

Recent Developments and R&D Needs in Thermal Drying Technologies

Professor: Arun S. Mujumdar October 2008

Department of Mechanical Engineering &Minerals, Metals and Materials Technology Centre, National University of Singapore

Acknowledgements

I am grateful to my Research Students and Associates who worked with me over more than three decades in drying R&D.

Dr Chung Lim Law, Dr Zhonghua Wu and Dr Xu Peng contributed in various ways to the prepartion of this talk

GREETINGS FROM BEIJING OLYMPICS!

Introduction to Drying Resources

- Brief chronology- ASM started in drying R&D in Canada developing steam drying of newsprint-then proceeded to cover grains, foods, ceramics, sludges, coal, dewatering etc etc
- Founded IDS series in 1978 at McGill- 16th IDS to be held in Hyderabad, India in November 2008
- Numerous Drying conferences spawned over the years-in 2009 no fewer than 6 conferences will be held in various parts of the globe- devoted to drying
- Covers wide range of topics- necessary to skip some slides or glass over others!

Recent Resources on Drying Technology

Drying Technologies in Food Processing

Xiao Dong Chen and Arun S. Mujumdar

Edited by

(1)

► GUIDE TO INDUSTRIAL DRYING: PRINCIPLES, EQUIPMENT AND NEW DEVELOPMENTS

► HANDBOOK OF INDUSTRIAL DRYING (THIRD EDITION)

► MODERN DRYING TECHNOLOGY: COMPUTIONAL TOOLS AT DIFFERENT SCALES, VOLUME 1

>DRYING TECHNOLOGIES IN FOOD PROCESSING

≻TECHNO-ECONOMIC ASSESSMENT OF POTENTIAL SUPERHEATED STEAM DRYING APPLICATIONS IN CANADA

>DRYING TECHNOLOGY: AN INTERNATIONAL JOURNAL

IN CANADA

WILEY-VCH

© AS Mujumdar, 2008. http://serve.me.nus.edu.sg/arun/

Some Statistics and Factoids on Drying

• Product size: µm – ten of cm

HANDBOOK O INDUSTRIA DRYING

Prying

- Product porosity: 0 99%
- Drying times: 0.25sec (tissue paper) to 5months (hard woods)

INNOVATION AND R&D NEEDS IN INDUSTRIAL DRYING TECHNOLOGIES

Singapore

Outline

- Introduction to Drying
- Some facts and figures, complexity in Drying
- Difference between conventional and innovative dryers
- What is innovation?
- Selected new dryers

Closure

Need for R&D in Drying

A bit about NUS-National University of Singapore, Singapore

- Joined NUS ME in 2000 after 25 years on Chemical Engg. faculty of McGill Univ., Montreal ,Canada
- NUS; 30,000 students; 9000 postgrad.students
- 9000 students in Engg Faculty; 1/3 postgrads
- Ranked 8 in Science and Technology by London Times- 3rd in Asia as University, 33 overall
- McGill Univ. ranked 12 overall, first in N. America as a Public University, 2007
- Research-intensive university

Introduction

	Statistics			
	Significance			
	Complexity			
Innovation				

Intensification

Selected Innov.

Selected DrT

Closing

End

Some Statistics and Factoids on Drying

- Product size: µm tens of cm
- Product porosity: 0 99%
- Drying times: 0.25sec (tissue paper) to 5months (hard woods)
- Production capacities: 0.10kg/h 100t/h
- Product speeds: 0 (stationary) 2000m/min (tissue paper)
- Drying temperatures: < triple point > liquid critical point
- Operating pressures: < 1millibar 25atm
- Heat supply: continuously, intermittently; convection, conduction, thermal and microwave radiations
- Patents granted each year: 250 (US), 80 (European)

Statistics

Significance

Complexity

Innovation

Intensification

Selected Innov.

