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Abstract

Extremal combinatorics is one of the central branches of discrete mathematics
and has experienced an impressive growth during the last few decades. It deals
with the problem of determining or estimating the maximum or minimum possi-
ble size of a combinatorial structure which satisfies certain requirements. Often
such problems are related to other areas including theoretical computer science,
geometry, information theory, harmonic analysis and number theory. In this
paper we discuss some recent advances in this subject, focusing on two topics
which played an important role in the development of extremal combinatorics:
Ramsey and Turdn type questions for graphs and hypergraphs.

Mathematics Subject Classification (2010). 05C35, 05C65, 05D10, 05D40

Keywords. Extremal combinatorics, Ramsey theory, Turan problems, Probabilistic
methods

1. Introduction

Discrete mathematics (or combinatorics) is a fundamental mathematical dis-
cipline which focuses on the study of discrete objects and their properties.
Although it is probably as old as the human ability to count, the field expe-
rienced tremendous growth during the last fifty years and has matured into a
thriving area with its own set of problems, approaches and methodologies. The
development of powerful techniques, based on ideas from probability, algebra,
harmonic analysis and topology, is one of the main reasons for the rapid growth

*Research supported in part by NSF CAREER award DMS-0812005 and by USA-Israeli
BSF grant.

Department of Mathematics, UCLA, Los Angeles, CA 90095.
E-mail: bsudakov@math.ucla.edu.



2580 Benny Sudakov

of combinatorics. Such tools play an important organizing role in combinatorics,
similar to the one that deep theorems of great generality play in more classical
areas of mathematics.

Extremal combinatorics is one of the central branches of discrete mathe-
matics. It deals with the problem of determining or estimating the maximum
or minimum possible cardinality of a collection of finite objects (e.g., numbers,
graphs, vectors, sets, etc.) satisfying certain restrictions. Often such problems
appear naturally in other areas, and one can find applications of extremal com-
binatorics in theoretical computer science, geometry, information theory, anal-
ysis, and number theory. Extremal combinatorics has developed spectacularly
in the last few decades, and two topics which played a very important role in
its development are Ramsey theory and Turdn type problems for graphs and
hypergraphs.

The foundations of Ramsey theory rest on the following general phe-
nomenon: every large object, chaotic as it may be, contains a sub-object that is
guaranteed to be well structured, in a certain appropriately chosen sense. This
phenomenon is truly ubiquitous and manifests itself in different mathematical
areas, ranging from the most basic Pigeonhole principle to intricate statements
from set theory. Extremal theory of graphs and hypergraphs considers problems
such as the maximum possible number of edges in a triangle-free graph with a
given number of vertices. The development of this subject was instrumental in
turning Graph Theory into a modern, deep and versatile field.

Both areas use a variety of sophisticated methods and arguments (for ex-
ample, algebraic and probabilistic considerations, geometric constructions, the
stability approach and the regularity method) and there is a considerable over-
lap between them. Indeed, Ramsey theory studies which configurations one
can find in every finite partition of the large structure. On the other hand,
extremal graph theory deals with the inevitable occurrence of some specified
configuration when the edge density of graph or hypergraph exceeds a certain
threshold.

In this paper we survey recent progress on some classical Ramsey and Turén
type problems, focusing on the basic ideas and connections to other fields. It is
of course impossible to cover everything in such a short article, and therefore the
choice of results we present is inevitably biased. Yet we hope to describe enough
examples, problems and techniques from this fascinating subject to appeal to
researchers not only in discrete mathematics but in other areas as well.

2. Ramsey Theory

Ramsey theory refers to a large body of deep results in mathematics whose
underlying philosophy is captured succinctly by the statement that “Every large
system contains a large well organized subsystem.” This is an area in which a
great variety of techniques from many branches of mathematics are used and
whose results are important not only to combinatorics but also to logic, analysis,
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number theory, and geometry. Since the publication of the seminal paper of
Ramsey [81] in 1930, this subject has experienced an impressive growth, and is
currently among the most active areas in combinatorics.

The Ramsey number r(s1, $2,. .., 8¢) is the least integer N such that every
£-coloring of the unordered k-tuples of an N-element set contains a monochro-
matic set of size s; in color 7 for some 1 < ¢ < £, where a set is called monochro-
matic if all k-tuples from this set have the same color. Ramsey’s theorem states
that these numbers exist for all values of the parameters. In the case of graphs
(i.e., k = 2) it is customary to omit the index k and to write simply r(s1, ..., S¢).

Originally, Ramsey applied his result to a problem in logic, but his theorem
has many additional applications. For example, the existence of the ¢-colored
Ramsey number 7(3,3,...,3) can be used to deduce the classical theorem of
Schur from 1916. Motivated by Fermat’s last theorem, he proved that any /¢-
coloring of a sufficiently large initial segment of natural numbers contains a
monochromatic solution of the equation x + y = z. Another application of
this theorem to geometry was discovered by Erdds and Szekeres [48]. They
showed that any sufficiently large set of points in the plane in general position
(no 3 of which are collinear) contains the vertices of a convex n-gon. They
deduced this result from Ramsey’s theorem together with the simple fact that
any 5 points in general position contain a convex 4-gon. Another early result
of Ramsey theory is van der Waerden’s theorem, which says that every finite
coloring of the integers contains arbitrarily long arithmetic progressions. The
celebrated density version of this theorem, proved by Szemerédi [98], has led to
many deep and beautiful results in various areas of mathematics, including the
recent spectacular result of Green and Tao [63] that there are arbitrarily long
arithmetic progressions in the primes.

Determining or estimating Ramsey numbers is one of the central problems
in combinatorics, see [62] for details. Erdés and Szekeres [48] proved a quanti-
tative version of Ramsey’s theorem showing that r(s,n) < ("‘S"EIQ) To prove
this simple statement, one can fix a vertex and, depending on the number of
its neighbors in colors 1 and 2, apply an induction to one of these two sets. In
particular, for the diagonal case when s = n it implies that r(n,n) < 22" for
every positive integer n. The first exponential lower bound for this numbers
was obtained by Erdés [32], who showed that r(n,n) > 2%/2 for n > 2. His
proof, which is one of the first applications of probabilistic methods in com-
binatorics is extremely short. The probability that a random 2-edge coloring
of the complete graph Ky on N = 2"/2 vertices contains a monochromatic

n

set of size n is at most (2)21_(2) < 1. Hence there is a coloring with the
required properties. Although the proofs of both bounds for r(n,n) are elemen-
tary, obtaining significantly better results appears to be notoriously difficult.
Over the last sixty years, there have been several improvements on these es-
timates (most recently by Conlon, in [22]), but the constant factors in the
above exponents remain the same. Improving these exponents is a very fun-
damental problem and will probably require novel techniques and ideas. Such
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techniques will surely have many applications to other combinatorial problems
as well.

The probabilistic proof of Erdds [32], described above, leads to another
important open problem which seems very difficult. Can one explicitly construct
for some fixed € > 0 a 2-edge coloring of the complete graph on N > (1 + ¢€)”
vertices with no monochromatic clique of size n? Fxplicit here means that there
is an algorithm which produces the coloring in polynomial time in the number
of its vertices. Despite a lot of efforts this question is still open. For many years
the best known result was due to Frankl and Wilson [54] who gave an elegant

explicit construction of such a coloring on nclolgol% vertices for some fixed ¢ > 0.
(All logarithms in this paper are in base e unless otherwise stated.) Recently a
new approach to this problem and its bipartite variant was proposed in [9, 10].
In particular, for any constant C' the algorithm of Barak, Rao, Shaltiel and
Wigderson efficiently constructs a 2-edge coloring of the complete graph on
nloe” ™ vertices with no monochromatic clique of size n.

