
CS162
Operating Systems and
Systems Programming

Lecture 20

Reliability, Transactions
Distributed Systems

April 16th, 2019
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 19.24/16/19 Kubiatowicz CS162 © UCB Spring 2019

Recall: Multilevel Indexed Files (Original 4.1 BSD)
• Sample file in multilevel

indexed format:
– 10 direct ptrs, 1K blocks
– How many accesses for

block #23? (assume file
header accessed on open)?

» Two: One for indirect block,
one for data

– How about block #5?
» One: One for data

– Block #340?
» Three: double indirect block,

indirect block, and data
• UNIX 4.1 Pros and cons

– Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy

– Cons: Lots of seeks (lead to 4.2 Fast File System
Optimizations)

• Ext2/3 (Linux):
– 12 direct ptrs, triply-indirect blocks,

settable block size (4K is common)

Lec 19.34/16/19 Kubiatowicz CS162 © UCB Spring 2019

Recall: File System Caching
• Key Idea: Exploit locality by caching data in memory

– Name translations: Mapping from pathsinodes
– Disk blocks: Mapping from block addressdisk content

• Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations

– Can contain “dirty” blocks (blocks yet on disk)
• Replacement policy? LRU

– Can afford overhead full LRU implementation
– Advantages:

» Works very well for name translation
» Works well in general as long as memory is big enough to

accommodate a host’s working set of files.
– Disadvantages:

» Fails when some application scans through file system, thereby
flushing the cache with data used only once

» Example: find . –exec grep foo {} \;
• Other Replacement Policies?

– Some systems allow applications to request other policies
– Example, ‘Use Once’:

» File system can discard blocks as soon as they are used
Lec 19.44/16/19 Kubiatowicz CS162 © UCB Spring 2019

File System Caching (con’t)
• Cache Size: How much memory should the OS allocate to the

buffer cache vs virtual memory?
– Too much memory to the file system cache  won’t be able to

run many applications at once
– Too little memory to file system cache  many applications may

run slowly (disk caching not effective)
– Solution: adjust boundary dynamically so that the disk access

rates for paging and file access are balanced
• Read Ahead Prefetching: fetch sequential blocks early

– Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)

– Elevator algorithm can efficiently interleave groups of prefetches
from concurrent applications

– How much to prefetch?
» Too many imposes delays on requests by other applications
» Too few causes many seeks (and rotational delays) among

concurrent file requests

Lec 19.54/16/19 Kubiatowicz CS162 © UCB Spring 2019

File System Caching (con’t)
• Delayed Writes: Writes to files not immediately sent out to

disk
– Instead, write() copies data from user space buffer to kernel

buffer (in cache)
» Enabled by presence of buffer cache: can leave written file blocks

in cache for a while
» If some other application tries to read data before written to disk,

file system will read from cache
– Flushed to disk periodically (e.g. in UNIX, every 30 sec)
– Advantages:

» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value for a

file
» Some files need never get written to disk! (e..g temporary scratch

files written /tmp often don’t exist for 30 sec)
– Disadvantages

» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file has

been written out? (lose pointer to inode!)

Lec 19.64/16/19 Kubiatowicz CS162 © UCB Spring 2019

Important “ilities”
• Availability: the probability that the system can accept and

process requests
– Often measured in “nines” of probability. So, a 99.9%

probability is considered “3-nines of availability”
– Key idea here is independence of failures

• Durability: the ability of a system to recover data despite
faults

– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on pyramids

was very durable, but could not be accessed until discovery of
Rosetta Stone

• Reliability: the ability of a system or component to perform its
required functions under stated conditions for a specified
period of time (IEEE definition)

– Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk crashes,

other problems

Lec 19.74/16/19 Kubiatowicz CS162 © UCB Spring 2019

How to Make File System Durable?
• Disk blocks contain Reed-Solomon error correcting

codes (ECC) to deal with small defects in disk drive
– Can allow recovery of data from small media defects

• Make sure writes survive in short term
– Either abandon delayed writes or
– Use special, battery-backed RAM (called non-volatile

RAM or NVRAM) for dirty blocks in buffer cache

• Make sure that data survives in long term
– Need to replicate! More than one copy of data!
– Important element: independence of failure

