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Differences-in-differences

@ DD is a very old and ingenious research design dating back at
least to John Snow's effort to confirm that cholera was
waterborne in the 19th century

@ It was introduced into economics via Orley Ashenfelter in the
late 1970s and then popularized through his student David
Card (with Alan Krueger) in the 1990s

@ It is now the single most popular research design in applied
microeconomics, even more popular by a significant margin
than RCTs



Bias in our go-to estimators

@ The most common DD situation is one in which a treatment is
adopted by different groups at different times

@ And the most popular way to estimate the ATT in those
situations is to use OLS with time and panel unit fixed effects
— now commonly called the “twoway fixed effects (TWFE)"
estimator

@ But new econometric work of the last two years has shown
that OLS models can be (and probably are in practice)
severely biased

o I'll discuss the bias of TWFE, discuss a new solution, and
fingers crossed a simulation if we have time



Population expectations for the simple 2x2

A 2x2 is a simple difference over time between a treated group

(before treated and after treated) and an untreated group (same
before and after)

o7 = <E[kaPost] - E[kaPre]) - (E[YU|Post] - E[YUyPre])



Non-parallel trends bias

With some simple algebra, we get
672 = E[Y}|Post] — E[Y?|Post]

ATT

+| E[Y?|Post] — E[Y,?\Pre]} — [E[YBPost] — E[Y]|Pre]

Non-parallel trends bias in 2x2 case

An unbiased estimate of the ATT with data needs that bias to be
zero, which we get that with parallel trends.

But this is only the case for the simple 2x2



2x2 versus differential timing

o Parallel trends is not enough for TWFE to be unbiased when
treatment adoption is described by differential timing

@ Let's look at the paper by Goodman-Bacon (2018; 2019)
which explains why

@ But here's the problem that | hope to show you — TWFE with
differential timing is flawed because it cannot help but use
already-treated groups as controls



Decomposition Preview

@ TWFE estimates a parameter that is interestingly enough a
weighted average over all 2x2 in your sample

@ Some of these 2x2 use already treated units act as both
controls and treatment — and TWFE can't be stopped either!

@ Also problematically, TWFE assigns weights that are a
function of sample sizes of each “group” and the variance of
the treatment dummies for those groups

@ And none of that is even theoretically coherent, but TWFE
does it anyway



Decomposition (cont.)

@ TWFE needs two assumptions: that the variance weighted
common trends are zero (far more parallel trends iow) and no
dynamic treatment effects (not the case with 2x2)

@ Under those assumptions, TWFE estimator estimates the
variance weighted ATT is a weighted average of all possible
ATTs



A simple example may help drive this home

Suppose two treatment groups (k,I) and one untreated group
(u)

k,I define the groups based on when they receive treatment
(differently in time) with k receiving it later than |

Denote Dy as the share of time each group spends in
treatment status

Denote Sg;zJ as the canonical 2 x 2 DD estimator for groups a
and b where j is the treatment group

How many 2 x 2 combinations are there? More than you think



How many 2x27

@ When there's three groups, there are four 2x2s
@ But typically, we have more than 3 groups making so the
number of potential 2x2 even larger

e With K timing groups and one untreated group, you get K2
distinct 2x2 DDs



K? distinct DDs

Assume 3 timing groups (a, b and c) and one untreated group (U).
Then there should be 9 2x2 DDs. Here they are:

atob | btoa | ctoa
atoc | btoc | ctob
atoU | btoU | ctoU

Let’s return to our simpler example with k group treated at t; and
| treated at t; plus the U untreated group
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Bacon decomposition

TWEFE estimate yields a weighted combination of each groups'
respective 2x2 (of which there are 4 in this example)

= <042 k ~0x2]
oPP = E Sku02F + E E Ski [Mk/5k72’ + (1 — pu)dy®
kAU kU >k

where that first 2x2 combines the k compared to U and the | to U
(combined to make the equation shorter)



Third, the Weights

nknuﬁk(l — bk)

Sku =

Var(Dy)
S ngni(Dy — @(1~_ (Dx — D))
Var(Djt)
B 1 — Dy
Mkl = 1—(D.—-D) (Ek ~ 5/)

where lLrefer to sample sizes, Dy(1 — Dy)
(Dx — D))(1 — (Dk — D)) expressions refer to variance of
treatment, and the final equation is the same for two timing groups.