Off-diagonal Ramsey numbers, i.e., r(s,n) with s # n, have also been in-
tensely studied. After several successive improvements, the asymptotic behavior
of r(3,n) was determined by Kim [69] and by Ajtai, Komlos and Szemerédi [1].

Theorem 2.1. There are absolute constants ¢; and co such that
c1n?/logn < r(3,n) < can?/logn.

This is an important result, which gives an infinite family of Ramsey num-
bers that are known up to a constant factor. The upper bound of [1] is proved by
analyzing a certain randomized greedy algorithm. The lower bound construc-
tion of [69] uses a powerful semi-random method, which generates it through
many iterations, applying probabilistic reasoning at each step. The analysis of
this construction is subtle and is based on large deviation inequalities.

For s > 4 we only have estimates for r(s,n) which are far apart. From the
results of [1, 92] it follows that

(s+1)/2 "
c3 (logn) <r(s,n) < cs——5—, (1)

for some absolute constants cs,cs > 0. Recently, by analyzing the asymptotic
behavior of certain random graph processes, Bohman [12] gave a new proof of
the lower bound for r(3, n). Together with Keevash [13], they used this approach
to improve the above lower bound for r(s,n) by a factor of log!/*=% n,

2.1. Hypergraphs. Although already for graph Ramsey numbers there
are significant gaps between the lower and upper bounds, our knowledge of
hypergraph Ramsey numbers (k > 3) is even weaker. Recall that r(s,n) is the
minimum N such that every red-blue coloring of the k-tuples of an N-element
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set contains a red set of size s or a blue set of size n. Erdés, Hajnal, and Rado
[43] showed that there are positive constants ¢ and ¢’ such that

gen” < r3(n,n) < 22°"
They also conjectured that r3(n,n) > 22" for some constant ¢ > 0 and Erdés
offered a $500 reward for a proof. Similarly, for k > 4, there is a difference of
one exponential between the known upper and lower bounds for r(n,n), i.e.,

tr_1(cn?) < rp(n,n) < tr(dn),

where the tower function ¢, () is defined by t;(z) = = and t;41(z) = 24,

The study of 3-uniform hypergraphs is particularly important for our un-
derstanding of hypergraph Ramsey numbers. This is because of an ingenious
construction called the stepping-up lemma due to Erdés and Hajnal (see, e.g.,
Chapter 4.7 in [62]). Their method allows one to construct lower bound col-
orings for uniformity k 4 1 from colorings for uniformity k, effectively gaining
an extra exponential each time it is applied. Unfortunately, the smallest k for
which it works is k = 3. Therefore, proving that r3(n, n) has doubly exponential
growth will allow one to close the gap between the upper and lower bounds for
ri(n,n) for all uniformities k. There is some evidence that the growth rate of
r3(n,n) is closer to the upper bound, namely, that with four colors instead of
two this is known to be true. Erdés and Hajnal (see, e.g., [62]) constructed a
4-coloring of the triples of a set of size 22" which does not contain a monochro-
matic subset of size n. This is sharp up to the constant factor ¢ in the exponent.
It also shows that the number of colors matters a lot in this problem and leads
to the question of what happens in the intermediate case when we use three
colors. In this case, Erd6s and Hajnal have made some improvement on the
lower bound 2¢"° (see [42, 20]), showing that r3(n,n,n) > 27" 1°8" " Recently,
extending the above mentioned stepping-up lemma approach, the author, to-
gether with Conlon and Fox [25], gave a strong indication that r3(n,n,n) is
probably also double-exponential.

Theorem 2.2. There is a constant ¢ > 0 such that
7“3(71, TLJ’L) > 2nclogn

A simple induction approach which was used to estimate r(s,n) gives ex-
tremely poor bounds for off-diagonal hypergraph Ramsey numbers when &k > 3.
In 1952 Erdés and Rado [45] gave an intricate argument which shows how to
bound the Ramsey numbers for uniformity k using estimates for uniformity
k — 1. They proved that

rk_l(s—l,n—l)>

re(s,m) < 207

(2)
Together with the upper bound in (1) this gives, for fixed s, that

(T(S*lg,n*l)) S 2cn2s—4/ logQS—G n

7‘3(5,71) S 2
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Progress on this problem was slow and for several decades this was the best
known bound. In [25], the authors discovered an interesting connection between
the problem of bounding r3(s,n) and a new game-theoretic parameter, which
we describe next.

Consider the following game, played by two players, the builder and the
painter: at step ¢ + 1 a new vertex v;41 is revealed; then, for every existing
vertex vy, j = 1,--- , 4, the builder decides, in order, whether to draw the edge
v;vi41; if he does expose such an edge, the painter has to color it either red or
blue immediately. The vertex on-line Ramsey number 7(k,1) is then defined as
the minimum number of edges that the builder has to draw in order to force
the painter to create a red Kj or a blue K;. It appears that one can bound
the Ramsey number 73(s,n) roughly by exponential in #(s — 1,7 — 1) and also
provide an upper bound on #(s — 1,n — 1) which is much smaller than the best
known estimate on (T(Sfé’”fl)). These facts together with some additional ideas
were used in [25] to show the following result, which improves the exponent of
the upper bound by a factor of n*~2/polylogn.

Theorem 2.3. For fized s > 4 and sufficiently large n, there exists a constant
¢ > 0 such that B
r3(s,m) < gen” " logn,

A similar improvement for off-diagonal Ramsey numbers of higher unifor-
mity follows from this result together with (2).

Clearly one should also ask, how accurate are these estimates? For the first
nontrivial case when s = 4, this problem was first considered by Erddés and
Hajnal [41] in 1972. Using the following clever construction they showed that
r3(4,n) is exponential in n. Consider a random tournament with vertex set
[N] = {1,...,N}. This is a complete graph on N vertices whose edges are
oriented uniformly at random. Color the triples from [N] red if they form a
cyclic triangle and blue otherwise. Since it is well known and easy to show that
every tournament on four vertices contains at most two cyclic triangles and
a random tournament on N vertices with high probability does not contain a
transitive subtournament of size ¢’ log N, the resulting coloring neither has a
red set of size 4 nor a blue set of size ¢’ log N. In the same paper [41], Erdds and
Hajnal conjectured that W — o0o. This was recently confirmed in [25],
where the authors obtained a more general result which in particular implies
that r3(4,n) > 2" logn  This should be compared with the above upper bound

that r3(4,n) < gen’ logn.

2.2. Almost monochromatic subsets. Despite the fact that Erdés
[36, 20] believed 73(n, n) is closer to 22™" | he discovered together with Hajnal [42]
the following interesting fact which they thought might indicate the opposite.
They proved that there are ¢, e > 0 such that every 2-coloring of the triples of
an N-element set contains a subset S of size s > c(log N)'/? such that at least
(1/2+€)(3) triples of S have the same color. That is, this subset deviates from
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having density 1/2 in each color by at least some fixed positive constant. Erdds
([37], page 67) further remarks that he would begin to doubt that r5(n,n) is
double-exponential in n if one could prove that any 2-coloring of the triples of
an N-set contains some set of size s = c(e)(log N)° for which at least (1—¢)(3)
triples have the same color, where 6 > 0 is an absolute constant and € > 0 is
arbitrary. Erdés and Hajnal proposed [42] that such a statement may even be
true with 6 = 1/2. The following result in [26] shows that this is indeed the
case.