» Could put copies on one disk, but if disk head fails…
» Could put copies on different disks, but if server fails…
» Could put copies on different servers, but if building is

struck by lightning….
» Could put copies on servers in different continents…

Lec 19.84/16/19 Kubiatowicz CS162 © UCB Spring 2019

RAID: Redundant Arrays of Inexpensive Disks

• Classified by David Patterson, Garth A. Gibson, and
Randy Katz here at UCB in 1987
–Classic paper was first to evaluate multiple schemes

• Data stored on multiple disks (redundancy)
–Berkeley researchers were looking for alternatives to

big expensive disks
–Redundancy necessary because cheap disks were

more error prone

• Either in software or hardware
– In hardware case, done by disk controller; file system may

not even know that there is more than one disk in use

• Initially, five levels of RAID (more now)

Lec 19.94/16/19 Kubiatowicz CS162 © UCB Spring 2019

RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its “shadow”
– For high I/O rate, high availability environments
– Most expensive solution: 100% capacity overhead

• Bandwidth sacrificed on write:
– Logical write = two physical writes
– Highest bandwidth when disk heads and rotation fully

synchronized (hard to do exactly)
• Reads may be optimized

– Can have two independent reads to same data
• Recovery:

– Disk failure  replace disk and copy data to new disk
– Hot Spare: idle disk already attached to system to be

used for immediate replacement

recovery
group

Lec 19.104/16/19 Kubiatowicz CS162 © UCB Spring 2019

• Data stripped across
multiple disks

– Successive blocks
stored on successive
(non-parity) disks

– Increased bandwidth
over single disk

• Parity block (in green)
constructed by XORing
data bocks in stripe

– P0=D0D1D2D3
– Can destroy any one

disk and still
reconstruct data

– Suppose Disk 3 fails,
then can reconstruct:
D2=D0D1D3P0

• Can spread information widely across internet for durability
– RAID algorithms work over geographic scale

RAID 5+: High I/O Rate Parity

Increasing
Logical
Disk
Addresses

Stripe
Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Lec 19.114/16/19 Kubiatowicz CS162 © UCB Spring 2019

Allow more disks to fail!
• In general: RAIDX is an “erasure code”

– Must have ability to know which disks are bad
– Treat missing disk as an “Erasure”

• Today, Disks so big that: RAID 5 not sufficient!
– Time to repair disk sooooo long, another disk might fail in process!
– “RAID 6” – allow 2 disks in replication stripe to fail

• But – must do something more complex that just XORing together
blocks!

– Already used up the simple XOR operation across disks
• Simple option: Check out EVENODD code in readings

– Will generate one additional check disks to support RAID 6
• More general option for general erasure code: Reed-Solomon codes

– Based on polynomials in GF(2k) (I.e. k-bit symbols)
» Gailois Field is finite version of real numbers

– Data as coefficients (aj), code space as values of polynomial:
» P(x)=a0+a1x1+… am-1xm-1

» Coded: P(0),P(1),P(2)….,P(n-1)
– Can recover polynomial (i.e. data) as long as get any m of n; allows n-m

failures!

Lec 19.124/16/19 Kubiatowicz CS162 © UCB Spring 2019

Allow more disks to fail! (Con’t)
• How to use Reed-Solomon code in practice?

– Each coefficient has a fixed (k) number of bits. So, must encode with
symbols that size

– Example: k=16 bit symbols, m=4, encoding 16x4 bits at a time
» Take original data, split into 4 chunks. On each encoding step, grab 16

bits from each chunk to use as coefficients
» Each data point yields a 16-bit symbol, which you distributed to final

encoded chunks
– (better version of Reed-Solomon code for erasure channels is the

“Cauchy Reed-Solomon” code; it is isomorphic to the version here)
• Examples (with k=16):

– Suppose have 6 disks, want to tolerate 2 failures
» Split data into 4 chunks, encode 16 bits from each chunk at a time, by

generating 6 points (of 16 bits) on 3rd-degree polynomial
» Distribute data from polynomial to 6 disks – each disk will ultimately

hold data that is ¼ size of original data
» Can handle 2 lost disks for 50% overhead

– More interesting extreme for Internet-level replication:
» Split data into 4 chunks, produce 16 chunks
» Each chunk is ¼ total size of original data, Overhead = factor of 4
» But – only need 4 of 16 fragments! REALLY DURABLE!