Weights discussion

@ Two things pop out of these weights
e "“Group” variation matters more than unit-level variation. A
group is if two states got treated in 1995. They are the 1995
group. More units in a group, the bigger that 2x2 is practically
o Within-group treatment variance matters a lot.

@ Think about what causes the treatment variance to be as big
as possible. Let’s think about the s, weights.
© D=0.1 Then 0.1 x 0.9 =0.09
© D =04 Then 0.4 x0.6=0.24
© D =0.5. Then 0.5 x 0.5 =0.25
@ This means the weight on treatment variance is maximized for
groups treated in middle of the panel



More weights discussion

e But what about the “treated on treated” weights (i.e.,
Dy —Dy)

@ Same principle as before - when the difference between
treatment variance is close to 0.5, those 2x2s are given the
greatest weight

o For instance, say t; = 0.15 and tf = 0.67. Then
Dy — D; = 0.52. And thus 0.52 x 0.48 = 0.2496.



TWFE and centralities

Groups in the middle of the panel weight up their respective
2x2s via the variance weighting

This is the first thing about TWFE that should give us pause,
as not all estimators do this, and it's not theoretically clear
why we should care either

Highlights the strange role of panel length — should you start
at 5 years before first treatment or 107 What about
post-treatment?

Different choices about panel length, which maybe we didn’t

give much thought to, change not only the 2x2 but also the
weights based on variance of treatment



Moving from 2x2s to causal effects and bias terms

Let's start breaking down these estimators into their corresponding
estimation objects expressed in causal effects and biases

622 = ATTPost + AY?(Post(k), Pre(k)) — AYY(Post(k), Pre)
522 = ATT(MID) 4+ AYL(MID, Pre) — AYP(MID, Pre)
These look the same because you're always comparing the treated

unit with an untreated unit (though in the second case it's just that
they haven't been treated yet).



The dangerous 2x2

But what about the 2x2 that compared the late groups to the
already-treated earlier groups? With a lot of substitutions we get:

052 = ATT) posi(sy + AY(Post(l), MID) — A Y (Post(l), MID)

Parallel trends bias

— (AT Tx(Post) — ATT«(Mid))

Heterogeneity bias!

@ The first part is the ATT we are looking for

@ The second part is the bias from non-parallel trends from mid
to post period

@ The third is new: a heterogeneity bias if the ATT for k is
dynamic. If not, then it just zeroes out.



Substitute all this stuff into the decomposition formula

2 2
= 3 B 35 s 1 B

k£U k£U I>k

where we will make these substitutions

gzxz = ATTy(Post) + AYP(Post, Pre) — AYJ(Post, Pre)
oy = ATT(Mid)+ AYP(Mid, Pre) — AY{(Mid, Pre)
622 = ATT Post(l) + A Y (Post(l), MID) — AY?(Post(l), MID)

—(ATTi(Post) — ATTi(Mid))

Notice all those potential sources of biases!



Potential Outcome Notation

p lim §bp  — §bD

n—o00

= VWATT + VWCT — AATT

@ Notice the number of assumptions needed even to estimate
this very strange weighted ATT (which is a function of how
you drew the panel in the first place).

e With dynamics, it attenuates the estimate (bias) and can even
reverse sign depending on the magnitudes of what is otherwise
effects in the sign in a reinforcing direction!

@ Let's look at each of these three parts more closely



Variance weighted ATT

VWATT = ) oyATTi(Post(k))
k#£U

+ YD) ou [,Uk/ATTk(MID) + (1 = ) ATT,(POST (1))
kU 1>k

where o is like s only population terms not samples.

@ Weights sum to one.

@ Note, if all the ATT are identical, then the weighting is
irrelevant.

o But otherwise, it's basically weighting each of the individual
sets of ATT we have been discussing, where weights depend
on group size and variance



Variance weighted common trends

VWCT = ) ow [AY,?(Post(k),Pre)—AYB(Post(k),Pre)}
k#U

+ > D ou [uk,{AYE(Mid, Pre(k)) — AYP(Mid, Pre(k))}
k#U I>k

+ (1 = p){AYP(Post(l), Mid) — AY?(Post(!), I\/Iid)}]

This is new. That's a lot of parallel trends we need equalling zero,
and this was only with two treatment groups!



