Recent Advances in Directed and Intramolecular Transition Metal Catalyzed Oxidative Functionalizations of Carbon-Hydrogen Bonds

John Heemstra Jr. April 18, 2006

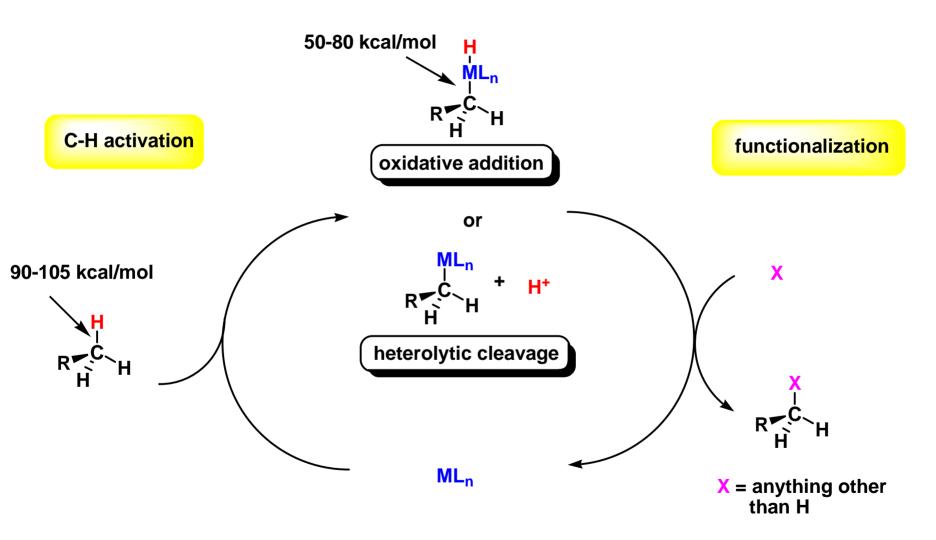
Oxidative Functionalization of Alkanes

However, two major problems:

Chemoselectivity: product more reactive toward oxidant than starting alkene

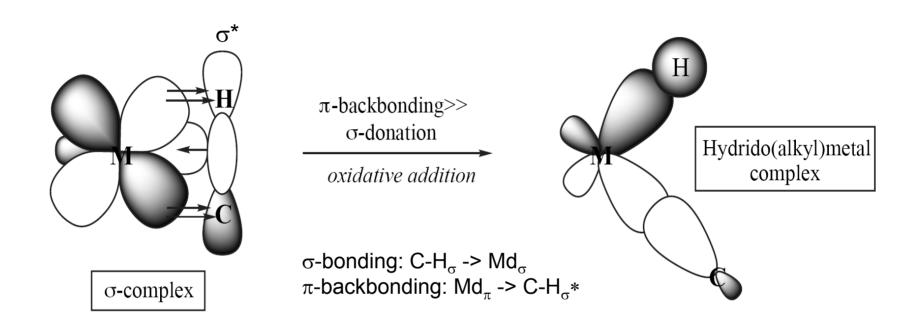
if oxidation involves abstraction of H atom, overoxidation to CO₂ will be observed

Regioselectivity: radical and electrophilic reagents oxidize $3^{\circ}>2^{\circ}>1^{\circ}$

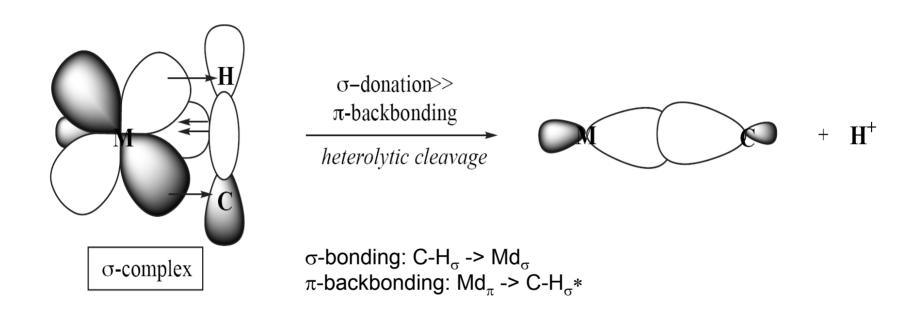

However, the selectivity is often not high

R	R-H -> R + H
Me	104.9
Et	101.1
<i>i</i> -Pr	98.6
t-Bu	96.5

Stahl, S.S.; Labinger, J.A.; Bercaw, J.E. Angew. Chem. Int. Ed. 1998, 37, 2180


C-H Functionalization via the 'Inner-Sphere' Mechanism

(alternatively termed 'organometallic')


Selectivity: kinetic and thermodynamic preference to form the less sterically hindered C-M intermediate (1° sp³ > 2° sp³ >>> 3° sp³)

C-H Activation Via Late, Nucleophilic Complexes

- Typically involves coordinatively and electronically unsaturated Rh(I) and Ir(I) intermediate complexes
- Prone to non-productive reductive elimination in the presence of oxidants and non-productive protonolysis in the presence of protic reagents.

C-H Activation Via Late, Electrophilic Complexes

- Heterolytic cleavage results in no oxidation state change in metal.
- Electrophilic complexes in their highest stable oxidation state are typically used (eg. Pt^{||} and Pd^{||})
- Compatible with oxidants (including O₂) and provide a route to oxidative functionalization.