Lec 19.134/16/19 Kubiatowicz CS162 © UCB Spring 2019

Use of Erasure Coding in general:
High Durability/overhead ratio!

• Exploit law of large numbers for durability!
• 6 month repair, FBLPY with 4x increase in total size of data:

– Replication (4 copies): 0.03
– Fragmentation (16 of 64 fragments needed): 10-35

Fraction Blocks Lost
Per Year (FBLPY)

Lec 19.144/16/19 Kubiatowicz CS162 © UCB Spring 2019

Higher Durability/Reliability through
Geographic Replication

• Highly durable – hard to destroy all copies
• Highly available for reads

– Simple replication: read any copy
– Erasure coded: read m of n

• Low availability for writes
– Can’t write if any one replica is not up
– Or – need relaxed consistency model

• Reliability? – availability, security, durability, fault-tolerance

Replica/Frag #1

Replica/Frag #2

Replica/Frag #n

Lec 19.154/16/19 Kubiatowicz CS162 © UCB Spring 2019

Administrivia
• Last Midterm: 5/2

– Can have 3 handwritten sheets of notes – both sides
– Focus on material from lecture 17-24, but all topics fair game!

• Don’t forget to do your group evaluations!
– Very important to help us understand your group dynamics

• Optional HW4 will come out soon
– Will give you a chance to try out using the language “Go” to

build a two-phase commit protocol
– You will be testing it out for next term

» Not sure that we will be giving out points for it. Stay tuned!

Lec 19.164/16/19 Kubiatowicz CS162 © UCB Spring 2019

File System Reliability:
(Difference from Block-level reliability)

• What can happen if disk loses power or software crashes?
– Some operations in progress may complete
– Some operations in progress may be lost
– Overwrite of a block may only partially complete

• Having RAID doesn’t necessarily protect against all such
failures

– No protection against writing bad state
– What if one disk of RAID group not written?

• File system needs durability (as a minimum!)
– Data previously stored can be retrieved (maybe after some

recovery step), regardless of failure

Lec 19.174/16/19 Kubiatowicz CS162 © UCB Spring 2019

Storage Reliability Problem
• Single logical file operation can involve updates to multiple

physical disk blocks
– inode, indirect block, data block, bitmap, …
– With sector remapping, single update to physical disk block

can require multiple (even lower level) updates to sectors

• At a physical level, operations complete one at a time
– Want concurrent operations for performance

• How do we guarantee consistency regardless of when crash
occurs?

Lec 19.184/16/19 Kubiatowicz CS162 © UCB Spring 2019

Threats to Reliability
• Interrupted Operation

– Crash or power failure in the middle of a series of related
updates may leave stored data in an inconsistent state

– Example: transfer funds from one bank account to another
– What if transfer is interrupted after withdrawal and before

deposit?

• Loss of stored data
– Failure of non-volatile storage media may cause previously

stored data to disappear or be corrupted

Lec 19.194/16/19 Kubiatowicz CS162 © UCB Spring 2019

Reliability Approach #1: Careful Ordering
• Sequence operations in a specific order

– Careful design to allow sequence to be interrupted safely

• Post-crash recovery
– Read data structures to see if there were any operations in

progress
– Clean up/finish as needed

• Approach taken by
– FAT and FFS (fsck) to protect filesystem structure/metadata
– Many app-level recovery schemes (e.g., Word, emacs

autosaves)

Lec 19.204/16/19 Kubiatowicz CS162 © UCB Spring 2019

FFS: Create a File
Normal operation:
• Allocate data block
• Write data block
• Allocate inode
• Write inode block
• Update bitmap of free

blocks and inodes
• Update directory with

file name  inode
number

• Update modify time for
directory

Recovery:
• Scan inode table
• If any unlinked files (not in

any directory), delete or put
in lost & found dir

• Compare free block bitmap
against inode trees

• Scan directories for
missing update/access
times

Time proportional to disk size

Lec 19.214/16/19 Kubiatowicz CS162 © UCB Spring 2019

Reliability Approach #2: Copy on Write File Layout
• To update file system, write a new version of the file system

containing the update
– Never update in place
– Reuse existing unchanged disk blocks