Theorem 2.4. For each € > 0 and {, there is ¢ = c({,€) > 0 such that every

£-coloring of the triples of an N-element set contains a subset S of size s =
cv/1og N such that at least (1 —¢€)(3) triples of S have the same color.

A random /-coloring of the triples of an N-element set in which every triple
gets one of ¢ colors uniformly at random shows that this theorem is tight up to
the constant factor c. Indeed, using a standard tail estimate for the binomial
distribution, one can show that in this coloring, with high probability, every
subset of size > y/log N has a 1/¢ + o(1) fraction of its triples in each color.

The above theorem shows a significant difference between the discrepancy
problem in graphs and that in hypergraphs. As we already mentioned in the pre-
vious section, Erdos and Hajnal constructed a 4-coloring of the triples of an N-
element set which does not contain a monochromatic subset of size cloglog V.
Also, by Theorem 2.2, there is a 3-coloring of the triples which does not contain
a monochromatic subset of size 2¢VI°8loe N Thyg, Theorem 2.4 demonstrates
(at least for ¢ > 3) that the maximum almost monochromatic subset that an
{-coloring of the triples must contain is much larger than the corresponding
monochromatic subset. This is in a striking contrast with graphs, where these
two quantities have the same order of magnitude, as demonstrated by a random
{-coloring of the edges of a complete graph.

It would be very interesting to extend Theorem 2.4 to uniformity k& > 4. In
[25] the authors proved that for all &, ¢ and € > 0 there is § = §(k, ¢, €) > 0 such
that every ¢-coloring of the k-tuples of an N-element set contains a subset of
size s = (log N)° which contains at least (1 — €)(;) k-tuples of the same color.
Unfortunately, § here depends on €. On the other hand, this result probably
holds even with 6 = 1/(k — 1) (which is the case for k = 3).

3. Graph Ramsey Theory

The most famous question in Ramsey Theory is probably that of estimating
r(n,n). Since this problem remains largely unsolved with very little progress
over the last 60 years, the focus of the field has shifted to the study of gen-
eral graphs. Given an arbitrary fixed graph G, the Ramsey number r(G) is the
smallest integer N such that any 2-edge coloring of the complete graph Ky
contains a monochromatic copy of G. For the classical Ramsey numbers G it-
self is taken to be a complete graph K,. When /¢ colors are used to color the
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edges of K instead of two, we will denote the corresponding value of N by
r(G;¥). The original motivation to study Ramsey numbers of general graphs
was the hope that it would eventually lead to methods that would give better
estimates for r(n,n). While this hope has not been realized, a beautiful subject
has emerged with many fascinating problems and results. Graph Ramsey The-
ory, which started about 35 years ago, quickly became one of the most active
areas of Ramsey theory. Here we discuss several problems which have played
an important role in this development.

3.1. Linear Ramsey numbers. Among the most interesting questions
about Ramsey numbers are the linear bounds for graphs with certain degree
constraints. In 1975, Burr and Erdés [17] conjectured that, for each positive
integer A, there is a constant ¢(A) such that every graph G with n vertices
and maximum degree A satisfies 7(G) < ¢(A)n. This conjecture was proved by
Chvatdl, Rodl, Szemerédi, and Trotter [21]. Their proof is a beautiful illustra-
tion of the power of Szemerédi’s celebrated regularity lemma (see, e.g., [70]).
Remarkably, this means that for graphs of fixed maximum degree the Ramsey
number only has a linear dependence on the number of vertices. Because the
original method used the regularity lemma, it gave tower type bound on ¢(A).
More precisely, ¢(A) was bounded by exponential tower of 2s with a height
that is itself exponential in A. Since then, the problem of determining the cor-
rect order of magnitude of ¢(A) as a function of A has received considerable
attention from various researchers.

The situation was remedied somewhat by Eaton, who proved, still using a
variant of the regularity lemma, that the function ¢(A) can be taken to be of
the form 22°° (here and later in this section ¢ is some absolute constant). A
novel approach of Graham, Rodl, and Rucinski [60] gave the first linear upper
bound on Ramsey numbers of bounded degree graphs without using any form
of the regularity lemma. Their proof implies that ¢(A) < 2¢Als*A Ty [61],
they also proved that there are bipartite graphs with n vertices and maximum
degree A for which the Ramsey number is at least 2¢“n. Recently, refining
their approach further, together with Conlon and Fox [27] the author proved
that

C(A) < 2cAlogA’

which brings it a step closer to the lower bound.

The case of bipartite graphs with bounded degree was studied by Graham,
R6dl, and Rucinski more thoroughly in [61], where they improved their upper
bound, showing that r(G) < 2¢41°8%n for every bipartite graph G with n
vertices and maximum degree A. Using a totally different approach, Conlon
[23] and, independently, Fox and Sudakov [51] have shown how to remove the
log A factor in the exponent, achieving an essentially best possible bound of
r(G) < 2°?n in the bipartite case. This gives strong evidence that in the general
case ¢(A) should also be exponential in A. The bound proved in [51] has the
following form (the estimate in [23] is slightly weaker).



Recent Developments in Extremal Combinatorics 2587

Theorem 3.1. If G is a bipartite graph with n vertices and mazximum degree
A > 1, then
r(G) < A28+5p,

One family of bipartite graphs that has received particular attention are the
d-cubes. The d-cube Qg is the d-regular graph with 2¢ vertices whose vertex set
is {0,1}¢ and two vertices are adjacent if they differ in exactly one coordinate.
More than 30 years ago, Burr and Erdés [17] conjectured that the Ramsey
number r(Q4) is linear in the number of vertices of the d-cube, i.e., there exists
an absolute constant ¢ > 0 such that r(Qq) < ¢2?. Since then, several authors
have improved the upper bound for 7(Qg), but the problem is still open. Beck
[11] proved that 7(Qq4) < 2°". The bound of Graham ct al. [61] shows that
r(Qq) < 8(16d)%. Using ideas from [72], Shi [88] proved the first exponential
bound 7(Qg) < 2¢¢, with exponent ¢ = (1 + 0(1))3£% ~ 2.618. A very special
case of Theorem 3.1, when G = @Qq4, gives immediately that for every positive
integer d,

T(Qd) < d22d+57

which is roughly quadratic in the number of vertices of the d-cube.

Given the recent advances in developing the hypergraph regularity method
it was natural to expect that linear bounds might also be provable for Ramsey
numbers of bounded degree k-uniform hypergraphs. Such a result was indeed
established for general k in [30] (extending two earlier proofs for k = 3). A short
proof of this result, not using regularity and thus giving much better bounds
was obtained in [24]. It is based on the approach from [23, 51] used to prove
Theorem 3.1.

3.2. Sparse graphs. A graph is d-degenerate if every subgraph of it has
a vertex of degree at most d. This notion nicely captures the concept of sparse
graphs as every t-vertex subgraph of a d-degenerate graph has at most td edges.
(Indeed, remove from the subgraph a vertex of minimum degree, and repeat this
process in the remaining subgraph.) Notice that graphs with maximum degree
d are d-degenerate. On the other hand, it is easy to construct a d-degenerate
graph on n vertices whose maximum degree is linear in n. One of the most
famous open problems in Graph Ramsey Theory is the following conjecture of
Burr and Erdds [17] from 1975.

