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What do the grammar 
and lexicon look like? 

Categorial Grammar 

Categorial grammars are lexicalised grammars 
•  a grammar is just a “dictionary” 
•  there are no language-specific grammar rules 
•  a grammar is a mapping from words to structures 

restaurant 
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the 

Mapping not 
one-to-one! 



Lexicalised grammars 

Many kinds of lexicalised grammar 
•  Categorial grammars (including CCGs) 
•  Lexicalised Tree Adjoining Grammars (LTAGs) 
•  CFGs in Greibach Normal Form 

Lexicalised grammars are more efficient than 
arbitrary CFGs for NLG 

•  search space is simpler (Koller & Striegnitz, 2002) 

Categorial grammars (CGs) 

A CG is a mapping from words to categories 
•  i.e. a set of word-category pairs 
 
What do categories look like? 
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Categories 

Two kinds of category 
 
•  “atomic” categories 
•  “complex” categories 
 

Atomic categories 

Each CG is built around a finite set of atomic 
categories 

•  simple, non-composite, atomic symbols 
•  similar to the symbols of a CFG 

Examples:  
•  S – sentence/clause 
•  NP – noun phrase 
•  N - noun 
•  PP – preposition phrase 



Atomic categories in XML 

Use atomcat elements with a type attribute 
 

<atomcat type=“S”/> 
 
<atomcat type=“NP”/> 

 
 

Complex categories 
•  Complex categories are built up from atomic 

category symbols 
•  From any finite set of atomic categories, can 

construct an infinite set of complex categories 
using two operators 
– directional slash operators:  / and \ 

 
Traditional arithmetic notation is a useful analogy 

Arithmetic notation 

Arithmetic notation gives us a finite set of digits 
•  0, 1, 2, . . ., 9 

And a small set of operators for describing an infinite 
set of numbers:  e.g., 

•  concatenation:   23, 456, 92789 
•  addition:   2+7, 7+23, 456+65 
•  subtraction:   45 - 6, (2+6) - (67- 34) 

Recursive definition 

Categories are defined recursively 
 
Atomic categories constitute the “base” 
•  every atomic category is also a category 
 
The recursion involves the slash operators 
•  if X and Y are both categories, then so is (X/Y) 
•  if X and Y are both categories, then so is (X\Y) 



Simple examples 

category meaning 

(S\NP) verb phrase, intransitive verb 

(NP/N) determiner 

(N\N) noun post-modifier, relative clause 

(PP/NP) preposition 

(PP\NP) postposition 

Embedded examples 

category meaning 

((S\NP)/NP) transitive verb 

((S\NP)/NP)/NP ditransitive verb 

((N\N)/NP) post-nominal preposition 

((S\NP)\(S\NP)) adverb 

((S\NP)\((S\NP)/NP)) reflexive pronoun 

((N\N)/(S\NP)) relative pronoun 

Notational conveniences 

Drop outermost parentheses 
•  (S\NP)   ⇒   S\NP 
•  ((N\N)/(S\NP))    ⇒   (N\N)/(S\NP) 

Assume left associativity of / and \ 
•  ((S\NP)/NP)/NP   ⇒   S\NP/NP/NP 
•  (N\N)/(S\NP)   ⇒   N\N/(S\NP) 

Complex categories in XML 

How to represent S\NP: 
 
<complexcat> 
  <atomcat type=“S”/> 
  <slash dir=“\”/> 
  <atomcat type=“NP”/> 
</complexcat> 



S\NP/NP in XML 

<complexcat> 
  <atomcat type=“S”/> 
  <slash dir=“\”/> 
  <atomcat type=“NP”/> 
  <slash dir=“/”/> 
  <atomcat type=“NP”/> 
</complexcat> 

N\N/(S\NP) in XML 

<complexcat> 
  <atomcat type=“N”/> 
  <slash dir=“\”/> 
  <atomcat type=“N”/> 
  <slash dir=“/”/> 
  <complexcat> 
    <atomcat type=“S”/> 
    <slash dir=“\”/> 
    <atomcat type=“NP”/> 
  </complexcat> 
</complexcat> 

Categories - summary 

  

atomic 
categories 

complex 
categories 

slash operators 

What does X/Y mean? 

The kind of word or phrase that combines with 
a following Y to form an X. 

X/Y Y 

X 

This rule is called forward application. 



