
Combinatory Categorial
Grammar

Constraining surface realisation in
OpenCCG

Recommended Reading

•  Michael White. 2006.
Efficient Realization of Coordinate Structures in
Combinatory Categorial Grammar. Research on
Language and Computation, 4(1):39–75.

•  Mark Steedman and Jason Baldridge. Combinatory
Categorial Grammar. To appear in Robert Borsley and
Kersti Borjars (eds.) Constraint-based approaches to
grammar: alternatives to transformational syntax. Oxford:
Blackwell. PDF (Will appear in February 2011.)

OpenCCG surface realisation

sentence plan

surface text

OpenCCG
realiser

Lexicon

Grammar

Sentence plans are
hybrid logic
dependency structures

What do the grammar
and lexicon look like?

Categorial Grammar

Categorial grammars are lexicalised grammars
•  a grammar is just a “dictionary”
•  there are no language-specific grammar rules
•  a grammar is a mapping from words to structures

restaurant

food

serves

the

Mapping not
one-to-one!

Lexicalised grammars

Many kinds of lexicalised grammar
•  Categorial grammars (including CCGs)
•  Lexicalised Tree Adjoining Grammars (LTAGs)
•  CFGs in Greibach Normal Form

Lexicalised grammars are more efficient than
arbitrary CFGs for NLG

•  search space is simpler (Koller & Striegnitz, 2002)

Categorial grammars (CGs)

A CG is a mapping from words to categories
•  i.e. a set of word-category pairs

What do categories look like?

restaurant

food

serves

the

Categories

Two kinds of category

•  “atomic” categories
•  “complex” categories

Atomic categories

Each CG is built around a finite set of atomic
categories

•  simple, non-composite, atomic symbols
•  similar to the symbols of a CFG

Examples:
•  S – sentence/clause
•  NP – noun phrase
•  N - noun
•  PP – preposition phrase

Atomic categories in XML

Use atomcat elements with a type attribute

<atomcat type=“S”/>

<atomcat type=“NP”/>

Complex categories
•  Complex categories are built up from atomic

category symbols
•  From any finite set of atomic categories, can

construct an infinite set of complex categories
using two operators
– directional slash operators: / and \

Traditional arithmetic notation is a useful analogy

Arithmetic notation

Arithmetic notation gives us a finite set of digits
•  0, 1, 2, . . ., 9

And a small set of operators for describing an infinite
set of numbers: e.g.,

•  concatenation: 23, 456, 92789
•  addition: 2+7, 7+23, 456+65
•  subtraction: 45 - 6, (2+6) - (67- 34)

Recursive definition

Categories are defined recursively

Atomic categories constitute the “base”
•  every atomic category is also a category

The recursion involves the slash operators
•  if X and Y are both categories, then so is (X/Y)
•  if X and Y are both categories, then so is (X\Y)

Simple examples

category meaning

(S\NP) verb phrase, intransitive verb

(NP/N) determiner

(N\N) noun post-modifier, relative clause

(PP/NP) preposition

(PP\NP) postposition

Embedded examples

category meaning

((S\NP)/NP) transitive verb

((S\NP)/NP)/NP ditransitive verb

((N\N)/NP) post-nominal preposition

((S\NP)\(S\NP)) adverb

((S\NP)\((S\NP)/NP)) reflexive pronoun

((N\N)/(S\NP)) relative pronoun

Notational conveniences

Drop outermost parentheses
•  (S\NP) ⇒ S\NP
•  ((N\N)/(S\NP)) ⇒ (N\N)/(S\NP)

Assume left associativity of / and \
•  ((S\NP)/NP)/NP ⇒ S\NP/NP/NP
•  (N\N)/(S\NP) ⇒ N\N/(S\NP)

Complex categories in XML

How to represent S\NP:

<complexcat>
 <atomcat type=“S”/>
 <slash dir=“\”/>
 <atomcat type=“NP”/>
</complexcat>

S\NP/NP in XML

<complexcat>
 <atomcat type=“S”/>
 <slash dir=“\”/>
 <atomcat type=“NP”/>
 <slash dir=“/”/>
 <atomcat type=“NP”/>
</complexcat>

N\N/(S\NP) in XML

<complexcat>
 <atomcat type=“N”/>
 <slash dir=“\”/>
 <atomcat type=“N”/>
 <slash dir=“/”/>
 <complexcat>
 <atomcat type=“S”/>
 <slash dir=“\”/>
 <atomcat type=“NP”/>
 </complexcat>
</complexcat>

Categories - summary

atomic
categories

complex
categories

slash operators

What does X/Y mean?