The Shilov System

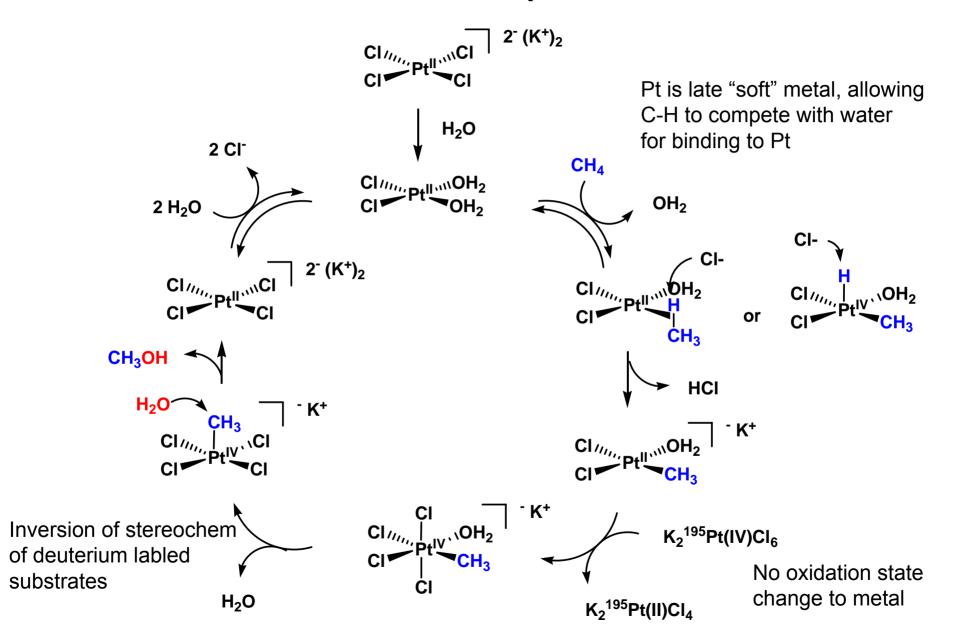
First reported by Shilov and coworkers In 1972.....a paradigm shift

$$CI_{M_{1},P} \stackrel{2^{-}(K^{+})_{2}}{CI} \stackrel{CI}{CI} \stackrel{(cat.)}{CI}$$

$$RCH_{3} + H_{2}O \xrightarrow{K_{2}Pt(IV)CI_{4}(ox.)} \qquad RCH_{2}OH + RCH_{2}CI \qquad 1^{\circ} > 2^{\circ} > 3^{\circ}$$

$$120 oC$$

"Even though these results were mostly ignored or met with disbelief at first, they are now seen as the origin of the organometallic class of alkene oxidations."

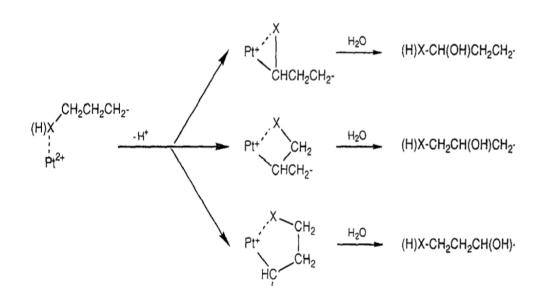

Robert Crabtree

$$HO \ CH_3 + H_2O \xrightarrow{"Pt"} HO \ OH$$
 $H_3C \ CH_3 + H_2O \xrightarrow{"Pt"} H_3C \ OH + H_3C \ OH$
 3

Although excellent chemioselectivity is observed, only modest regioselectivities have been obtained for unfunctionalized alkanes.

Stahl, S.S.; Labinger, J.A.; Bercaw, J.E. Angew. Chem. Int. Ed. 1998, 37, 2180

The Shilov System



Stahl, S.S.; Labinger, J.A.; Bercaw, J.E. *Angew. Chem. Int. Ed.* **1998**, 37, 2180

Chelate-Directed C-H Bond Functionalizations

Substrate	Product	Yield	
1-Propanol	1,3-Propanediol	84%	
2-Butanol	1,3-Butanediol	114%	Conditions:
1-Butanol	1,3-Butanediol	19%	17 mol% K ₂ Pt(II)Cl ₄ , 50 mol% K D ₂ O, 110-120 °C, 3 days
	1,4-Butanediol	38%	220, 110 120 0, 0 dayo
	Tetrahydrofuran	32% →	Kinetic product formed by redu

^b Yield with respect to Pt^{II} present initially.

Selectivity arises form the tendence to form the metallacycle with the least ring strain

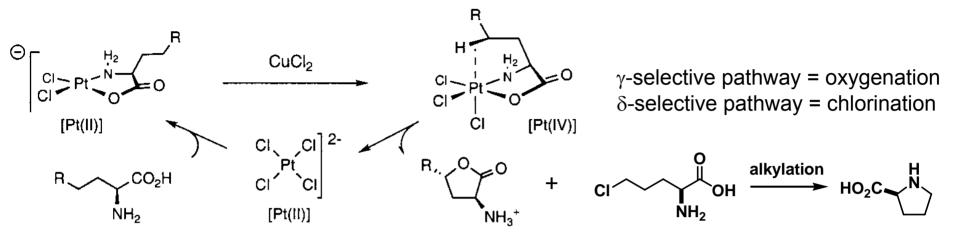
For alcohols:

 α -CH << β -CH < γ -CH ≤ δ -CH

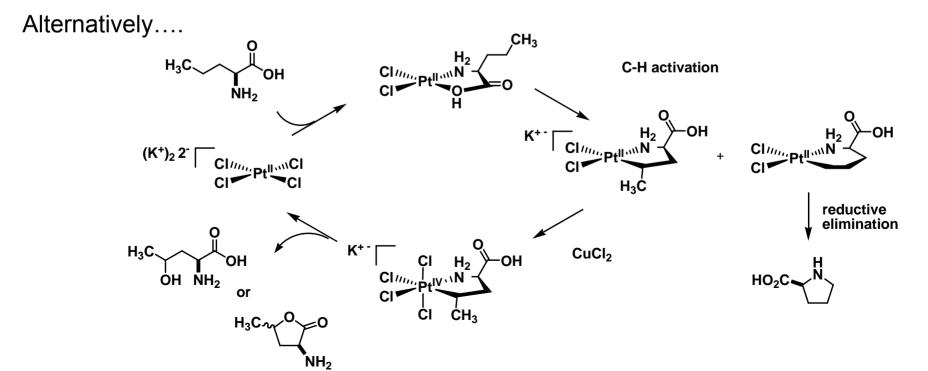
Trend also observed for carboxylic acids, Sulfonic acids, and phosphonic acids