Conjecture 3.2. For each positive integer d, there is a constant ¢(d) such that
r(G) < c¢(d)n for every d-degenerate graph G on n vertices.

This difficult conjecture is a substantial generalization of the results on
Ramsey numbers of bounded degree graphs from Section 3.1 and progress on
this problem was made only recently.

Kostochka and Rodl [73] gave a polynomial upper bound on the Ramsey
numbers of d-degenerate graphs. The first nearly linear bound for this conjec-
ture was obtained, by Kostochka and the author, in [74]. They proved that
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d-degenerate graphs on n vertices satisfy r(G) < cqn!™¢ for any fixed € > 0.
The following is the best current estimate, which appeared in [52].

Theorem 3.3. For each positive integer d there is a constant cq such that every
d-degenerate graph G with order n satisfies r(G) < 2¢aVioen n,

In the past two decades Conjecture 3.2 was also proved for some special
families of d-degenerate graphs (see, e.g., [2, 18, 85]). For example, we know
that planar graphs and more generally graphs which can be drawn on a surface
of bounded genus have linear Ramsey numbers. One very large and natural
family of d-degenerate graphs are sparse random graphs. The random graph
G,p is the probability space of labeled graphs on n vertices, where every edge
appears independently with probability p. When p = d/n it is easy to show
using standard large deviation estimates for binomial distribution that with
high probability Gy, j, is O(d)-degenerate. Hence it is natural to test the above
conjecture on random graphs. This was done in [52], where it was proved that
sparse random graphs do indeed have typically linear Ramsey numbers.

3.3. Maximizing the Ramsey number. Another related problem
on Ramsey numbers of general graphs was posed in 1973 by Erdés and Graham.
Among all graphs with m edges, they wanted to find a graph G with maximum
Ramsey number. Since the results we mentioned so far clearly show that sparse
graphs have slowly growing Ramsey numbers, one would probably like to make
such a G as dense as possible. Indeed, Erdds and Graham [40] conjectured
that among all the graphs with m = () edges (and no isolated vertices), the
complete graph on n vertices has the largest Ramsey number. This conjecture
is very difficult and so far there has been no progress on this problem. Because
of the lack of progress, in the early 80s Erdds [35] (see also [20]) asked whether
one could at least show that the Ramsey number of any graph with m edges
is not substantially larger than that of the complete graph with the same size.
Since the number of vertices in a complete graph with m edges is a constant
multiple of /m, Erdés conjectured that r(G) < 20V for every graph G with
m edges and no isolated vertices. The authors of [3] showed that for all graphs
with m edges r(G) < gevmlogm and also proved this conjecture in the special
case when G is bipartite. Recently, Erdés’ conjecture was established in full
generality in [95].

Theorem 3.4. If G is a graph on m edges without isolated vertices, then
r(G) < 2250vm,

This theorem is best possible up to a constant factor in the exponent, since a

complete graph with m edges has Ramsey number at least 2Vm/2 Based on the
results from Section 3.1, it seems plausible that the following strengthening of
Conjecture 3.2 holds as well. For all d-degenerate graphs G on n vertices, r(G) <
2°4p,. Such a bound would be a far-reaching generalization of the estimates on
Ramsey numbers of bounded-degree graphs and also of Theorem 3.4. Indeed,
it is easy to check that every graph with m edges is v/2m-degenerate.
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3.4. Methods. The result of Chvatal et al. [21] which gave the first linear
bound on Ramsey numbers of bounded degree graphs (see Section 3.1), was
proved using the regularity lemma. This is a surprising and extremely pow-
erful result proved by Szemerédi that has numerous applications in various
areas including combinatorial number theory, computational complexity, and
mainly extremal graph theory. The regularity lemma was an essential tool in
the proof of the celebrated theorem of Szemerédi that any dense subset of inte-
gers contains long arithmetic progressions. The precise statement of the lemma
is somewhat technical and can be found in [70] together with the description
of several of its famous applications.

Roughly this lemma states that the vertices of every large enough graph can
be partitioned into a finite number of parts such that the edges between almost
all of the parts behave like a random graph. The strength of the regularity
lemma is that it applies to every graph and provides a good approximation
of its structure which enables one to extract a lot of information about it. It
is also known that there is an efficient algorithm for finding such a regular
partition. Although the regularity lemma is a great tool for proving qualitative
statements, the quantitative bounds which one usually gets from such proofs
are rather weak. This is because the number of parts M in the partition of the
graph given by the regularity lemma may be very large, more precisely of tower
type. Moreover, Gowers [57] constructed examples of graphs for which M has
to grow that fast. Therefore, to obtain good quantitative estimates, one should
typically use a different approach.

One such approach was proposed by Graham, Rédl, and Rucinski [60] (see
also [50] for some extensions). They noticed that in some applications, instead of
having tight control on the distribution of edges (which the regularity lemma
certainly gives), it is enough to satisfy a bi-density condition, i.e., to have a
lower bound on the density of edges between any two sufficiently large disjoint
sets. Using this observation one can show that in every red-blue edge coloring
of Ky, either the red color satisfies a certain bi-density condition or there is
a large set in which the proportion of blue edges is very close to 1. Then, for
example, one can find a blue copy of any bounded-degree graph in this almost
blue set. On the other hand, this approach is highly specific to the 2-color case
and it would be of considerable interest to make it work for &k colors.

Another basic tool used to prove several results mentioned in Sections 3.1-
3.3 as well as some other recent striking results in extremal combinatorics is a
simple and yet surprisingly powerful lemma, whose proof is probabilistic. Early
variants of this lemma, have been proved and applied by various researchers
starting with Rédl, Gowers, Kostochka and Sudakov (see [72], [58], [94]).

The lemma asserts, roughly, that every graph with sufficiently many edges
contains a large subset U in which every set of d vertices has many common
neighbors. The proof uses a process that may be called a dependent random
choice for finding the set U; U is simply the set of all common neighbors of an
appropriately chosen random set R. Intuitively, it is clear that if some set of
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d vertices has only few common neighbors, it is unlikely all the members of R
will be chosen among these neighbors. Hence, we do not expect U to contain
any such subset of d vertices.

The main idea of this approach is that in the course of a probabilistic proof,
it is often better not to make the choices uniformly at random, but to try and
make them depend on each other in a way tailored to the specific argument
needed. While this sounds somewhat vague, this simple reasoning and its vari-
ous extensions have already found many applications to extremal graph theory,
additive combinatorics, Ramsey theory and combinatorial geometry. For more
information about this technique and its applications we refer the interested
reader to the recent survey [53].

4. Turan Numbers

Extremal problems are at the heart of graph theory. These problems were ex-
tensively studied during the last half century. One of the central questions from
which extremal graph theory originated can be described as follows. Given a
forbidden graph H, determine ex(n, H), the maximal number of edges in a graph
on n vertices that does not contain a copy of H. This number is also called the
Turdn number of H. Instances of this problem appear naturally in discrete
geometry, additive number theory, probability, analysis, computer science and
coding theory. In this section we describe classical results in this area, men-
tion several applications and report on some recent progress on the problem of
determining ex(n, H) for bipartite graphs.