Selected DrT

Closing

End

- Some Statistics and Factoids on Drying • Industrially developed nations: 12-25% national industrial energy consumption - thermal dehydration
- Excluding petrochemical refining, drying is by Introduction far the most energy-intensive
 - Improper drying of the most expensive drugs may form polymorphs (no therapeutic value) mil\$\$\$ of losses
 - Most thermal energy comes from combustion of fossil fuels, a major environmental impact
 - Important in almost all industries

Significance of Drying: Figures for the U.K

• Approx. 27 million tons water removed / year in drying processes

• An efficient dryer consumes about 1 ton of oil equivalent (TOE) to remove 8 tons of water (inefficient ones are as low as 1:3)

• Assuming average ratio of 1:6, 4.5 million TOE of fossil fuel energy is consumed annually in the U.K. for industrial drying – emitting 13 million tons of CO_2 !

Significance of Drying: Figures for Canada

- 230 x 10^{15} J/year used for drying
- 17.1 million tons / year CO₂ emission
- Current efficiency levels 15-35% (EDRL)
- 5% improvement in energy efficiency will decrease CO₂ emission by 3 - 4 million tons / year
- Improving existing dryers and developing new drying technologies have potential to reduce CO₂ emission by 1.2 and 9 million tons / year

Post-Harvest Drying of Grains (source: FAO, 1996)

- World production ~ 2 billion tons
- 35% world's cereal crops need drying (25% to 15% water, w.b.)

Pharmaceutical Industry

- Drying / energy costs negligible component of market price of products
- Over \$190 billion worth pharmaceutical products are freeze dried around the world

Motivating Factors for Innovation

- New product or process
- Higher capacities than current technology permits
- Better quality than currently feasible
- Reduced cost
- Reduced environmental impact
- Safer operation
- Better efficiency (resulting in low cost)
- Lower cost (overall i.e. lower investment and running costs)

Some Remarks on Innovation

Innovation is crucial in industries with short time scales of products / processes, e.g. a short half life (< 1 year, say).

For longer half lives (10 – 20 years) innovations come slowly; are less readily accepted and mature technologies have long survival times, e.g. drying and many unit operations.

General Observation about innovation in DRT

- Most new dryers are incremental (2/3-stage dryer)
- Based on intelligent combinations of established technologies (2-stage Spray FBD, steam-tube rotary dryer, ultrasonic spray dryer)
- Adoption of truly novel technologies are not readily accepted by industry:
 - Superheated impinging jet steam [paper],
 - 2. Condebelt [liner board],
 - 3. Pulse combustion [slurries],
 - 4. Bath of liquid metal [paper],
 - 5. Remaflam process [textile],
 - 6. Impinging streams [sludge]

Click for more details

Intensification

Digital Computing

Selected Innov.

Selected DrT

Closing

End

Some Observations

- **General Observation about innovation in Drying Tech.**
- No truly disruptive technologies as yet
- The need for replacement with new equipment is limited (long life cycle, 20-40 years)
 - Most drying technologies mature (significant time and effort are needed to make improvement)
- Obtaining and maintaining intellectual rights (IP) is an important and expensive issue, without which innovation cannot be sustained

Some Selected Innovative Drying Technologies

- Superheated Steam Drying
 - Pulp; wood; paper etc-commercial Foods- low pressure-new Waste sludge-industrial

• Drying of paper-none commercial yet!

Impulse drying; high intensity

Steam drying-new not at mill level yet
 Miscellaneous

Ramaflam process for textiles-old but not common

Sorption drying-new

Pulse combustion drying-new

Conventional Vs Innovative

(assumes knowledge of common dryer types)

- Most innovative dryers are intelligent combinations of developed technologies
- Incremental innovations succeed more often due to less risk
- Low R&D activity in drying equipment for many reasons
- High energy costs will stimulate new energy efficient, miniaturized dryers

Comparison of Characteristics

Conventional

- Steady thermal energy impact
- Constant gas flow
- Single mode of heat input
- Single dryer type single stage
- Air/combustion gas as convective medium

Innovative

- Intermittent energy input
- Variable gas flow
- Combines modes of heat input
- Multi-stage; each stage maybe different dryer type
- Superheated steam drying medium