The kind of word or phrase that combines with
a following Y to form an X.

X/Y Y

X

This rule is called forward application.

Determiners

the
NP / N

restaurant
N

NP

Determiner: word that combines with a
following N to give an NP, i.e., an NP/N.

result
argument

Prepositions

in
PP/NP

the restaurant
NP

PP

Preposition: word that combines with a
following NP to give a PP, i.e., a PP/NP.

Derivations

in
PP/NP

the
NP/N

restaurant
N

NP

PP

Attributive adjectives

great
N/N

food
N

N

Attributive adjective: word that combines
with a following N to give another N, i.e., an
N/N.

Adjective stacking

great
N/N

Italian
N/N

restaurant
N

N

N

What does X\Y mean?

The kind of word or phrase that combines with
a preceding Y to form an X.

Y X\Y

X

This rule is called backward application.

Intransitive verbs

Giovanni’s
NP

rocks
S\NP

S

Intransitive verb: word that combines with
a preceding NP to give an S, i.e., an S\NP.

Postpositions

one floor
NP

above
PP\NP

PP

Postposition: word that combines with a
preceding NP to give a PP, i.e., a PP\NP.

Transitive verbs

Giovanni’s
NP

serves
S\NP/NP

pasta
NP

S\NP

S

Transitive verb: word that combines with a
following NP to give an intransitive verb, S\NP.

Relative pronouns

restaurant
N

that
N\N/(S\NP)

rocks
S\NP

N\N

N

Relative pronoun: word that combines
with a following intransitive verb S\NP to
give a noun postmodifier N\N.

Adverbs

Giovanni’s
NP

totally
S\NP/(S\NP)

rocks
S\NP

S\NP

S

Adverb: word that combines with a
following intransitive verb S\NP to give
another intransitive verb S\NP.

The story so far

•  A categorial grammar is a mapping from
words to categories

•  Categories can be atomic or complex
•  Words are combined into phrases by forward

and backward application

Our lexicon

Giovanni’s :- NP
pasta :- NP
serves :- S\NP/NP
rocks :- S\NP
restaurant :- N
great :- N/N
a : NP/N
that :- N\N/(S\NP)

What does our grammar do?

•  It tells us which strings of words are
grammatical and which are not.

•  It assigns derivational structure to the
grammatical strings.

•  But what about semantics?

Remember HLDS?
•  The input to the OpenCCG realiser is a hybrid

logic dependency structure

•  So our categorial lexicon needs to include
HLDS in some way

•  We need to be able to relate the grammatical
sentences with their HLDS (interpretation)

•  And also to relate HLDSs to the grammatical
sentences that can realise them (generation)

Adding HLDS to our lexicon

Two steps:

1.  Add a nominal to each atomic category symbol

2.  Add a set of elementary predications of hybrid
logic to each lexical category

Then relax and let forward and backward application

(i.e. unification) take care of the rest!

Our lexicon again

Giovanni’s :- NP
pasta :- NP
serves :- S\NP/NP
rocks :- S\NP
restaurant :- N
great :- N/N
a : NP/N
that :- N\N/(S\NP)

1. Adding nominals to categories

Giovanni’s :- NPx

pasta :- NPx

serves :- Se\NPx/NPy

rocks :- Se\NPx

restaurant :- Nx

great :- Nx/Nx
a : NPx/Nx

that :- Nx\Nx/(Se\NPx)

•  Subscripts to atomic category symbols

•  Referential indices: unique labels for
object or event evoked by the word

•  By convention, use x, y, z for objects,
and e, f, g for events

•  Coindexed nominals indicate the
referent of the argument is the same as
referent of result, e.g., “great”

Adding nominals in XML
 <atomcat type=“NP”/>

 <atomcat type=“NP”>
 <fs>
 <feat attr=“index”>
 <lf>
 <nomvar name=“X”/>
 </lf>
 </feat>
 </fs>
 </atomcat>