Determiners 

the 
NP / N 

restaurant 
N 

NP 

Determiner:  word that combines with a 
following N to give an NP, i.e., an NP/N. 

result 
argument 

Prepositions 

in 
PP/NP 

the restaurant 
NP 

PP 

Preposition:  word that combines with a 
following NP to give a PP, i.e., a PP/NP. 

Derivations 

in 
PP/NP 

the 
NP/N 

restaurant 
N 

NP 

PP 

Attributive adjectives 

great 
N/N 

food 
N 

N 

Attributive adjective:  word that combines 
with a following N to give another N, i.e., an 
N/N. 



Adjective stacking 

great 
N/N 

Italian 
N/N 

restaurant 
N 

N 

N 

What does X\Y mean? 

The kind of word or phrase that combines with 
a preceding Y to form an X. 

Y X\Y 

X 

This rule is called backward application. 

Intransitive verbs 

Giovanni’s 
NP 

rocks 
S\NP 

S 

Intransitive verb:  word that combines with 
a preceding NP to give an S, i.e., an S\NP. 

Postpositions 

one floor 
NP 

above 
PP\NP 

PP 

Postposition:  word that combines with a 
preceding NP to give a PP, i.e., a PP\NP. 



Transitive verbs 

Giovanni’s 
NP 

serves 
S\NP/NP 

pasta 
NP 

S\NP 

S 

Transitive verb:  word that combines with a 
following NP to give an intransitive verb, S\NP. 

Relative pronouns 

restaurant 
N 

that 
N\N/(S\NP) 

rocks 
S\NP 

N\N 

N 

Relative pronoun:  word that combines 
with a following intransitive verb S\NP to 
give a noun postmodifier N\N. 

Adverbs 

Giovanni’s 
NP 

totally 
S\NP/(S\NP) 

rocks 
S\NP 

S\NP 

S 

Adverb:  word that combines with a 
following intransitive verb S\NP to give 
another intransitive verb S\NP. 

The story so far 

•  A categorial grammar is a mapping from 
words to categories 

•  Categories can be atomic or complex 
•  Words are combined into phrases by forward 

and backward application 



Our lexicon 

Giovanni’s :- NP 
pasta :- NP 
serves :- S\NP/NP 
rocks :- S\NP 
restaurant :- N 
great :- N/N  
a : NP/N 
that :- N\N/(S\NP) 

What does our grammar do? 

•  It tells us which strings of words are 
grammatical and which are not. 

•  It assigns derivational structure to the 
grammatical strings. 

•  But what about semantics? 

Remember HLDS? 
•  The input to the OpenCCG realiser is a hybrid 

logic dependency structure 

•  So our categorial lexicon needs to include 
HLDS in some way 

•  We need to be able to relate the grammatical 
sentences with their HLDS (interpretation) 

•  And also to relate HLDSs to the grammatical 
sentences that can realise them (generation) 

Adding HLDS to our lexicon 

Two steps: 
 
1.  Add a nominal to each atomic category symbol 

2.  Add a set of elementary predications of hybrid 
logic to each lexical category 

 
Then relax and let forward and backward application 

(i.e. unification) take care of the rest! 



Our lexicon again 

Giovanni’s :- NP 
pasta :- NP 
serves :- S\NP/NP 
rocks :- S\NP 
restaurant :- N 
great :- N/N  
a : NP/N 
that :- N\N/(S\NP) 

1. Adding nominals to categories 

Giovanni’s :- NPx 

pasta :- NPx 

serves :- Se\NPx/NPy 

rocks :- Se\NPx 

restaurant :- Nx 

great :- Nx/Nx  
a : NPx/Nx 

that :- Nx\Nx/(Se\NPx) 

•  Subscripts to atomic category symbols 

•  Referential indices:  unique labels for 
object or event evoked by the word 

•  By convention, use x, y, z for objects, 
and e, f, g for events 

•  Coindexed nominals indicate the 
referent of the argument is the same as 
referent of result, e.g., “great” 

Adding nominals in XML 
  <atomcat type=“NP”/> 
 
 
  <atomcat type=“NP”> 
    <fs> 
      <feat attr=“index”> 
   <lf> 
          <nomvar name=“X”/> 
   </lf> 
      </feat> 
    </fs> 
  </atomcat> 

 

Nominal coindexation in XML 
<complexcat> 
  <atomcat type=“N”> 
    <fs> 
      <feat attr=“index”> 
        <lf> <nomvar name=“X”/> </lf> 
      </feat> 
    </fs> 
  </atomcat> 
  <slash dir=“\”> 
 <atomcat type=“N”> 
    <fs> 
      <feat attr=“index”> 
        <lf> <nomvar name=“X”/> </lf> 
      </feat> 
    </fs> 
  </atomcat> 
</complexcat> 