NUS National University of Singapore	— <u>Example: Fluidized Bed Drying</u>		
	Conventional	Innovative	
 Fluidization 	• Gas	 Mechanically 	
• Gas flow	 Vertically upward against gravity 	• Rotating to generate 'artificial gravity'	
Materials	• Particles	• Slurries, continuous webs etc.	
• Drying medium	 Hot gas fluidizing / drying medium 	 Superheated steam as drying medium 	
 Fluidization mode 	• Steady fluidization of whole bed	 Pulsed fluidization 	

Example: Fluidized Bed Drying

• Heat Transfer

- Temperature
- Staging

• Convection only

Conventional

• Constant

• Single/multi-stage fluid beds

• Convection + conduction

- Variable
- Multi-stage with different dryer types

Innovative

NUS National University of Singapore	— <u>Conventional Vs. Innovative Drying Techniques</u>		
Feed Type	Dryer Type	Innovative	
• Liquid	Drum	Fluid/spout beds of inerts	
suspensions	Spray	Spray/fluid bed combination	
		Vacuum belt dryers	
		Pulse combustion dryers	
• Pastes/sludge	Spray	Spouted bed of inerts	
	Drum	FB (solids backmixing)	
	Paddle	Superheated steam dryers	

Conventional Vs. Innovative Drying Techniques

Feed Type

• Particles

Dryer Type Rotary

Flash

Fluidized bed (hot air, combustion)

Conveyor dryer

Innovative Superheated steam FBD Vibrated bed (variable frequency/amplitude) **Ring dryer** Pulsated fluid bed Jet-zone dryer **Impinging streams** Yamato rotary dryer

NUS National University of Singapore	- <u>Comparison of Conventional Vs. Emerging Drying</u> <u>Technologies</u>		
	Conventional	Emerging Trends	
• Energy (Heat source)	Natural gas, oil biomass, solar/wind	No change yet. Renewal energy sources when fossil fuel becomes very	
	electricity (MW/RF) waste heat	expensive	
• Fossil fuel combustion	Conventional	Pulse combustion	
• Mode of heat transfer	Convection (>85%) Conduction Radiation (<1%) MW/RF	Hybrid modes Non-adiabatic dryer Periodic or on/off heat	

NUS National University of Singapore	- <u>Comparison of Conventional Vs. Emerging Drying</u> <u>Technologies</u>		
	Conventional	Emerging Trends	
• Drying medium	Hot air Flue gases	Superheated steam Hot air + superheated S. Mixture or 2-stage	
• Number of stages	One (common) Two @ three (same dryer type)	Multistage with different dryer types	
• Dryer control	Manual Automatic	Fuzzy logic, Model based control, Artificial neural nets	

New concepts

Mostly simple and common sense type

Multi-staging-saves energy; better quality

Enhance internal and external drying rates

Multi-processing capability

Innovative Drying Concepts: Combination of Optimal Dryers in Stages

- Spray + Fluid bed (Spray Fluidizer)
- Filtermat (Spray + Conveyor)
- Flash + Fluid Bed

Innovative Drying Concepts: Combined Modes of Heat Pump

- Convection + Conduction
- Convection + Radiation (Concurrent or Sequential)
- Convection + (MW / RF)

Innovative Drying Concepts: Combined Unit Operation

- Filter Dryer
- Dryer Cooler Agglomerator etc.

<u>Innovative Drying Concepts: Novel Gas / Particle</u> <u>Contacts</u>

Spout-fluidized / Rotating spouted bed

- Pulsed Fluid Bed
- Mechanical screw conveyor spouted bed
- Mechanically fluidized bed

Innovative Drying Concepts: Miscellaneous

- Spray dryer "engineered" powders
- Ohkawara Kakohiki spray bag dryer
- Condebelt dryer for thick paper grades
 Click for more details
- Remaflam (for textiles)
 - Supercritical CO₂ extraction (aerogels)
 - Spray-freeze drying
 - Carver Greenfield process

No oxidative / combustion reactions (no fire/explosion hazard, better quality product)