Nominal coindexation in XML
<complexcat>
 <atomcat type=“N”>
 <fs>
 <feat attr=“index”>
 <lf> <nomvar name=“X”/> </lf>
 </feat>
 </fs>
 </atomcat>
 <slash dir=“\”>
 <atomcat type=“N”>
 <fs>
 <feat attr=“index”>
 <lf> <nomvar name=“X”/> </lf>
 </feat>
 </fs>
 </atomcat>
</complexcat>

Nx\Nx

2. Adding EPs to categories

Giovanni’s :- NPx : @x Giovanni’s

pasta :- NPx : @x pasta

serves :- Se\NPx/NPy : @e serve, @e <AGENT> x,
@e <THEME> y

rocks :- Se\NPx : @e great, @e <THEME> x

restaurant :- Nx : @e restaurant, @e <THEME> x

great :- Nx/Nx : @e great, @e <THEME> x

a : NPx/Nx :
that :- Nx\Nx/(Se\NPx) :

Intransitive verbs

Giovanni’s
NPy

@y Giovanni’s

rocks
Se\NPx

@e great, @e <THEME> x

Se : @e great, @e <THEME> x, @x Giovanni’s

Transitive verbs

Giovanni’s
NPw

@w Giovanni’s

serves
Se\NPx/NPy
@e serve

@e <AGENT> x
@e <THEME> y

pasta

NPv
@v pasta

Se\NPx
@e serve, @e <AGENT> x
@e <THEME> y, @y pasta

Se : @e serve, @e <AGENT> x, @e <THEME> y,
@x Giovanni’s, @y pasta

Attributive adjectives

great
Nz/Nz

 @g great
@g <THEME> z

Italian
Ny/Ny

@f italian
@f <THEME> y

restaurant
Nx

@e restaurant
@e <THEME> x

Nx
@e restaurant, @e <THEME> x,

@f italian, @f <THEME> x

Nx : @e restaurant, @e <THEME> x,
@f italian, @f <THEME> x, @g great, @g <THEME> x

So where are we?

•  We�ve seen how to define a lexicon in CG
•  We�ve learned about two important operators in

CG, i.e., forward and backward application
•  We�ve seen how to combine words both

–  Syntactically (derivations, unification), and

–  Semantically (set union of elementary predications)

•  But, Combinatory Categorial Grammar gives us
much more

From CG to CCG

CCG is an “extension” of CG.

CCG has more rules:
•  forward and backward type raising
•  forward and backward composition

Everything else remains the same -
•  in particular the HLDS representations.

Forward type raising

X

Y/(Y\X)
T

John
NP

S/(S\NP)
T

Type Raising
•  CCG includes type-raising rules, which turn arguments into

functions over functions over such arguments
•  Forward type raising

•  Example:

•  The rules are order preserving. Here we turn an NP into a
rightward looking function over leftward functions,
preserving the linear order of constituents

X

Y/(Y\X)
T

John

NP

S/(S\NP)
T

 Multiple derivations
Q1: I know what restaurant serves French food, but what

restaurant serves Italian food?

A1: Babbo serves Italian food.

NP S\NP/NP NP

Q2: I know what kind of food Pierre�s serves, but what kind of
food does Babbo serve?

A2: Babbo serves Italian food.

NP S\NP/NP NP

S\NP

S/(S\NP)

S/NP

T

Forward composition

X/Y Y/Z

X/Z
B

John likes
S/(S\NP) (S\NP)/NP

S/NP
B

CCG is more flexible

CCG generates more sentences:

•  object relative clauses –

 “a restaurant that [John likes]S/NP”

•  right node raising –
 “[John likes]S/NP but [Charles hates]S/NP
Giovanni’s”

CCG is more flexible

CCG allows one sentence to be derived in
many ways -

•  reflecting different intonation patterns

•  allowing incremental (i.e. left-branching)
derivations from a right-branching lexicon

Further Reading

•  Jason Baldridge and Geert-Jan Kruijff. 2003. “Multi-Modal
Combinatory Categorial Grammar”. In Proceedings of EACL
2003.

•  Mike White and Jason Baldridge. 2003. “Adapting Chart
Realization to CCG”. In Proceedings of ENLG 2003.

•  Jason Baldridge and Geert-Jan Kruijff. 2002. “Coupling CCG
with Hybrid Logic Dependency Semantics”. In Proceedings of
ACL 2002.