Nx\Nx 



2. Adding EPs to categories 

Giovanni’s :- NPx : @x Giovanni’s 

pasta :- NPx : @x pasta 

serves :- Se\NPx/NPy : @e serve, @e <AGENT> x,  
@e <THEME> y 

rocks :- Se\NPx : @e great, @e <THEME> x 

restaurant :- Nx : @e restaurant, @e <THEME> x 

great :- Nx/Nx : @e great, @e <THEME> x 

a : NPx/Nx :  
that :- Nx\Nx/(Se\NPx) : 

Intransitive verbs 

Giovanni’s 
NPy   

@y Giovanni’s 

rocks 
Se\NPx   

@e great, @e <THEME> x 

Se : @e great, @e <THEME> x, @x Giovanni’s 
  
   

Transitive verbs 

Giovanni’s 
NPw   

@w Giovanni’s 
 

serves 
Se\NPx/NPy  
@e serve  

@e <AGENT> x 
@e <THEME> y 

pasta 

NPv   
@v pasta 

 

Se\NPx  
@e serve, @e <AGENT> x 
@e <THEME> y, @y pasta  

Se : @e serve, @e <AGENT> x, @e <THEME> y, 
@x Giovanni’s, @y pasta  

 

Attributive adjectives 

great 
Nz/Nz 

 @g great 
@g <THEME> z 

Italian 
Ny/Ny  

@f italian 
@f <THEME> y 

restaurant 
Nx  

@e restaurant  
@e <THEME> x 

Nx  
@e restaurant, @e <THEME> x, 

@f italian, @f <THEME> x 
 
 
 

Nx : @e restaurant, @e <THEME> x,  
@f italian, @f <THEME> x, @g great, @g <THEME> x 



So where are we? 

•  We�ve seen how to define a lexicon in CG 
•  We�ve learned about two important operators in 

CG, i.e., forward and backward application 
•  We�ve seen how to combine words both  

–  Syntactically (derivations, unification), and 

–  Semantically (set union of elementary predications) 

•  But, Combinatory Categorial Grammar gives us 
much more 

From CG to CCG 

CCG is an “extension” of CG. 
 
CCG has more rules: 
•  forward and backward type raising  
•  forward and backward composition 

Everything else remains the same - 
•  in particular the HLDS representations. 

Forward type raising 

X 

Y/(Y\X) 
T 

John 
NP 

S/(S\NP) 
T 

Type Raising 
•  CCG includes type-raising rules, which turn arguments into 

functions over functions over such arguments 
•  Forward type raising 

 
•  Example: 

•  The rules are order preserving.  Here we turn an NP into a 
rightward looking function over leftward functions, 
preserving the linear order of constituents 

X 

Y/(Y\X) 
T 

John 

NP 

S/(S\NP) 
T 



 Multiple derivations 
Q1:   I know what restaurant serves French food, but what 

restaurant serves Italian food?   

A1:  Babbo      serves      Italian food. 

NP S\NP/NP NP 

Q2:   I know what kind of food Pierre�s serves, but what kind of 
food does Babbo serve? 

A2:  Babbo      serves       Italian food. 

NP S\NP/NP NP 

S\NP 

S/(S\NP) 

S/NP 

T 

Forward composition 

X/Y Y/Z 

X/Z 
B 

John likes 
S/(S\NP) (S\NP)/NP 

S/NP 
B 

CCG is more flexible 

CCG generates more sentences: 
 
•  object relative clauses –  

 “a restaurant that [John likes]S/NP” 

•  right node raising –  
 “[John likes]S/NP but [Charles hates]S/NP 
Giovanni’s” 

CCG is more flexible  

CCG allows one sentence to be derived in 
many ways - 

 
•  reflecting different intonation patterns 

•  allowing incremental (i.e. left-branching) 
derivations from a right-branching lexicon  



Further Reading 

•  Jason Baldridge and Geert-Jan Kruijff. 2003. “Multi-Modal 
Combinatory Categorial Grammar”. In Proceedings of EACL 
2003.  

•  Mike White and Jason Baldridge. 2003. “Adapting Chart 
Realization to CCG”. In Proceedings of ENLG 2003. 

•  Jason Baldridge and Geert-Jan Kruijff. 2002. “Coupling CCG 
with Hybrid Logic Dependency Semantics”. In Proceedings of 
ACL 2002. 

 