- L. SPERTING Higher drying rates (higher thermal conductivity & heat capacity of SS). Possible
 - Suitable for products containing toxic or organic liquids (recovered by condensation)
- Permits pasteurization, sterilization and/or deodorization of food products

IDS 1980 Arson S. DRYING '80 Volume 2: Proceedings of the Second Introduction Innovation Intensification Selected Innov. Selected DrT Steam

Pulse Combustion

Impinging Streams

Heat Pump

Spray

Closing

End

Steam Drying : Some Advantages

- Low net energy consumption if excess steam
 condensed or recycled
- Allows operation of dryer effectively as a multiple effect evaporator!
- In food drying generally avoids "case hardening"; low temperature at low pressure-better quality!
- In some cases produces higher porosity (lower bulk density) products (fluffy product without shrinkage)
- Higher quality product feasible at low pressure (e.g. fibre, pulp, distiller's dry grain, silk, paper, wood etc.)

End

Steam Dryer : Applicable if

- Energy cost high; product value low (coal, peat, newsprint, tissue paper, waste sludge)
- Product quality is superior if dried in steam (newsprint, silk)
- Risk of fire/explosion, oxidative damage is high if dried in heated air (coal, peat, pulp)
 low insurance rate offset high investment cost
- Large quantity of water to be removed
- High production capacity

More about SHSD

This will be covered in a separate PPT to follow this presentation- time permitting

Refer to chapter on SHSD from Guide – available to participants along with chapter on fundamentals and classification/selection of dryers

Selected DrT

Pulse Combustion: Advantages over Conventional

- Increases heat and mass transfer rates (2x to 5x)
- Increases combustion intensity (up to 10x)
- Higher combustion efficiency with low excess air values
- Reduced pollutant emissions {NO_x, CO, and soot} (up to 3x) and lower volume discharge
- Reduced air consumption (3% 40%), thus reducing space requirement for the combustion equipment
- Lower gas and product temperatures during processing
- Eliminate temperature, concentration, MC distribution, thus improves product quality
- Eliminate air blower from the system
- Handles sticky materials without mechanically mixing
- Handles dispersed liquids, slurries without atomizer

Closing

End

Heat Pump Dryer: Advantages

- High energy efficiency with improved heat recovery
- Better product quality with controlled temperature
- Wide range of drying conditions (-20°C 100°C)
- Excellent control of the environment for high-value products
- Aseptic processing is possible

Heat Pump Dryer: Various types

How to make Heat Pump Dryer cost-effective?

- Cyclic, batch drying using Heat Pump only when it is most effective
- Use model-based control
- Use smaller Heat Pump to service 2 3 drying chambers in sequence; use only ambient or heated air for major part of drying cycle
- Multi-product, multi-chamber Heat Pump Dryer can be optimized with a simple mathematical model based switching – run blower, heater and heat Pump continuously!
- Multi-stage Heat Pump may be better ...

Spray Dryer: Some new developments

Development

Key Features

• Built in filters

Powder confined to spray dryer chambers

• SS spray dryer High efficiency; quality adjustment

• Low rpm rotary disk atomizer

• Multi-stage operation

• Low pressure operation

Reduced power consumption; narrower size distribution

Reduces chamber size; internal water removed in small FBD/VFBD or through circulation conveyor dryer

Ultrasonic atomizer for monodisperse particles of heat sensitive materials. E.g. biotech, pharmaceutical products

Heat Pump

Sprav

Closing

End

Impinging Streams Dryers

Main features of impinging configuration:

- High intensity of drying
- High product quality
- Simple design and operation
- Compactness

• Possibility of combining drying with other operations (granulation, disintegration, **Impinging Streams** heating, cooling, chemical reactions, etc)

Impinging Streams Dryers: Various types

Industrial setup with semicircular impinging streams ducts for thermal processing of grains (drying, puffing, certain thermally induced biochemical reactions)

<u>Closing Remarks: R&D Needs and Opportunities</u> Fundamental Research

- Modelling microscopic transport of moisture (liquid / vapour form) in solids; multi-component transport
- Combined modes of heat transfer steady / unsteady
- Transport phenomena including drying-induced deformation; changes in transport mechanisms; quality changes

Applied R&D

Transport Processes

Advances in

Advances

in Transport Processes VIII

Introduction

Innovation

Intensification

Selected Innov.