Basickes, N.; Sen, A. *Polyhedron* **1995**, *14*, 202

Chelate-Directed C-H Bond Functionalizations


substrate	products	γ– / δ– products	isolated yield,%
O NH ₂ OH	+ NH ₂ + CO ₂ H	4 : 1	21
OH NH ₂	+ NH ₂ + CO ₂ H dr 2:1	4.5 : 1	15
∕∕∕NH ₂	OH + HO NI	H ₂ 1:3	24
OH	~°~° + °°~°°	2:3	nd
CO ₂ H	no reaction		

conditions: 0.05 equiv K₂PtCl₄, 7 equiv CuCl₂, H₂O, 160 °C, 10h


The chelation effect in amino acids can override the inherent selectivity of the C-H activation step.

Dangel, B.D.; Johnson, J.A.; Sames, D.S. J. Am. Chem. Soc. 2001, 123, 8149

Proposed Catalytic Cycle

Dangel, B.D.; Johnson, J.A.; Sames, D.S. J. Am. Chem. Soc. 2001, 123, 8149

Summary of Platinum Mediated Alkane Oxidations

- Has been instrumental in the understanding of mechanistic and selectivity issues related to alkane oxidation by homogeneous transition metal complexes
- Moderate to excellent regioselectivity can be achieved in the oxidation of functionalized alkanes (eg. alcohols and acids) via the chelate effect
- However, the platinum mediated chemistry is plagued by low catatyst turnover numbers.
- Pt(IV) is not a practical stoichiometric oxidant (cost) and attempts at replacing it with other oxidants have afforded decreased chemoselectivity.
- Deposition of platinum metal erodes selectivities and the oxidation of Pt(0) tends to be difficult. Palladium on the other hand.......

Palladium-Catalyzed Oxygenation of Unactivated sp³ C-H Bonds

MeO N
$$R^4$$
 R^4 R^2 R^3 R^4 R^2 R^3 R^4 R^2 R^3 R^4 R^2 R^3 R^4 R^4

	-	-	
Entry	Substrate	Major Product	Yield ^b
1	MeO. _N	MeO. _N OAc	74% ^c
2	MeO. N	MeO. _N (10) OAc	78% ^c
3	MeO. _N	MeO. _N (11)	39% ^c

Entry	Substrate	Major Product	Yield ^b
4	MeO. _N	No Reaction	0%
5	MeO. _N	. No Reaction	0%

Unlike Pt(II), only 1^0 β -C-H bonds undergo functionalization!

- The chelating group believed to both direct and accelerate unactivated sp³ C-H activation
- High reactivity for 1° β–C-H likely reflects preference for forming 5-membered palladacycles and strong steric preference for formation less hindered 1° Pd-alkyls.

Desai, L.D.; Hull, K.L.; Sanford, M.S. J. Am. Chem. Soc. 2004, 126, 9542

Palladium-Catalyzed Oxygenation of Unactivated sp³ C-H Bonds

			•		
Substrate	Product	Yield ^b	Substrate	Product	Yield ^b
MeO. N (12)	MeO. _N (22)	61%	(17)	(27)	42%
MeO ^{-N} (13)	AcO (23)	75%	(18)	OAc (28)	70%
MeO. (14)	MeO. NOAc (24)	81% ^c 1.5 h	(19)	OAc (29)	66%
MeO. <i>t</i> -Bu (15)	MeO N (25)	86% ^c	(20)	OAc (30)	44%
(16)	OAc OAc OAc OAc OAc	5 min 63%	MeO. N H (21)	MeO. N H OAc	81% Single diastereor

^a 1 equiv of substrate (0.12 M), 1.1−3.2 equiv of PhI(OAc)₂, 5 mol % Pd(OAc)₂, in AcOH, 50% AcOH/50% Ac₂O, or CH₂Cl₂, 80−100 °C, 5 min−12 h. ^b Isolated yields. ^c Isolated as a mixture of oxime E/Z isomers.

These Pd-catalyzed reactions typically proceed under significantly milder conditions, with higher TON (often ≥50) and with broader substrate scope than those with Pt catalysts

Desai, L.D.; Hull, K.L.; Sanford, M.S. J. Am. Chem. Soc. 2004, 126, 9542

Palladium-Catalyzed Oxygenation of Unactivated sp² C-H Bonds

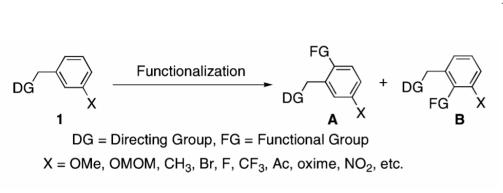
Low levels of regioselectivity observed

Yoneyama, T.; Crabtree, R.S. J. Mol. Catal. A 1996, 108, 35

oxidant	solvent	X (product)	yield ^b (%)
PhI(OAc) ₂	CH ₃ CN	OAc (3a): OH (3b)	86^d
$PhI(OAc)_2$	MeOH	OMe (3c)	95
$PhI(OAc)_2$	EtOH	OEt (3d)	80
$PhI(OAc)_2$	<i>i</i> -PrOH/HOAc	OiPr(3d)	72
$PhI(OAc)_2$	CF ₃ CH ₂ OH	OCH_2CF_3 (3f)	71