4.1. Classical results. How dense can a graph G on n vertices be if it
contains no triangles? One way to obtain such a graph is to split the vertices
into two nearly equal parts A and B and to connect every vertex in A with every
vertex in B by an edge. This graph clearly has no triangles and is also very
dense. Moreover, it is maximal triangle-free graph, since adding any other edge
to G creates a triangle. But is it the densest triangle-free graph on n vertices?
More than a hundred years ago Mantel [78] proved that this is indeed the case
and therefore ex(n, K3) = |n?/4|. This, earliest extremal result in graph theory
already has an interesting application, found by Katona [65].

Consider vy, ...,v,, vectors in R? of length |v;| > 1. How many pairs of
these vectors have sum of length less than 1?7 Suppose we have v;,v;, v such
that all three pairwise sums have length less than 1. Then an easy computation
shows that

lv; +vj + k2 = v + ;2 + v +op? 4 Jv; +okl® = |uil? = Jvs)? = Jukl® < 0.

This contradiction together with Mantel’s theorem shows that the number of
pairs 4,5 with |v; + v;| < 1 is at most [n?/4]. Suppose now we have two
independent identical copies X and Y of some arbitrary distribution with values
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in R%. By sampling many independent copies of this distribution and using the
above claim on the vectors in R? one can prove the following general inequality

Pr[X +V|>1] > %(Pr“X\ >1])%.

The starting point of extremal graph theory is generally considered to be
the following celebrated theorem of Turdn [99]. Partition n vertices into r parts
WVi,...,V; of nearly equal size, i.e., ||V;|— |VJ\| < 1. Let the Turdn graph T, , be
the complete r-partite graph obtained by putting the edges between all the pairs
of vertices in different parts. In 1941 Turan proved that the largest n-vertex
graph, not containing a clique K, is precisely T}, ,.. In addition, he posed the
problem of determining ex(n, H) for general graphs and also for hypergraphs
(see Section 6).

A priori one might think that the answer to Turan’s problem would be messy
and that to deal with every particular graph might require each time a new
approach. The important and deep theorem of Erdés and Stone [47] together
with an observation of Erdés and Simonovits [46] shows that this is not the
case. Their very surprising result says that for most graphs there is a single
parameter, the chromatic number, which determines the asymptotic behavior
of ex(n, H). The chromatic number of a graph H is the minimal number of
colors needed to color the vertices of H such that adjacent vertices get different
colors. Erdds, Stone and Simonovits proved that for a fixed H and large n

I 1 1 n? 9

ex(n,H) = ( X(H)—1> ?+0(n ).

A moment’s thought shows that this determines the asymptotics of ex(n, H)
for all graphs H with chromatic number at least 3. For example, if H is a
graph formed by the edges of the icosahedron, then it is easy to check that the
chromatic number of H is 4 and therefore ex(n, H) = (1 + o(1))n?/3.

4.2. Bipartite graphs. As we already mentioned, the theorem of Erdés,
Stone and Simonovits determines asymptotically ex(n, H) for all graphs with
chromatic number at least 3. However, for bipartite graphs it only gives
ex(n, H) = o(n?). The determination of Turdn numbers for bipartite graphs
remains a challenging project with many open problems. In fact, even the or-
der of magnitude of ex(n, H) is not known for quite simple bipartite graphs,
such as the complete bipartite graph with four vertices in each part, the cycle
of length eight, and the 3-cube graph. Here we describe some partial results
obtained so far, which use a variety of techniques from different fields including
probability, number theory and algebraic geometry.

Let t < s be positive integers and let K; ; denote the complete bipartite
graph with parts of size ¢ and s. For every fixed t and s > ¢, K6vari, Sés and
Turén [75] proved, more than 60 years ago, that

1 1
ex(n, K o) < =(s — 1)Ytp2= Yt 4 §(t —1)n.

2



2592 Benny Sudakov

It is conjectured that the right hand side gives the correct order of magnitude
of ex(n, Ky,s). However, progress on this problem was slow and despite several
results by various researchers this is known only for s > (t — 1)! (see [4] and its
references). In particular, in the most interesting case s = ¢ the Turdn number
of Ky 4 is already unknown. All constructions for this problem are algebraic and
the more recent ones require some tools from elementary algebraic geometry.

The Turdn numbers for K; ; appear naturally in problems in other areas of
mathematics. For example, in 1946, Erdés [31] asked to determine the maximum
possible number of unit distances among n points on the plane. One might think
that potentially the number of such distances may be even quadratic. Given
such a set of n points, consider a graph whose vertices are the points and two
of them are adjacent if the distance between them is one. Since on the plane
for any two fixed points p and p’ there are precisely two other points whose
distance to both p, p’ is one, the resulting graph has no K 3. Therefore, by the
above result there are at most O(n?/2) unit distances. Erdés conjectured that
the number of such distances is always at most n't°(1) but the best current
bound for this problem, obtained in [93], is O(n?/3).

Suppose we have a set of integers A such that A+ A = {a+d'|a,a’ € A}
contains all numbers 12,22,...,n%. How small can the set A be? This is a
special case of the question asked by Wooley [100] at the AIM conference on
additive combinatorics in 2004. Clearly, A has size at least v/n but the truth is
probably n'=°(), Tt appears that Erd6s and Newman [44] already considered
this problem earlier and noticed that using extremal graph theory one can show
that |A] > n?/3-°(), Consider a graph whose vertices are elements of A and
for every 1 < 2 < n choose some pair a,a’ such that 22 = a + ¢’ and connect
them by an edge. Erdés and Newman use bounds on ex(n, K3 ) to conclude
that if |A| = n?/37¢ then this graph must contain two vertices a; and as with
at least n’ common neighbors. Thus one can show that a; — as can be written
as a difference of two squares in n® different ways and therefore will have too
many divisors, a contradiction.

Not much is known for Turdn numbers of general bipartite graphs. Moreover,
we do not even have a good guess what parameter of a bipartite graph might
determine the order of growth of its Turan number. Some partial answers to
this question were proposed by Erdos. Recall that a graph is ¢t-degenerate if
its every subgraph contains a vertex of degree at most t. In 1966 Erdds [33]
(see also [20]) conjectured that every t-degenerate bipartite graph H satisfies
ex(n,H) < O(n2_1/ t). Recently, progress on this conjecture was obtained in
[3]. One of the results in this paper says that the conjecture holds for every
bipartite graph H in which the degrees of all vertices in one part are at most ¢.
This result, which can be also derived from an earlier result of Fiiredi [55], is
a far reaching generalization of the above estimate of Kovéri, Sés and Turéan.
It is tight for every fixed t as was shown, e.g., by constructions in [4]. Another
result in [3] gives the first known estimate on the Turdn numbers of degenerate
bipartite graphs.
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Theorem 4.1. Let H be a bipartite t-degenerate graph on h vertices. Then for
alln > h

ex(n,H) < RL/2tp2 5

The proof of this theorem and also of the first result from [3] mentioned
above is based on the dependent random choice approach, which we briefly
discussed in Section 3.4.