Selected DrT

Closing

End

- Improve drying efficiency, quality of product
 - "Miniaturization" of industrial dryers
- Dynamic optimization of hybrid dryers
- Development of scale-up criteria for various dryers types; multistage dryers
- Design of "smart" dryers
- Model-based control of dryers
- New dryers steam drying, supercritical drying, freeze drying etc.

End

<u>Closing Remarks: R&D Needs and Opportunities</u> Category A: Math Modelling of Drying

• Micro-scale description of transport phenomena including mechanical deformation, change in structure and allowing for chemical reactions, glass transitions, crystallization etc.

Category B: Math Modelling of Dryer

- Equipment / product specific
- Some easy to model most very difficult
- Complex models need more information which is harder to obtain
- Valuable scale-up tool even design
- Useful tool to develop new dryer design concepts

- <u>Closing Remarks: R&D Needs and Opportunities</u>

Category C: Special Drying Problems

- Product-specific: gel-drying
- Equipment specific: spray dryers aroma retention
- "smart" dryers need sensors
- Pulse combustion dryers
- Novel design concepts: impinging sprays, impinging stream
- **Interesting but unlikely to succeed**
- Supercritical CO₂ extraction drying of coal
- Drying of herbs in high electric fields (~500kV/m)
- Drying in ultrasonic or sonic field
- Impulse drying of paper (extremely high temperature and high pressure)

Advanced Drvi

Introduction

Innovation

Intensification

Selected Innov.

Selected DrT

Closing

End

Advanced Drying Technologies

Improve and design **intelligent combinations** of current technologies - better quality product, smaller equipment size, greater reliability, safer operation, lower energy consumption, and reduced environmental impact while reducing the overall cost

- Further R&D is needed close interaction among industry - university researchers – to better design, optimise, and operate the wide assortment of dryers
- Evolution of **fuzzy logic**, **neural networks and genetic algorithms** has opened new exciting opportunities for applications involving complex drying system

Drying Technology Agriculture Food Sci.

Drying Technology

Agriculture and Food Sciences

Edilor Arun S. Mujumda

Introduction

Innovation

Intensification

Selected Innov.

Selected DrT

Closing

End

- On-line sensing of the colour, the texture, moisture content and temperature of the product and use this information to control the dryer operating conditions locally to yield high value product
- Complexity in microscopic understanding of drying remains a major deterrent. Micro-level understanding still at rudimentary level
- There is a need to develop and operate **environmentally friendly** drying processes
- Employing **model-based control or fuzzy control strategies** will probably become commonplace within the decade

Postharvest Tech. Handbook of Arun S. Muiumda S Vijava Raghav caballi S Pama Introduction Innovation Intensification Selected Innov. Selected DrT Closing

End

Handbook of Postharvest Technology

> Development of "smart" or "intelligent" dryers will help improve quality of products as well as enhance the energy efficiency to assure desired product quality

• There is need to devise more efficient **combustors** as well as drying equipment to obtain high-quality products with the least consumption of resources

• Heat pump drying will become more accepted technology - chemical heat pump-assisted direct and indirect dryers still need to be evaluated carefully

Handbook o

Introduction

Innovation

Intensification

Selected Innov.

Selected DrT

Closing

End

Fluidization

• With advances in computer technology, material science, and understanding of the underlying transport phenomena in drying of solids, there is scope for rapid development of more efficient drying technologies

- Micro-scale dryers could be useful for pharmaceutical applications where "scale-up by replication" has distinct advantages
- **Superheated steam** at near atmospheric or low pressures will become more popular for a host of industrial products (foods and agro-products to paper to wood and waste sludge)

Wisdom based technology for K-Economy