Dick, A.R.; Hull, K.L.; Sanford, M.S. J. Am. Chem. Soc. 2004, 126, 2300

Chelate-Directed Oxidation of sp² and sp³ C-H Bonds


Monooxidation of substrates: Conditions: 1.1-1.6 equiv of PhI(OAc)₂, 1-6 mol% Pd(OAc)₂, 100 °C, 12-20 h, CH₃CN

Dioxidation of substrates:

Conditions: 2.3 equiv of PhI(OAc)₂, 6-8 mol% Pd(OAc)₂, 100 °C, 12h, CH₃CN

Dick, A.R.; Hull, K.L.; Sanford, M.S. J. Am. Chem. Soc. 2004, 126, 2300

Palladium-Catalyzed Acetoxylation of *Meta*-Substituted Aryl pyridines

Conditions:

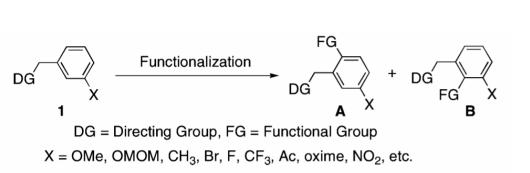
5 mol% Pd(OAc)₂, 1.1-3.0 equiv PhI(OAc)₂, AcOH, C_6H_6 or C_6H_6/Ac_2O , 100 °C, 0.5-4 h

Unlike directed ortho-lithiation and Ru-catalyzed C-H activation reactions, OMe, OMOM, and F Did not exhibit secondary directing effects

entry	starting material	major product	yield	ratio of A:E
1	(2) NO ₂	AcO (2a) NO ₂	60%	>20:1 ^b
2	(3) CF ₃	AcO N (3a) CF ₃	81%	>20:1 ^b
3	(4) F	AcO (4a) F	59%	6:1 ^c
4	(5) Br	AcO (5a) Br	83%	>20:1 ^b
5	(6) CH ₃	AcO CH ₃	77%	27:1 ^d
6	(7) OMOM	AcO (7a) OMO	76% DM	>20:1 ^b
7	(8) OMe	AcO N (8a) OMe	78%	60:1 ^d

Kalyani, D.; Sanford, M.S. Org Lett. 2005, 19, 4149

Palladium-Catalyzed Acetoxylation of Aryl Pyrrolidinones


Conditions:

5 mol% Pd(OAc)₂, 1.1-2.2 equiv PhI(OAc)₂, AcOH, AcOH/Ac₂O, 100 °C, 3-12 h

Selectivity for **A** may be general over many classes of directing groups in PdII-catalzed C-H activation/oxidative functionalizations.

entry	starting material	major product	yield	ratio of A:B
1	0 N (9) F	O ^{AcO} N (9a) F	88% ^b	14:1 ^c
2	O N (10) CH ₃	OAcO N (10a) CH	74% I ₃	>20:1 ^d
3	ON OMe	OACO N (11a) OM	73% 1e	>20:1 ^d
4	ON OMON	OACO N (12a) OM	70% 1OM	>20:1 ^d

Palladium-Catalyzed Acetoxylation of Substrates with Potential Dual Chelating Groups

Conditions:

5 mol% Pd(OAc)₂, 1.5-1.8 equiv PhI(OAc)₂, C_6H_6 or C_6H_6 /Ac₂O, 100 °C

entry	starting material	major product	yield	ratio of A:B
1	(13)	AcO (13a) O	82%	>20:1 ^b
2	(14) N	AcO (14a) N	81%	>20:1 ^b
3	OMe (15) O	AcO (15a) O	e 83%	>20:1 ^b
4	(16) MeO N=	AcO (16a) MeO	78%	>20:1 ^b
5	O N N N N N N N N N N N N N N N N N N N	No Reaction		
6	(18)	AcO (18b)	29% ^d	1:2 ^c

Kalyani, D.; Sanford, M.S. Org Lett. 2005, 19, 4149

Proposed Catalytic Cycle for Palladium-Catalyzed Acetoxylation of Benzo[h]quinone

Mechanistic Investigations of C-O Bond-Forming Reductive Elimination of Pd(IV) Complexes

Expected **mechanism A** most likely by analogy to C-O bond-forming reactions with Pt^{IV} However....

- no observed rate acceleration in more polar solvents and no correlation with solvent dielectric constant
- Δ S = +4.2 ± 1.4 and -1.4 ± 1.9 eu in d₆ DMSO and CDCl₃ respectively (ionic reductive eliminations typically show highly negative values of Δ S).
- ρ = -1.36 ± 0.04 (Pt^{VI} C-O bond forming reductive elimination ρ = +1.44)
- Thermolysis in the presence of 5 equiv NBu₄OAc resulted less than 5% incorporation of the acetate in CHCl₃ or DMSO

What experiments would you perform to distinguish between Mech. B and C?

Dick, A.R.; Kampf, J.W.; Sanford, M.S. J. Am. Chem. Soc. 2005, 127, 12790

Mechanistic Investigations of C-O Bond-Forming Reductive Elimination of Pd(IV) Complexes

Sanford and co-worker currently favor mechanism C

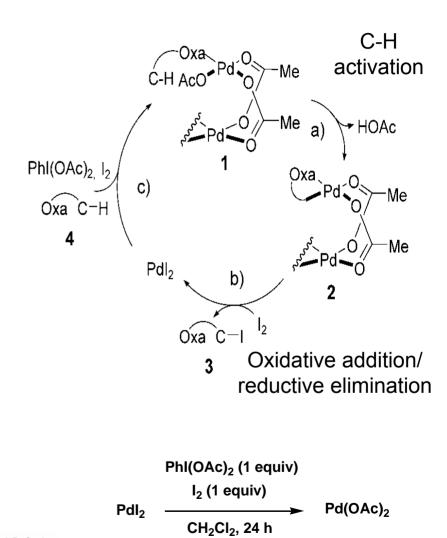
Selective C-H Activation/Halogenation catalyzed by Pd(OAc)₂