4.3. Subgraph multiplicity. Turan’s theorem says that any graph with

m > (1 — %)%2 edges contains at least one copy of K,;1. The question of how
many such copies f,.(m,n) must exist in an n-vertex graph with m edges re-
ceived quite a lot of attention and has turned out to be notoriously difficult.
When m is very close to the ex(n, K1) this function was computed by Erdds.
Let m = p(g), where the edge density p (the fraction of the pairs which are
edges) is a fixed constant strictly greater than 1 — 1/r. One very interesting
open question is to determine the asymptotic behavior of f,.(m,n) as a function
of p only. Further results in this direction were obtained by Goodman, Lovasz,
Simonovits, Bollobds, and Fisher (for more details see [82, 80] and their refer-
ences). Recently Razborov [82] and Nikiforov [80] resolved this problem for the
cases r = 2 and r = 3, respectively. It appears that in these cases the solution
corresponds to the complete (¢ + 1)-partite graph in which ¢ parts are roughly
equal and are larger than the remaining part, and the integer ¢ is such that
pel-§1- g

For bipartite graphs the situation seems to be very different. The beautiful
conjectures of Erdés and Simonovits [90] and of Sidorenko [89] suggest that for
any bipartite H there is y(H) > 0 such that the number of copies of H in any
graph G on n vertices and edge density p > n~Y(H) is asymptotically at least
the same as in the n-vertex random graph with edge density p. The original
formulation of the conjecture by Sidorenko is in terms of graph homomorphisms.
A homomorphism from a graph H to a graph G is a mapping f : V(H) — V(G)
such that for each edge (u,v) of H, (f(u), f(v)) is an edge of G. Let hy(G)
denote the number of homomorphisms from H to G. We also consider the
normalized function t5(G) = hg(G)/|G|H!, which is the fraction of mappings
f: V(H) = V(G) which are homomorphisms. Sidorenko’s conjecture states
that for every bipartite graph H with ¢ edges and every graph G,

tu(G) > tg, (G)4.

This conjecture also has the following appealing analytical form. Let u be
the Lebesgue measure on [0, 1] and let A(z,y) be a bounded, symmetric, non-
negative and measurable function on [0,1]2. Let H be a bipartite graph with
vertices uy,...,u; in the first part and vertices vi,...,vs in the second part.
Denote by E the set of edges of H, i.e., all the pairs (4, j) such that u; and v;
are adjacent, and let |E| = q.
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Conjecture 4.2.

/ I A@iy)dp™ > (/hdu2>q :

(i,5)EE

The expression on the left hand side of this inequality is quite common.
Such integrals are called Feynman integrals in quantum field theory and they
also appear in classical statistical mechanics. Unsurprisingly then, Sidorenko’s
conjecture has connections to a broad range of topics, such as matrix theory,
Markov chains, graph limits and quasirandomness. So far this conjecture was
established only in very special cases, e.g., for complete bipartite graphs, trees,
even cycles (see [89]), and also for cubes [64].

Recently, Sidorenko’s conjecture was proved for a new class of graphs. In
[28], it was shown that the conjecture holds for every bipartite graph H which
has a vertex adjacent to all the vertices in the other part. Using this result,
one can easily deduce an approximate version of Sidorenko’s conjecture for all
graphs. For a connected bipartite graph H with parts V7, V5, define the bipartite
graph H with parts Vi, V5 such that (vy,v2) € Vj x V5 is an edge of H if and
only if it is not an edge of H. Define the width of H to be the minimum degree
of H. If H is not connected, the width of H is the sum of the widths of the
connected components of H. Note that the width of a connected bipartite graph
is 0 if and only if it has a vertex that is complete to the other part. Moreover,
the width of a bipartite graph with h vertices is always at most h/2.

Theorem 4.3. If H is a bipartite graph with q edges and width w, thenty (G) >
ti, (G)TTY holds for every graph G.

5. Generalizations

Turan’s theorem, which determines the maximum number of edges in a K, 1-
free graph on n vertices, is probably the most famous result in extremal combi-
natorics and there are many interesting generalizations and extensions of this
theorem. In this section we discuss several such results.

5.1. Local density. A generalization of Turdn’s theorem that takes into
account edge distribution, or local density, was introduced by Erdés [34] in
1975. He asked the following question. Suppose that G is a K, 1-free graph on
n vertices in which every set of an vertices spans at least fn? edges for some
0 < a,B < 1. How large can 8 be as a function of a? Erdds, Faudree, Rousseau
and Schelp [39] studied this problem and conjectured that for « sufficiently
close to 1 the Turdn graph T, , has the highest local density. They proved this
for triangle-free graphs (r = 2) and the general case of this conjecture was
established in [66]. It is easy to check that for @ > “=1 every subset of T, , of

size an contains at least > (2a — 1)n? edges. The result in [66] says that if G
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is a K, 1-free graph on n vertices and 1 — # < a <1, then G contains a set
of an vertices spanning at most 5 L(2a — 1)n? edges and equality holds only
when G is a Turan graph.

For triangle-free graphs and general « it was conjectured in [39] that S is
determined by a family of extremal triangle-free graphs. Besides the complete
bipartite graph T, » already mentioned, another important graph is C), 5, which
is obtained from a 5-cycle by replacing each vertex ¢ by an independent set V;
of size n/5 (assuming for simplicity that n is divisible by 5), and each edge
ij by a complete bipartite graph joining V; and V; (this operation is called a
‘blow-up’). Erdés et al. conjectured that for a above 17/30 the Turdn graph
has the highest local density and for 1/2 < o < 17/30 the best graph is C, 5.
On the other hand, for » > 3 Chung and Graham [19] conjectured that the
Turén graph has the best local density even for « as low as 1/2. When « is a
small constant the situation is unclear and there are no natural conjectures.

The case r = 2 and o = 1/2 is one of the favorite questions of Erdés that he
returned to often and offered a $250 prize for its solution. Here the conjecture
is that any triangle-free graph on n vertices should contain a set of n/2 vertices
that spans at most n?/50 edges. This conjecture is one of several important
questions in extremal graph theory where the optimal graph is suspected to be
the blow-up of the 5-cycle C), 5. So far these problems are completely open and
we need new techniques to handle them.

Another question, that is similar in spirit, is to determine how many edges
one may need to delete from a K, ;1-free graph on n vertices in order to make
it bipartite. This is an instance of the well known Max-Cut problem, which
asks for the largest bipartite subgraph of a given graph G. This problem has
been the subject of extensive research both from the algorithmic perspective in
computer science and the extremal perspective in combinatorics.

A long-standing conjecture of Erdds [34] says that one needs to delete at
most n?/25 edges from a triangle-free graph to make it bipartite, and C,, 5
shows that this estimate would be the best possible. This problem is still open
and the best known bound is (1/18 — €)n? for some constant € > 0, obtained by
Erdés, Faudree, Pach and Spencer [38]. Erdds also conjectured that for Ky-free
graphs on n vertices the answer for this problem is at most n2/9. This was
recently proved in [96].

Theorem 5.1. Every Ky-free graph on n vertices can be made bipartite by
deleting at most n?/9 edges. Moreover, the only extremal graph which requires
deletion of so many edges is the Turdn graph T, 3.

It is also plausible to conjecture that, for all r > 3, the K, i-free n-vertex
graph that requires the most edge deletions in order to make it bipartite is the
Turdn graph T, ;.

It was observed in [76] that for regular graphs, a bound for the local density
problem implies a related bound for the problem of making the graph bipartite.
Indeed, suppose n is even, G is a d-regular graph on n vertices and S is a
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set of n/2 vertices. Then dn/2 = Y _sd(s) = 2¢(S) + e(S,5) and dn/2 =
> sgs d(s) = 2e(S) + (S, 5). This implies that e(S) = e(S5), i.e., S and S span
the same number of edges. Deleting the 2¢(S) edges within S and S makes the
graph bipartite. Thus, for example, if in a regular triangle-free graph G one can
find a set S with |S| = n/2 which spans at most n?/50 edges, then G can be
made bipartite by deleting at most n2/25 edges. This relation, together with
Theorem 5.1, gives some evidence that indeed for r > 3 the Turdn graph should
have the best local density for all 0 < o < 1.

