was successfully treated with the GATE" \({ }^{\text {m }}\) tricuspid Atrioventricular Valved Stent (AVS) from NCSI. The cardiac team from the Cleveland Clinic, recognized as the number-one cardiac medicine center in the USA for 22 consecutive years, implanted the AVS with catheter-guided technique under a compassionate plea from the patient. (A compassionate plea allows a special permission for medical procedures deemed to be

\section*{The Solution: NAVIGATE}

Transcatheter Valved Stent Replacement Technology


The larger sized valves ar ideal for the dilated Tricuspid Valve (TV \(48 \pm 4 \mathrm{~mm} \varnothing\) )

\section*{Components Specifications}
- Temperature Shape Memory NiTinol Tapered Stent (Inflow \(=30 \mathrm{~mm} /\) Outflow \(=40 \mathrm{~mm}\) )
- Height profile 21 mm , Truncated Cone configuration with a Diffuser effect.
- Annular Winglets for secure anchoring of annulus and tricuspid valve leaflet.
- Chemically Preserved Xenogeneic Pericardium.

\section*{Assessment/Plan}
- 92F with severe symptomatic tricuspid incompetence, at prohibitively high risk of surgical intervention because of age, previous sternotomy, and co-morbidities
- Sagittal view

- Transverse view


\section*{Pre-procedural CT planning}

Tricuspid annular area by 2D imaging


Systolic phase:
\(44 \times 54\) mm


Diastolic phase
\(44 \times 49 \mathrm{~mm}\)

Decision: 48 vs 52 mm valve

\section*{Access}


3mensio

\section*{Intra-procedural 3D Echo}


Diastolic phase
\(43 \times 45 \mathrm{~mm}\)

Plan for transcatheter tricuspid valve replacement with a 48 mm NaviGate tricuspid valve bioprosthesis

\section*{Procedural plan}
- Right atrial approach via a lateral right-sided mini-thoracotomy at the \(5^{\text {th }}\) intercostal space under general anesthesia in a hybrid operating room
- 48mm Navigate transcatheter valve deployment under fluoroscopic and transesophageal guidance and rapid pacing
- Femoral venous access for right ventriculography
- Femoral arterial access for selective angiography of the right coronary artery during tricuspid valve advancement and deployment
- Temporary pacing achieved with Confida wire in left ventricle and pacing electrodes mounted on wire

Pre-procedural selective angiography of the right coronary system


\section*{Torrential tricuspid incompetence}


Temporary pacing achieved with Confida wire in left ventricle and pacing electrodes mounted on wire


Advancement of the NaviGate tricuspid system into right ventricle over stiff wire, and through the right atrial incision


Initial valve deployment with RCA injection


Retracting the capsule:
Exposing Ventricular Tines


Intra-procedural TEE - initial valve deployment


Atrial brim exposed

\section*{Valve Release: Complete Deployment}


Final Result

- Trivial central and trivial paravalvular regurgitation
- Peak/mean transtricuspid gradient \(=1.5\) and 0.3 mmHg


\section*{Post procedural course}
- Pledgeted purse-string suture in lateral right atrial wall closed
- Single right pleural Blake drain left in situ
- Extubated in the operating room
- Hemodynamically stable on milrinone infusion for RV support


\section*{Post procedural course}
- Two nights in the intensive care unit, 2 nights on the general ward
- Milrinone ceased on day 2 post procedure
- Chest tube removed on day 2 post procedure
- Discharged home in excellent condition on day 5 post procedure

\section*{NaviGate}

\section*{30 day follow-up}


Conformable Valve
No significant regurgitation```