• Seems expensive! But
– Updates can be batched
– Almost all disk writes can occur in parallel

• Approach taken in network file server appliances
– NetApp’s Write Anywhere File Layout (WAFL)
– ZFS (Sun/Oracle) and OpenZFS

Lec 19.224/16/19 Kubiatowicz CS162 © UCB Spring 2019

COW with Smaller-Radix Blocks

• If file represented as a tree of blocks, just need
to update the leading fringe

Write

old version new version

Lec 19.234/16/19 Kubiatowicz CS162 © UCB Spring 2019

ZFS and OpenZFS
• Variable sized blocks: 512 B – 128 KB

• Symmetric tree
– Know if it is large or small when we make the copy

• Store version number with pointers
– Can create new version by adding blocks and new pointers

• Buffers a collection of writes before creating a new version
with them

• Free space represented as tree of extents in each block
group

– Delay updates to freespace (in log) and do them all when block
group is activated

Lec 19.244/16/19 Kubiatowicz CS162 © UCB Spring 2019

More General Reliability Solutions
• Use Transactions for atomic updates

– Ensure that multiple related updates are performed atomically
– i.e., if a crash occurs in the middle, the state of the systems

reflects either all or none of the updates
– Most modern file systems use transactions internally to

update filesystem structures and metadata
– Many applications implement their own transactions

• Provide Redundancy for media failures
– Redundant representation on media (Error Correcting Codes)
– Replication across media (e.g., RAID disk array)

Lec 19.254/16/19 Kubiatowicz CS162 © UCB Spring 2019

Transactions
• Closely related to critical sections for manipulating shared

data structures

• They extend concept of atomic update from memory to stable
storage

– Atomically update multiple persistent data structures

• Many ad-hoc approaches
– FFS carefully ordered the sequence of updates so that if a

crash occurred while manipulating directory or inodes the disk
scan on reboot would detect and recover the error (fsck)

– Applications use temporary files and rename

Lec 19.264/16/19 Kubiatowicz CS162 © UCB Spring 2019

Key Concept: Transaction

• An atomic sequence of actions (reads/writes) on a
storage system (or database)

• That takes it from one consistent state to another

consistent state 1 consistent state 2
transaction

Lec 19.274/16/19 Kubiatowicz CS162 © UCB Spring 2019

Typical Structure
• Begin a transaction – get transaction id

• Do a bunch of updates
– If any fail along the way, roll-back
– Or, if any conflicts with other transactions, roll-back

• Commit the transaction

Lec 19.284/16/19 Kubiatowicz CS162 © UCB Spring 2019

“Classic” Example: Transaction

UPDATE accounts SET balance = balance ‐ 100.00 WHERE
name = 'Alice';

UPDATE branches SET balance = balance ‐ 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Alice');

UPDATE accounts SET balance = balance + 100.00 WHERE
name = 'Bob';

UPDATE branches SET balance = balance + 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Bob');

BEGIN; ‐‐BEGIN TRANSACTION

COMMIT; ‐‐COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account

Lec 19.294/16/19 Kubiatowicz CS162 © UCB Spring 2019

The ACID properties of Transactions
• Atomicity: all actions in the transaction happen, or none

happen

• Consistency: transactions maintain data integrity, e.g.,
– Balance cannot be negative
– Cannot reschedule meeting on February 30

• Isolation: execution of one transaction is isolated from
that of all others; no problems from concurrency

• Durability: if a transaction commits, its effects persist
despite crashes

Lec 19.304/16/19 Kubiatowicz CS162 © UCB Spring 2019

Transactional File Systems
• Better reliability through use of log

– All changes are treated as transactions
– A transaction is committed once it is written to the log

» Data forced to disk for reliability
» Process can be accelerated with NVRAM

– Although File system may not be updated immediately, data
preserved in the log

• Difference between “Log Structured” and “Journaled”
– In a Log Structured filesystem, data stays in log form
– In a Journaled filesystem, Log used for recovery

• Journaling File System
– Applies updates to system metadata using transactions (using

logs, etc.)
– Updates to non-directory files (i.e., user stuff) can be done in

place (without logs), full logging optional
– Ex: NTFS, Apple HFS+, Linux XFS, JFS, ext3, ext4