5.2. Graphs with large minimum degree. Clearly, for any graph
G, the largest K, ,i-free subgraph of G has at least as many edges as does
the largest r-partite subgraph. For which graphs do we have an equality? This
question was raised by Erdés [35], who noted that by Turdn’s theorem there
is an equality for the complete graph K,. In [7] and [16] it was shown that
the equality holds with high probability for sufficiently dense random graphs.
Recently, a general criteria implying equality was obtained in [5], where it is
proved that a minimum degree condition is sufficient. Given a fixed graph H
and a graph G let e,(G) and ey (G) denote the number of edges in the largest
r-partite and the largest H-free subgraphs of G, respectively. The following
theorem shows that both Turan’s and Erdds-Stone-Simonovits’ theorems holds
not only for K, but also for any graph with large minimum degree.

Theorem 5.2. Let H be a graph with chromatic number r+1 > 3. Then there
are constants v =~y(H) > 0 and p = p(H) > 0 such that if G is a graph on n
vertices with minimum degree at least (1 — p)n, then

er(Q) < en(Q) < e (G) +0(n* 7).

Moreover, if H= K,y then eg(G) = e.(G).

The assertion of this theorem for the special case when H is a triangle is
proved in [14] and in a stronger form in [8].

As well as being interesting in its own right, this theorem was motivated
by the following question in computer science. Given some property P and a
graph G, it is a fundamental computational problem to find the smallest num-
ber of edge deletions and additions needed to turn G into a graph satisfying
this property. We denote this quantity by Ep(G). Specific instances of graph
modification problems arise naturally in several fields, including molecular bi-
ology and numerical algebra. A graph property is monotone if it is closed under
removal of vertices and edges. Note that, when trying to turn a graph into one
satisfying a monotone property, we will only need to use edge deletions and
therefore in these cases the problem is called an edge-deletion problem. Two
examples of interesting monotone properties are k-colorability and the property
of not containing a copy of a fixed graph H. It appears that using combinato-
rial methods it is possible to give a nearly complete answer to the question of
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how accurately one can approximate (up to additive error) the solution of the
edge-deletion problem for monotone properties.

For any fixed € > 0 and any monotone property P there is a deterministic
algorithm, obtained in [5], which, given a graph G on n vertices, approximates
Ep(G) within an additive error of en? (i.e., it computes a number X such that
|X — Ep(G)| < en?). Moreover, the running time of the algorithm is linear
in the size of the graph. This algorithm uses a strengthening of Szemerédi’s
regularity lemma which implies that every graph G can be approximated by a
small (fixed size) weighted graph W, so that Ep(G) is an approximate solution
of a related problem on W. Since W has a fixed size, we can now resort to a
brute force solution. Given the above, a natural question is for which monotone
properties one can obtain better additive approximations of Ep. Another result
in [5] essentially resolves this problem by giving a precise characterization of
the monotone graph properties for which such approximations exist.

On the one hand, if there is a bipartite graph that does not satisfy property
P, then there is a 6 > 0 for which it is possible to approximate Ep within an
additive error of n?~% in polynomial time. On the other hand, if all bipartite
graphs satisfy P, then for any § > 0 it is N P-hard to approximate distance to
P within an additive error of n?~%. The proof of this result, among the other
tools, uses Theorem 5.2 together with spectral techniques. Interestingly, prior
to [5], it was not even known that computing Ep precisely for most properties
satisfied by all bipartite graphs (e.g., being triangle-free) is N P-hard. It thus
answers (in a strong form) a question of Yannakakis, who asked in 1981 if it
is possible to find a large and natural family of graph properties for which
computing Ep is N P-hard.

5.3. Spectral Turan theorem. Given an arbitrary graph G, consider
a partition of its vertices into r parts which maximizes the number of edges
between the parts. Then the degree of each vertex within its own part is at
most 1/r-times its degree in G, since otherwise we can move this vertex to
some other part and increase the total number of edges connecting different
parts. This simple construction shows that the largest r-partite and hence also
largest K., 1-free subgraph of G has at least a Tzl—fraction of its edges. We say
that a graph G (or rather a family of graphs) is r-Turdn if this trivial lower
bound is essentially an upper bound as well, i.e., the largest K, -free subgraph
of G has at most (1 + o(1))=L|E(G)| edges. Note that Turdn’s theorem says
that this holds when G is a complete graph on n vertices. Thus it is very natural
to ask, which other graphs are r-Turan?

It has been shown that for any fixed r, there exists p(r,n) such that for all
p > p(r,n) with high probability the random graph G, , is r-Turdn. The value
of p for which this result holds was improved several times by various researches.
Recently, resolving the longstanding conjecture, Conlon and Gowers [29] and
independently Schacht [87] established the optimal value of p(r,n) = n=2/("+2),
These results about random graphs do not yet provide a deterministic sufficient
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condition for a graph to be r-Turdn. However, they suggest that one should look
at graphs whose edges are distributed sufficiently evenly. It turns out that under
certain circumstances, such an edge distribution can be guaranteed by a simple
assumption about the spectrum of the graph.

For a graph G, let Ay > Ay > ... > )\, be the eigenvalues of its adjacency
matrix. The quantity M(G) = max{Ag, —A,} is called the second eigenvalue
of G. A graph G = (V, E) is called an (n,d, \)-graph if it is d-regular, has n
vertices and the second eigenvalue of G is at most . It is well known (see
[6, 77] for more details) that if A is much smaller than the degree d, then G has
certain random-like properties. Thus, A could serve as some kind of “measure
of randomness” in G. The following recent result from [97] shows that Turdn’s
theorem holds asymptotically for graphs with small second eigenvalue.

Theorem 5.3. Let r > 2 be an integer and let G = (V,E) be an (n,d, \)-
graph. If d" /n"~t > X then the largest K, 1-free subgraph of G has at most
(1+0(1))HE(G)] edges

This result generalizes Turan’s theorem, since the second eigenvalue of the
complete graph K, is 1 and thus it satisfies the above condition. Theorem
5.3 is also part of the fast-growing comprehensive study of graph theoretical
properties of (n, d, A)-graphs, which has recently attracted lots of attention both
in combinatorics and theoretical computer science. For a recent survey about
these fascinating graphs and their properties, we refer the interested reader to
[77].

6. Turan-type Problems for Hypergraphs

Given a k-uniform hypergraph H, the Turdn number ex(n, H) is the maximum
number of edges in a k-uniform hypergraph on n vertices that does not contain a
copy of H. Determining these numbers is one of the main challenges in extremal
combinatorics. For ordinary graphs (the case k = 2), a rich theory has been
developed, whose highlights we described in Section 4. In 1941, Turdn also
posed the question of finding ex(n, K 5’“) for complete k-uniform hypergraphs
with s > k > 2 vertices, but to this day not one single instance of this problem
has been solved. It seems very hard even to determine the Turdn density, which
is defined as m(H) = lim,, o0 ex(n, H)/(}).