Substrate	Product	Yield (%)
N H	CI	95
N H	Br	93
MeO N H	MeO N CI	86

Conditions:

1 mol% Pd(OAc)₂, 1.1 equiv of N-Halosuccinamide, MeCN, 100 °C, 24-72 h

Dick, A.R.; Hull, K.L.; Sanford, M.S. J. Am. Chem. Soc. 2004, 126, 2300

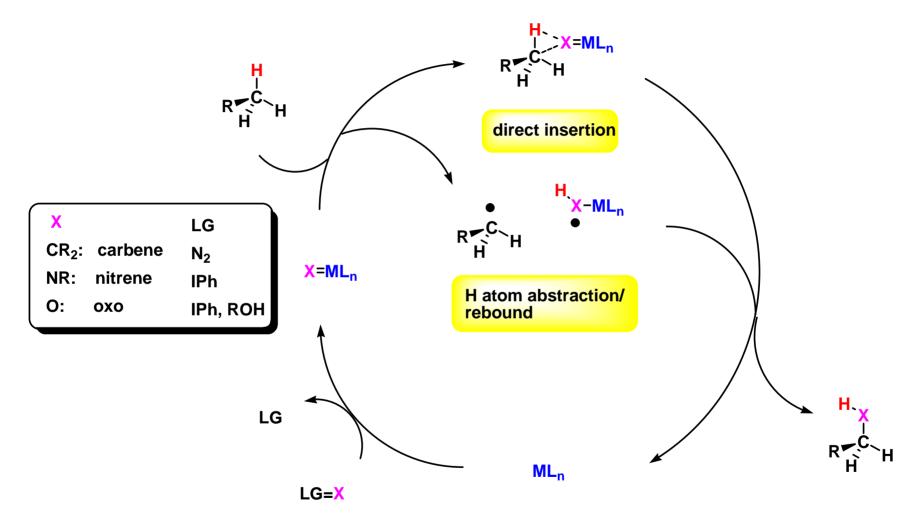

Substrate	Product	Yield (%)	
Me Me Me O	Me N ··· t-Bu	92	Conditions: 10 mol% Pd(OAc) ₂ , I_2 (1 equiv) PhI(OAc) ₂ (1 equiv), CH_2CI_2 ,
Me Me Et O ***********************************	Me N <i>t</i> -Bu	91 (63:37	24 °C, 48-72 h ' dr)
Me Et N <i>t</i> -Bu	Et N t-Bu	88	Ethanolamine, 2-methyl-2-amino- propanol, or valinol derived oxazolines proceed at much slower rate

Giri, R.; Chen, X.; Yu, J.-Q. Angew. Chem. Int. Ed. 2005, 44, 2112

Selective C-H Activation/Halogenation catalyzed by Pd(OAc)₂

Me N in t-Bu
$$\frac{Pd(OAc)_2}{CH_2Cl_2}$$
 $\frac{Pd(OAc)_2}{CH_2Cl_2}$ $\frac{Pd(OAc)_2}{Me}$ $\frac{Pd(OAc)_2}{OPd}$ $\frac{$

Substrate		Product		Yield [%]	d.r.
14a	Me /Bu Me Oxa	14b	Me tBu Oxa	83 ^[b]	91:9
15 a	Me Oxa	15 b	Me OTBS Oxa	62 ^[c]	93:7
16 a	H Oxa	16b	H Me I Oxa	65 ^[d]	99:1
17 a	Ph Me Ph Oxa	17 b	Ph Me Oxa	98 ^[e]	99:1


[a] Reaction conditions: $Pd(OAc)_2$ (10 mol%), I_2 (1 equiv), $PhI(OAc)_2$ (1 equiv), CH_2CI_2 . [b] 24 °C, 30 h. [c] 50 °C, 48 h. [d] 24 °C, 96 h. [e] 24 °C,

Summary of the Palladium Catalyzed sp³ and sp² C-H bond Oxidative Functionalization

- Unactivated sp³ and sp² C-H bonds of oximes, pyridine, pyrazole, imine, and azobenzene substrates undergo highly regio- and chemoselective Pd(II) catalyzed oxygenations with PhI(OAc)₂ as a stoichiometric oxidant.
- C-H bonds can also be replaced with ether functionality or halides when reaction are performed in alcohol solvants or in the presence of N-halosuccinamides, or I₂.
- Pd-catalyzed chelate-directed acetoxylation of *meta*-substituted arene substrates exhibit high regioselectivity for functionalization at the less substituted *ortho*-position
- These Pd-catalyzed reactions typically proceed under significantly milder conditions, With higher TON (often ≥50) and with broader substrate scope than those with Pt catalysts.
- The almost exclusive selectivity for 1° C-H bonds is a could be a limitation if one wanted to develop a stereospecific or enantioselective process.

C-H Functionalization via the 'Outer-Sphere' Mechanism

(alternatively termed 'coordination')

Selectivity: involves buildup of radical and/or cationic character at carbon and shows selectivity for weaker C-H bonds: benzylic, allylic, 3° , or α to heteroatoms.