• Full Logging File System
– All updates to disk are done in transactions

Lec 19.314/16/19 Kubiatowicz CS162 © UCB Spring 2019

Journalled File Systems
• Instead of modifying data structures on disk directly, write changes

to a journal/log
– Intention list: set of changes we intend to make
– Log/Journal is append-only
– Single commit record commits transaction

• Once changes are in the log, it is safe to apply changes to data
structures on disk

– Recovery can read log to see what changes were intended
– Can take our time making the changes

» As long as new requests consult the log first
• Once changes are copied, safe to remove log
• But, …

– If the last atomic action is not done … poof … all gone
• Basic assumption:

– Updates to sectors are atomic and ordered
– Not necessarily true unless very careful, but key assumption

Lec 19.324/16/19 Kubiatowicz CS162 © UCB Spring 2019

Redo Logging
• Prepare

– Write all changes (in
transaction) to log

• Commit
– Single disk write to make

transaction durable
• Redo

– Copy changes to disk
• Garbage collection

– Reclaim space in log

• Recovery
– Read log
– Redo any operations for

committed transactions
– Garbage collect log

Lec 19.334/16/19 Kubiatowicz CS162 © UCB Spring 2019

Example: Creating a File

• Find free data block(s)

• Find free inode entry

• Find dirent insertion point

• Write map (i.e., mark used)

• Write inode entry to point to
block(s)

• Write dirent to point to inode

Data blocks

Free
space
map…

Inode table

Directory
entries

Lec 19.344/16/19 Kubiatowicz CS162 © UCB Spring 2019

Ex: Creating a file (as a transaction)
• Find free data block(s)

• Find free inode entry

• Find dirent insertion point

• [log] Write map (used)

• [log] Write inode entry to point to
block(s)

• [log] Write dirent to point to inode

Data blocks

Free
space
map…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it

Lec 19.354/16/19 Kubiatowicz CS162 © UCB Spring 2019

ReDo Log

• After Commit

• All access to file system first
looks in log

• Eventually copy changes to disk

Data blocks

Free
space
map…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or Disk)

headtail

pending

done

st
ar

t

co
m

m
it

tail tail tail tail

Lec 19.364/16/19 Kubiatowicz CS162 © UCB Spring 2019

Crash During Logging – Recover

• Upon recovery scan the
log

• Detect transaction start
with no commit

• Discard log entries

• Disk remains unchanged

Data blocks

Free
space
map…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

Lec 19.374/16/19 Kubiatowicz CS162 © UCB Spring 2019

Recovery After Commit

• Scan log, find start

• Find matching commit

• Redo it as usual
– Or just let it happen later

Data blocks

Free
space
map…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it

Lec 19.384/16/19 Kubiatowicz CS162 © UCB Spring 2019

Course Structure: Spiral

intro

Lec 19.394/16/19 Kubiatowicz CS162 © UCB Spring 2019

Societal Scale Information Systems

Scalable, Reliable,
Secure Services

Internet
Connectivity

• The world is a large
distributed system

– Microprocessors in
everything

– Vast infrastructure behind
them

Databases
Information Collection
Remote Storage
Online Games
Commerce

…

MEMS for
Sensor Nets

Lec 19.404/16/19 Kubiatowicz CS162 © UCB Spring 2019

• Centralized System: System in which major functions are
performed by a single physical computer

– Originally, everything on single computer
– Later: client/server model

• Distributed System: physically separate computers working
together on some task

– Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”

– Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model

Centralized vs Distributed Systems

Lec 19.414/16/19 Kubiatowicz CS162 © UCB Spring 2019

Distributed Systems: Motivation/Issues/Promise

• Why do we want distributed systems?
– Cheaper and easier to build lots of simple computers
– Easier to add power incrementally
– Users can have complete control over some components
– Collaboration: much easier for users to collaborate through

network resources (such as network file systems)

• The promise of distributed systems:
– Higher availability: one machine goes down, use another
– Better durability: store data in multiple locations
– More security: each piece easier to make secure