The most famous problem in this area is the conjecture of Turan that
ex(n, K f)) is given by the following construction, which we denote by T,,. Par-
tition n vertices into 3 sets Vp, Vi, Vo of equal size. Consider all triples which
either intersect all these sets or contain two vertices in V; and one in V; {1 (mod 3)-
This hypergraph has density 5/9 and every 4 vertices span at most 3 edges. In
memory of Turdn, Erd6s offered $1000 for proving that (K 53)) =5/9. Despite

several results giving rather close estimates for the Turan density of K £3)7 this
problem remains open. One of the main difficulties is that Turan’s conjecture, if
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it is true, has exponentially many non-isomorphic extremal configurations (see
71)).

Recently the problem of finding the numbers ex(n, H) got a lot of atten-
tion and these numbers were determined for various hypergraphs. One such
example is the Fano plane PG2(2), which is the projective plane over the field
with 2 elements. It is the unique 3-uniform hypergraph with 7 vertices and 7
edges, in which every pair of vertices is contained in a unique triple and triples
corresponds to the lines in the projective plane. A hypergraph is 2-colorable if
its vertices can be labeled as red or blue so that no edge is monochromatic.
It is easy to check that the Fano plane is not 2-colorable, and therefore any
2-colorable hypergraph cannot contain the Fano plane. Partition an n-element
set into two almost equal parts, and take all the triples that intersect both of
them. This is clearly the largest 2-colorable 3-uniform hypergraph on n ver-
tices. In 1976 Sos conjectured that this construction gives the exact value of
ex(n, PG2(2)). This was proved independently in [67] and [56], where it was
also shown that the extremal construction, which we described above, is unique.

The strategy of the proof is first to obtain an approximate structure theo-
rem, and then to show that any imperfection in the structure leads to a subop-
timal configuration. This is the so-called “stability approach” which was first
introduced for graphs by Simonovits. Following the above two papers, this ap-
proach has become a standard tool for attacking extremal problems for hy-
pergraphs as well, and was used successfully to determine several hypergraph
Turan numbers.

Let Cﬁ%) be the 2k-uniform hypergraph obtained by letting Py,--- , P, be
pairwise disjoint sets of size k£ and taking as edges all sets P; U P; with ¢ # j.
This can be thought of as the ‘k-expansion’ of the complete graph K,.: each
vertex has been replaced with a set of size k. The Turdan problem for Cﬁ%)
was first considered by Frankl and Sidorenko, as a possible generalization of
Turan’s theorem for graphs. Using a clever reduction of this problem to the
case of graphs they showed that the Turan density of Cﬁzk) is at most :j
Frankl and Sidorenko also gave a matching lower bound construction, which
was essentially algebraic but existed only when r = 2% 4 1. In [68], among other
results, it was shown that, surprisingly, when r is not of the form 2% 4+ 1 then
the Turan density of C£4) is strictly smaller than :j Interestingly, this result,
showing that certain constructions do not exist, also uses a stability argument.
By studying the properties of a C£4)—free hypergraph with density close to 7’::?
the authors show that it gives rise to an edge coloring of the complete graph
K,._1 with special properties. Next they show that for such an edge-coloring
there is a natural GF(2) vector space structure on the colors. Of course, such a
space has cardinality 2%, for some integer a, so one gets a contradiction unless
r=2%41.

It is interesting to note that T,,, the conjectured extremal example for K ig),
also does not contain 4 vertices which span a single edge. Thus, there is a 3-
uniform hypergraph with edge density 5/9 in which every 4 vertices span either
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zero or two edges. In [83], Razborov showed that 5/9 is the maximum possible
density for such a hypergraph. Combining his result with the stability approach
(described above) Pikhurko proved that the unique extremal configuration for
this problem is T},. Razborov’s proof uses the formalism of flag algebras, which,
roughly speaking, allows one to computerize the search for inequalities which
should be satisfied by various statistics of the extremal hypergraph. Then the
“right inequalities” can be proved using Cauchy-Schwarz type arguments. This
approach works for various other extremal problems as well. For example, one
can use it to improve the best known bounds for Turan’s original conjecture
(see [83]).

6.1. Hypergraphs and arithmetic progressions. Extremal
problems for hypergraphs have many connections to other areas of mathe-
matics. Here we describe one striking application of hypergraphs to number
theory.

An old question of Brown, Erdés and Sés asks to determine the maximum
number of edges in the k-uniform hypergraph which has no s edges whose
union has at most ¢ vertices. This is a very difficult question which is solved
only for few specific values of parameters. One such special case is the so-
called (6,3)-problem. Here, one wants to maximize the number of edges in a
3-uniform hypergraph such that every 6 vertices span at most 2 edges. In 1976,
Ruzsa and Szemerédi [86] proved that such a hypergraph can have only o(n?)
edges. Surprisingly, this purely combinatorial result has a tight connection with
number theory. Using it one can give a short proof of the well-known theorem of
Roth that every A C [n] of size en (for constant € and large n) contains a 3-term
arithmetic progression. Indeed, consider a 3-uniform hypergraph whose vertex
set is the disjoint union of [n], [2n] and [3n] and whose edges are all the triples
x,x + a,x + 2a with 2 € [n] and a € A. This hypergraph has O(n) vertices,
n|A| edges and, one can check that every 3-term arithmetic progression in A
corresponds to 6 vertices spanning at least 3 edges and vice versa.

The (6, 3)-theorem of Ruzsa and Szemerédi is closely related to the triangle
removal lemma, which says that for every e there is a § such that every graph
on n vertices with at most én3 triangles can be made triangle-free by removing
en? edges. The original proof of both results used the regularity lemma and
therefore gave a very poor dependence of § on €. Very recently, this result was
substantially improved by Fox [49]. Still, the dependence of 6 on € in [49] is of
tower-type and compared with the Fourier-analytical approach it gives much
weaker bounds for the number-theoretic applications.

A remarkable extension of the triangle removal lemma to hypergraphs was
obtained by Gowers [59] and independently by Nagle, Rodl, Schacht and Skokan
[84, 79]. They proved that if a k-uniform hypergraph on n vertices has at most
dnF+1 copies of the complete hypergraph K ,(Ji)l, then all these copies can be

destroyed by removing en* edges. This result was obtained by developing a
new, very useful and important tool: the hypergraph analogue of the regularity
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lemma. The hypergraph removal lemma can be used to give a short proof
of Szemerédi’s theorem that dense subsets of integers contain long arithmetic
progressions (see [91]).

7. Conclusion

We mentioned several specific problems of extremal combinatorics throughout
this paper. Many of them are of a fundamental nature, and we believe that
any progress on these questions will require the development of new techniques
which will have wide applicability. We also gave examples of connections be-
tween extremal combinatorics and other areas of mathematics. In the future
it is safe to predict that the number of such examples will only grow. Com-
binatorics will employ more and more advanced tools from algebra, topology,
analysis and geometry and, on the other hand, there will be more applica-
tions of purely combinatorial techniques to non-combinatorial problems. One
spectacular instance of such an interaction is a series of recent results on ap-
proximate subgroups and expansion properties of linear groups which combine
combinatorics, number theory, algebra and model theory (see, e.g., [15] and its
references).

The open problems which we mentioned, as well as many more additional
ones which we skipped due to the lack of space, will provide interesting chal-
lenges for future research in extremal combinatorics. These challenges, the fun-
damental nature of the area and its tight connection with other mathematical
disciplines will ensure that in the future extremal combinatorics will continue
to play an essential role in the development of mathematics.
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