C-H Bond Amination via the 'Outer-Sphere' Mechanism

First example of an intermolecular C-H amination

Breslow. R; Gellman, S.H. J. Chem. Soc., Chem. Commun. 1982, 1400

First example of an intramolecular C-H amination

First demonstration of the use of the oxidant PhI(OAc)₂ and Rh catalyst system

Breslow. R; Gellman, S.H. J. Am. Chem. Soc. 1983, 105, 6728

Rhodium-Catalyzed Oxidative C-H Insertion Reaction for Oxazolidinone Synthesis

One-pot procedure for formation of aryliodinane and insertion of metallonitrenoids in C-H bond

Espino, C.G.; Du Bois, J. Angew. Chem. Int. Ed. 2001, 40, 598

74

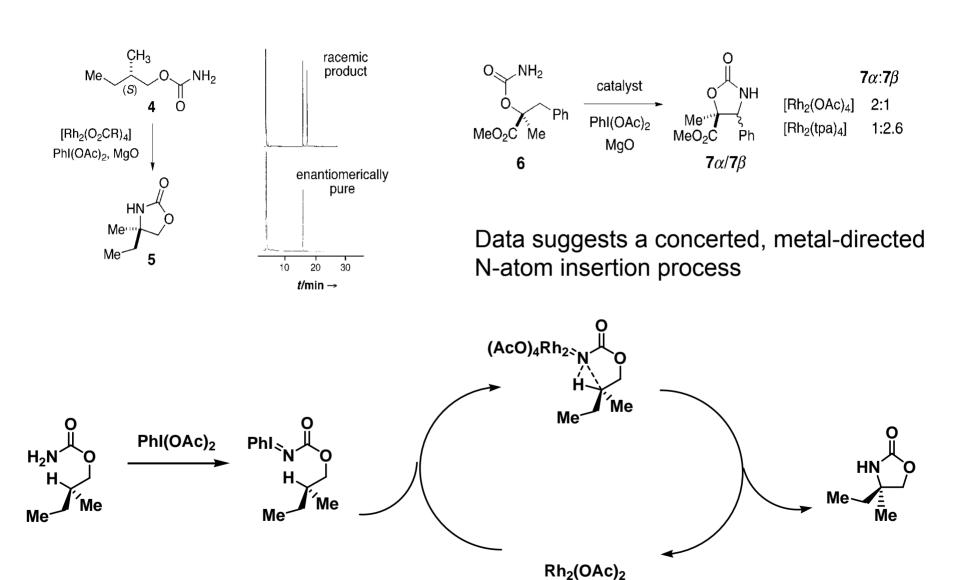
77^[c]

83

77

79

82

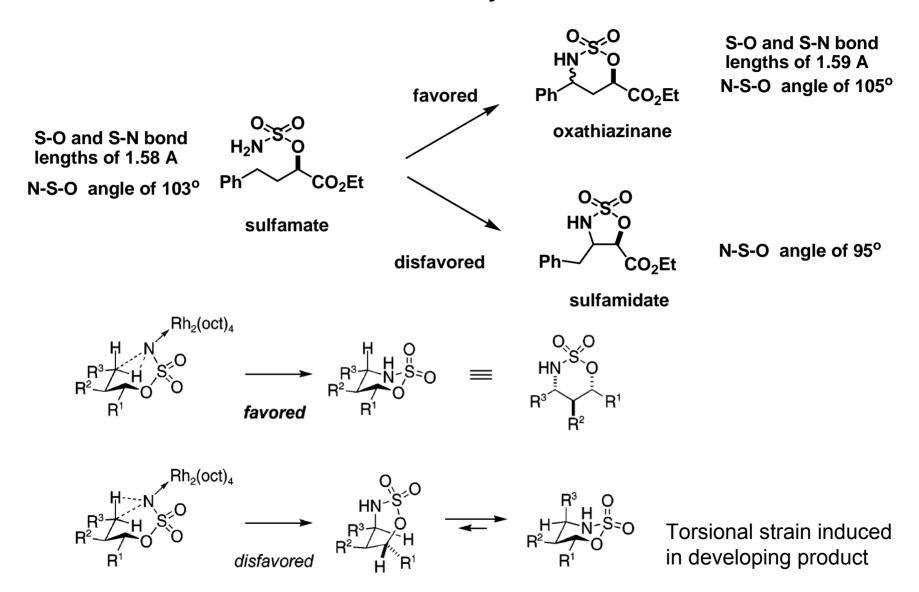

84

44

82

 \mathbf{A}

Mechanism of Oxazolidinone Formation



Espino, C.G.; Du Bois, J. Angew. Chem. Int. Ed. 2001, 40, 598

Rhodium-Catalyzed Oxidative C-H Insertion Reaction for Oxathiazinane Synthesis

Espino, C.G.; Wehn P.M.; Chow, J.; Du Bois, J. J. Am. Chem. Soc. 2001, 123, 6935

Rhodium-Catalyzed Oxidative C-H Insertion Reaction for Oxathiazinane Synthesis

Wehn P.M.; Lee, J.; Du Bois, J. Org. Lett. 2003, 5, 4823

Rhodium-Catalyzed Amidation of Ethereal Cα-H Bonds

Fleming, J.J.; Fiori, K.W.. Du Bois, J. J. Am. Chem. Soc. 2003, 125, 2028

Alkynlzinc Addition Reactions with N,O-Acetals

Entry	Substrate	Major isomer ^a	Selectivity ^b	Yield ^c
1	ON O HN SO Et Et	t _{BuPh₂SiO} OH	20:1	85
2	HN S O	BnO OH	20:1	82
3	ON O HN S O NE	Bu Et OH	12:1 Bu	71
4	MeO NHTroc	TsO NHTroc	8:1	70
5	O, S, O HN, S, O MeO	HN'S O	20:1	76
6	O, O HN S O MeO	HN S O R	= Et 6:1 = OP 6:1	80 63 ^d

$$\begin{bmatrix}
O & H^{+} & R^{2} \\
O & H^{-} & R^{2}
\end{bmatrix}$$

$$O & Nuc \\
O & S & O & R^{2} \\
HN & H & R^{1}
\end{bmatrix}$$

$$O & Nuc \\
HN & R^{2}$$

$$O & S & O \\
HN & S & O \\
Nuc & 4 & 5 & R^{2}$$

- When C6 unsubstituted, 4,5-syn favored
- When C6 substituted, 4,6-anti favored regardless of C5 configuration