Lec 19.424/16/19 Kubiatowicz CS162 © UCB Spring 2019

Distributed Systems: Reality
• Reality has been disappointing

– Worse availability: depend on every machine being up
» Lamport: “a distributed system is one where I can’t do work

because some machine I’ve never heard of isn’t working!”
– Worse reliability: can lose data if any machine crashes
– Worse security: anyone in world can break into system

• Coordination is more difficult
– Must coordinate multiple copies of shared state information (using

only a network)
– What would be easy in a centralized system becomes a lot more

difficult

Lec 19.434/16/19 Kubiatowicz CS162 © UCB Spring 2019

Distributed Systems: Goals/Requirements
• Transparency: the ability of the system to mask its

complexity behind a simple interface
• Possible transparencies:

– Location: Can’t tell where resources are located
– Migration: Resources may move without the user knowing
– Replication: Can’t tell how many copies of resource exist
– Concurrency: Can’t tell how many users there are
– Parallelism: System may speed up large jobs by splitting

them into smaller pieces
– Fault Tolerance: System may hide various things that go

wrong
• Transparency and collaboration require some way

for different processors to communicate with one
another

Lec 19.444/16/19 Kubiatowicz CS162 © UCB Spring 2019

Networking Definitions

• Network: physical connection that allows two computers to
communicate

• Packet: unit of transfer, sequence of bits carried over the
network

– Network carries packets from one CPU to another
– Destination gets interrupt when packet arrives

• Protocol: agreement between two parties as to how
information is to be transmitted

Lec 19.454/16/19 Kubiatowicz CS162 © UCB Spring 2019

What Is A Protocol?
• A protocol is an agreement on how to communicate
• Includes

– Syntax: how a communication is specified & structured
» Format, order messages are sent and received

– Semantics: what a communication means
» Actions taken when transmitting, receiving, or when a timer

expires

• Described formally by a state machine
– Often represented as a message transaction diagram

Lec 19.464/16/19 Kubiatowicz CS162 © UCB Spring 2019

Examples of Protocols in Human Interactions

• Telephone
1. (Pick up / open up the phone)
2. Listen for a dial tone / see that you have service
3. Dial
4. Should hear ringing …
5. Callee: “Hello?”
6. Caller: “Hi, it’s John….”

Or: “Hi, it’s me” ( what’s that about?)
7. Caller: “Hey, do you think … blah blah blah …” pause

1. Callee: “Yeah, blah blah blah …” pause
2. Caller: Bye
3. Callee: Bye
4. Hang up

Lec 19.474/16/19 Kubiatowicz CS162 © UCB Spring 2019

Clients and Servers

• Client program
– Running on end host
– Requests service
– E.g., Web browser

• Server program
– Running on end host
– Provides service
– E.g., Web server

GET /index.html

“Site under construction”
Lec 19.484/16/19 Kubiatowicz CS162 © UCB Spring 2019

Client-Server Communication

• Client “sometimes on”
– Initiates a request to the

server when interested
– E.g., Web browser on your

laptop or cell phone
– Doesn’t communicate

directly with other clients
– Needs to know the server’s

address

• Server is “always on”
– Services requests from

many client hosts
– E.g., Web server for the

www.cnn.com Web site
– Doesn’t initiate contact with

the clients
– Needs a fixed, well-known

address

Lec 19.494/16/19 Kubiatowicz CS162 © UCB Spring 2019

Peer-to-Peer Communication

• No always-on server at the center of it all
– Hosts can come and go, and change addresses
– Hosts may have a different address each time

• Example: peer-to-peer file sharing (e.g., BitTorrent)
– Any host can request files, send files, query to find where

a file is located, respond to queries, and forward queries
– Scalability by harnessing millions of peers
– Each peer acting as both a client and server

Lec 19.504/16/19 Kubiatowicz CS162 © UCB Spring 2019

Summary
• Important system properties

– Availability: how often is the resource available?
– Durability: how well is data preserved against faults?
– Reliability: how often is resource performing correctly?

• RAID: Redundant Arrays of Inexpensive Disks
– RAID1: mirroring, RAID5: Parity block

• Use of Log to improve Reliability
– Journaled file systems such as ext3, NTFS

• Transactions: ACID semantics
– Atomicity
– Consistency
– Isolation
– Durability