Heterogeneity bias

AATT = (1 - ) [ATTk(Post(/) — ATT(Mid))
k#U I>k

Now, if the ATT is constant over time, then this difference is zero,
but what if the ATT is not constant? Then TWFE is biased, and
depending on the dynamics and the VWATT, may even flip signs



Alternatives to TWFE

@ New papers are coming out focused on the issues that we are
seeing with TWFE

e I'll discuss one though by Callaway and Sant'anna (2019)
(currently R&R at Journal of Econometrics) due to time
constraints (call it CS)

o If we have time, I'll run through a simulation illustrating both
the bias of TWFE and the unbiased estimation of this CS
estimator



When might you use this estimator

Probably in the very situations plaguing your own study
@ When treatment effects heterogenous by time of adoption
@ When treatment effects change over time
© When shortrun effects more pronounced than longrun effects

@ When treatment effect dynamics differ if people are first
treated in a recession relative to expansion years



Preliminary

CS considers identification, estimation and inference procedures for
ATT in DD designs with

@ multiple time periods
@ variation in treatment timing (i.e., differential timing)

© nparallel trends only holds after conditioning on observables



Group-time ATT is the parameter of interest in CS

ATT(g,t) = E[Y{ — Y?|G, = 1]



Group-time ATT

Group-time ATT is the ATT for a specific group and time
@ Groups are basically cohorts of units treated at the same time

@ Their method will calculate an ATT per group/time which
yields many individual ATE estimates

@ Group-time ATT estimates are not determined by the
estimation method one adopts (first difference or FE)

@ Does not directly restrict heterogeneity with respect to
observed covariates, timing or the evolution of treatment
effects over time

@ Provides a way to aggregate over these to get a single ATT

@ Inference is the bootstrap



Notation

T periods going fromt=1,..., T
Units are either treated (D; = 1) or untreated (D; = 0) but
once treated cannot revert to untreated state
Gg signifies a group and is binary. Equals one if individual
units are treated at time period t.
C is also binary and indicates a control group unit equalling
one if “never treated” (can be relaxed though to “not yet
treated")

o Recall the problem with TWFE on using treatment units as

controls
Generalized propensity score enters into the estimator as a
weight:
p(X) = Pr(Gg =1X,G.+ C=1)



Assumptions
Assumption 1: Sampling is iid (panel data)

Assumption 2: Conditional parallel trends

EIY? = Y2iX,Ge =1] = [V — Y24X,C =1]

Assumption 3: Irreversible treatment

Assumption 4: Common support (propensity score)



CS Estimator

el (- FE o)

CS stops us from using already-treated as controls as that is a sin!



Remarks about “staggered adoption” with universal coverage

Remark 1: In some applications, eventually all units are treated,
implying that C is never equal to one. In such cases one can
consider the “not yet treated” (D; = 0) as a control group instead
of the “never treated?” (C =1). O




Aggregated vs single year/group ATT

The method they propose is really just identifying very narrow
ATT per group time.

But we are often interested in more aggregate parameters, like
the ATT across all groups and all times

They present two alternative methods for building “interesting
parameters’

Also allows for estimating pre-treatment coefficients as TWFE
also does those badly (Sun and Abraham (2020))

Inference from a bootstrap



Stata simulation

Let's now review a simulation in Stata which can be downloaded
from my github repo called baker.do



Concluding remarks on DD

Prediction: You're going to write a DD paper, and you
probably will want to use TWFE because it's easy to do. Do
not.

Goodman-Bacon (2018, 2019) shows the bias of TWFE. It
suffers from attenuation bias, and it's theoretically possible
that it flips the sign!

CS is an alternative that doesn't suffer from any of those
TWEFE biases. R package available from github.

But there are others such as Athey, et al (2018) matrix
completion for panel data, the stacked method by Cengiz, et al
(2019), and several papers by de Chaisemartin and
D’Haultfoeuille

Remember: never use already-treated units as a control as
that's a sin and that's the source of TWFE bias
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