Tandem Rhodium C-H Amination, Iminium Ion Coupling Reactions

One-pot procedure: rxn mixture filtered to remove MgO and then treated with either 1.5 equiv BF₃ OEt₂ and 4 equiv allyltrimethyl silane or 0.1 equiv Sc(OTf)₃ and 4 equiv of silyl enol ether

a R = Me b R = CPh₃

Fiori, K.W.; Fleming, J.J. Du Bois, J. Angew. Chem. Int. Ed. 2004, 43, 4349

Ketene acetals can also be employed

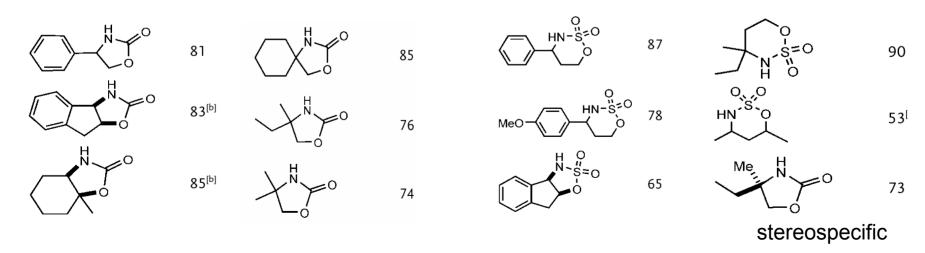
Stereochemical Models for Iminium Ion Additions

Fiori, K.W.; Fleming, J.J. Du Bois, J. Angew. Chem. Int. Ed. 2004, 43, 4349

Stereochemical Models for Iminium Ion Additions

Highly selective additions to 5,6-syn-substituted iminium ions

$$\begin{array}{c} O \\ +HN \\ \hline \\ S \\ \hline \\ R^2 \end{array} = \begin{array}{c} O \\ \hline \\ O \\ \hline \\ O \\ \hline \\ O \\ \hline \\ H \\ \hline \\ H \\ \hline \\ O \\ \hline \\ Nu \end{array} \longrightarrow \begin{array}{c} O \\ \hline \\ R^2 \\ \hline \\ O \\ \hline \\ Nu \\ \hline \\ Nu \\ \hline \\ R^2 \\ \hline \\ HN \\ \hline \\ O \\ \hline \\ Nu \\ \hline \\ R^2 \\ \hline \\ HN \\ \hline \\ O \\ \hline \\ Nu \\ \hline \\ R^2 \\ \hline \\ Nu \\ \hline \\ R^3 \\ \hline \\ R^3 \\ \hline \\ Nu \\ \hline \\ R^2 \\ \hline \\ R^3 \\ \hline \\ Nu \\ \hline \\ R^2 \\ \hline \\ R^3 \\ \hline \\ Nu \\ \hline \\ R^2 \\ \hline \\ R^3 \\ \hline \\ R^3 \\ \hline \\ Nu \\ \hline \\ R^2 \\ \hline \\ R^3 \\ \\ R^3 \\ \hline \\ R^3 \\ \\ R^3 \\ \hline \\ R^3 \\ \\ R^3 \\ \hline \\ R^3 \\ \\ R^3 \\ \hline \\ R^3 \\ \\ R^3 \\ \hline \\ R^3 \\ \\ R^3$$


Selectivity erodes with 5,6-anti-configured substrates

A Silver-Catalyzed Oxidative C-H Insertion Reaction for Oxazolidinone and Oxathiazinane Synthesis

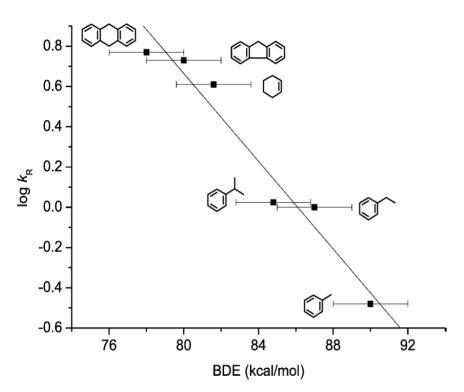
a) O
$$tBu$$
 $T+$ b) AgNO₃ (4 mol%) tBu tBu

Carbamate C-H insertions

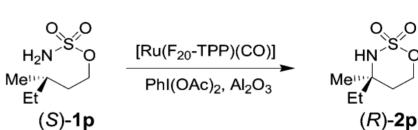
sulfamate C-H insertions

Similar yields; however, Rh-catalyzed process proceeds at 40 °C

Cui, Y.; He, C. Angew. Chem. Int. Ed. 2004, 5, 4210


Intramolecular C-N Bond Formations Reactions Catalyzed By a Ruthenium Porphyrin

Single isomer*


Liang, J.-L.; Yuan, S.-X.; Huang, J.S.; Yu, W.Y.; Che, C.-M. J. Org. Chem. 2004, 69, 3610

*Dirhodium complex afforded 8:1 cis:trans

Intramolecular C-N Bond Formations Reactions Catalyzed By Ruthenium Porphyrins

FIGURE 2. Correlation between relative amidation rates (log k_R) and C-H bond dissociation energies (BDE) for the intermolecular amidation of hydrocarbons with "PhI(OAc)₂ + NH₂-SO₂-p-C₆H₄NO₂" catalyzed by [Ru(F₂₀-TPP)(CO)].

However, intramolecular C-H amination is stereospecific!

- a) Carboradical is too shortlived to undergo configuration inversion
- b) Nonsynchronous concerted mechanism bearing significant hydrogen abstraction character

Data for intermolecular reaction supports H-atom abstraction mechanism

Liang, J.-L.; Yuan, S.-X.; Huang, J.S.; Yu, W.Y.; Che, C.-M. J. Org. Chem. 2004, 69, 3610

Expanding the Scope of C-H Amination Through Catalyst Design

Me´| Me

0.15 mol%

catalyst

PhI(OAc)₂

MgO, CH₂Cl₂

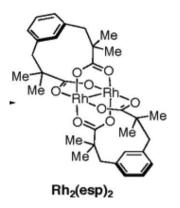
1 mol% catalyst Me´ ı Me

catalyst

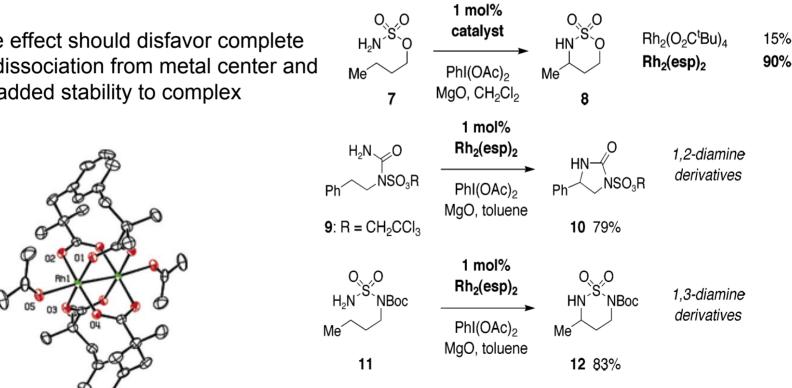
Rh₂(esp)₂

Rh₂(O₂C^tBu)₄

Rh₂(O₂C^tBu)₄

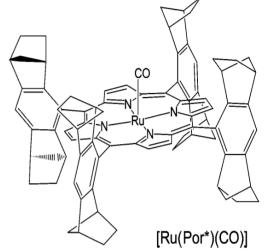

> 600 turnovers

yield


20%

92%

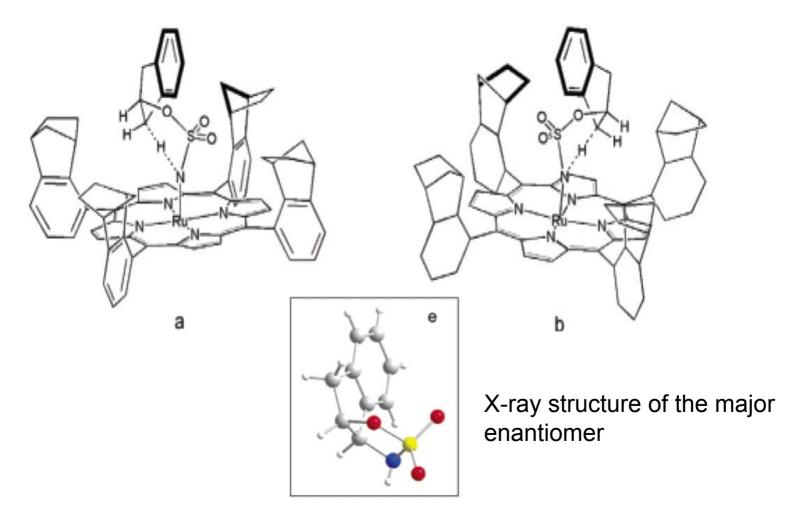
15%


Chelate effect should disfavor complete ligand dissociation from metal center and confer added stability to complex

Espino, C.G.; Fiori, K.W.; Du Bois, J. J. Am. Chem. Soc. 2004, 126, 15378

Intramolecular C-N Bond Formations Reactions Catalyzed By a Chiral Ruthenium

Entry	Substrate	Product	Yield [%][b]	ee [%]	[c]
1 ^[d]	O H N //	H O	57	71	
2	$H_2N - \frac{1}{S} = 0$	√N S=0	53	81	
3 ^[e]	\(\)	~ °	39	82	
4 ^[f]	3	4	39	77	[d] in CH ₂ Cl ₂ a
5 ^[d]	0	0	53	69	[d] in CH ₂ Cl ₂ a [e] in CH ₂ Cl ₂ a
6	$H_2N - S_1^{11} = 0$	HN-\$=0	43	82	
7 ^[e]	5	10	35	87	[f] in toluene a
8 ^[d]	0,0	0,0	77	46	
9	H₂N S Q	HŅ S O	63	79	Chiral porphyrin ligand
10 ^[e]	6	11	48	84	expensive and difficult


at 40 °C at 5 °C at 0 °C

d is both t to synthesize

Liang, J.-L.; Yuan, S.-X.; Huang, J.S.; Yu, W.Y.; Che, C.-M. Angew. Chem. Int. Ed. 2002, 41, 3465

Intramolecular C-N Bond Formations Reactions Catalyzed By a Chiral Ruthenium Porphyrin

Imido phenyl group points toward the smaller methano-bridge

Liang, J.-L.; Yuan, S.-X.; Huang, J.S.; Yu, W.Y.; Che, C.-M. J. Org. Chem. 2004, 69, 3610

Intramolecular C-N Bond Formations Reactions Catalyzed By Rhodium and Manganese complexes

More readily accessible and cheaper However low selectivity obtained

Catalyst	yield	<u>er</u>
Α	55%	65:35
В	48%	76:24

Fruit, C.; Muller, P. *Helv. Chim. Acta* **2004**, *87*, 1607 Zhang, J.; Chan, P.W.H.; Che, C.-M. *Tetrahedron Lett.* **2005**, *46*, 5403 JRH1

John R Heemstra Jr, 4/17/2006

Summary of Intramolecular C-H Aminations via the 'Outer-Sphere' Mechanism

- The intramolecular C-H amination reaction is now a highly dependable and predictable transformation and has found application in the preparation of a variety of natural products.
- The intramolecular insertion of metallonitrenoids (M = Ag, Rh, Ru) into C-H bond is a stereospecific process.
- The new Rh₂(esp)₂ catalysts now allows very low catalyst loadings and extremely high catalyst TON (>600)
- Enantioselective methods are still in their infancy and a method that provides high selectivity is still lacking