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ABSTRACT 

Recent advances in surgical robotics have provided a 
platform for extending the current capabilities of minimally 
invasive surgery by incorporating both pre-operative and 
intra-operative imaging data. In this tutorial paper, we 
introduce techniques for in vivo 3D tissue deformation 
recovery and tracking, based on laparoscopic or endoscopic 
images. These optically based techniques provide a unique 
opportunity for recovering surface deformation of the soft-
tissue without the need of additional instrumentation. They 
can therefore be easily incorporated into the existing 
surgical workflow. Technically, the problem formulation is 
challenging due to non-rigid deformation of the tissue and 
instrument interaction. Current approaches and future 
research directions in terms of intra-operative planning and 
adaptive surgical navigation are explained in detail.   
 
Index Terms— image-guidance, robotic assisted minimally 
invasive surgery, 3D deformation recovery. 
 

1. INTRODUCTION 

 
Over the past two decades, technological innovations have 
played a major role in reshaping the general practice of 
surgery. Solid state cameras and fibre optic devices have 
made Minimally Invasive Surgery (MIS) a reality. In MIS, 
specialized instruments are inserted into the anatomy 
through small access ports and operated under remote video 
guidance. By avoiding large incisions, MIS greatly reduces 
patient trauma, post-operative recovery period and the risk 
of comorbidity. These advantages have made MIS a viable 
treatment option for a wider range of patients [1, 2].  

Recently, robotic technologies have been used to 
overcome the limitations of traditional MIS tools and 
provide the control and maneuverability required for precise 
microsurgical tasks. Robotic devices represent one of the 
most promising enhancements in modern operating theatres 
for MIS. They facilitate the performance of dexterity 
demanding procedures with improved repeatability and 
precision through the use of microprocessor controlled 
mechanical wrists. By using master-slave set-ups, surgical 
robots have been shown to significantly improve the 
ergonomics in the operating theatre, enable the use of 
motion scaling and provide a unique platform for real-time 

navigation based on multi-modal patient specific imaging 
and sensing data. 

For performing complex procedures using robotic 
assisted MIS, medical image computing plays an important 
role for improving the surgeon’s operating capabilities. 
Despite the advantages of robotic assisted MIS instruments, 
performing micro-surgical tasks in a highly dynamic 
environment is challenging. This is reflected in complex 
procedures such as robotic assisted, beating heart Totally 
Endoscopic Coronary Artery Bypass (TECAB) surgery, for 
which, despite the apparent patient benefits, clinical uptake 
has been slow [3]. While imaging modalities such as intra-
operative MRI and CT can provide accurate information 
about the tissue morphology, they are constrained by the 
operating environment mainly due to their size and 
accessibility. Optical techniques based on laparoscopic or 
endoscopic cameras provide a unique opportunity for 
recovering the morphology, as well as the structure of the 
soft-tissue in situ. In MIS, recovering tissue deformation is 
essential for co-registering intra-operative and pre-operative 
data. It is also important for providing intra-operative 
guidance and accurately fusing multimodality intra-
operative information. With robotic assistance, the 
recovered tissue deformation can further be used for 
providing motion stabilization and prescribing dynamic 
active constraints to avoid critical anatomical structures 
such as nerves and blood vessels as illustrated in Fig. 1. 

 
Fig. 1. A schematic diagram showing the information flow in robotic 
assisted MIS. By using information from the laparoscopic cameras, it is 
possible to recover tissue deformation in 3D, which permits intra-operative 
navigation, motion compensation and dynamic active constraints.  



In this tutorial paper, we provide an explanation of the 
physical configuration of the optical imaging environment 
in MIS with a geometric camera model and camera 
calibration. This serves as the basis of techniques for 
recovering 3D soft tissue deformation and relative pose of 
the laparoscopic cameras. We describe how these 
techniques can be used for tissue deformation tracking and 
3D reconstruction, with specific focus on the use of a 
moving camera model for structure recovery. Quantitative 
validation is discussed to highlight the practical challenges 
involved for in vivo applications. To summarize we discuss 
the major challenges and future research directions, 
particularly in dealing with deformable tissue structures. 
 

2. OPTICAL SET-UP 

 

The laparoscope camera used in MIS is typically inserted 
into the patient via a small incision or natural orifice. The 
surgeon maneuvers the external, proximal end of the 
laparoscope to navigate through the body via a video 
displays. The MIS environment is illuminated with a light 
source embedded in the laparoscope. Fig. 2 shows the 
optical configuration of several laparoscopes and example 
images displayed to the surgeon. Quantitative measurements 
can be made from laparoscopic images only if the 
instrument has been accurately modeled and calibrated. 

The camera of a laparoscope can be modeled by its 
optical characteristics called intrinsic parameters and its 
position and orientation in a world coordinate system called 
extrinsic parameters [4]. Typically, the pinhole projection 
model is used to describe the mapping of a 3D point 

[ 1]TX Y Z=M  in homogeneous coordinates onto the 
image point [ 1]Tx y=m  as a matrix multiplication: 
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where K is a matrix of the intrinsic camera parameters and 
R and t  describe the extrinsic orientation of the device in 
the world coordinate system. Fig. 2(e) shows a schematic 
illustration of this model in a stereo configuration. Lens 
distortion can be effectively modeled using radial and 
tangential distortion coefficients [5, 6]. 

In general, the unknown parameters of the laparoscope 
model are estimated by a preoperative calibration process. 
To obtain these unknown parameters, certain constraints are 
usually imposed on the projection of points, with known 
coordinates in the 3D world, onto the image plane. There 
are several well established algorithms for this procedure 
from the computer vision communities and implementations 
of these methods are available online [7].  

After calibration, the metric 3D structure of the surgical 
scene can be recovered given the correspondence of image 
primitives ( m and 'm  in Fig. 2(e)) among multiple views 
of the surgical site. This process is called triangulation [4], 
which is also illustrated in Fig. 2(e).  
 

3. RECOVERING SOFT-TISSUE 3D SHAPE 

 

Recovering 3D information from images is a long standing 
problem in computer vision. Typical solutions are 
stimulated by our basic understanding of biological vision 
systems and the intrinsic relationship of how 2D images are 
acquired from 3D space. The early work of Marr [8] led to 
the establishment of Shape-From-X where different visual 
cues can be used to infer information about the shape and 
position of objects with respect to the camera. The wealth of 
research in this area has resulted in many publications [9]. 
In this section, we will only summarize those approaches 
reported in MIS.  

Approaches to 3D tissue surface reconstruction are 
summised in Table I  and and an example is shown in Fig. 
3(d). They can be broadly divided into passive and active 
techniques. Passive techniques do not introduce additional 
light or sensing devices into the MIS environment and are 

 
Fig. 2. (a) A 30 degree laparoscope, (b) a stereo laparoscope with two point light sources, (c) a zero degree laparoscope with circular light source (d) 
example images acquired during MIS. (e) Schematic of a laparoscope with imaging optics observing a sample of tissue in 3D. 

 



purely based on the existing images as observed by the 
operating surgeon. The two main visual cues that have been 
exploited are shading and stereo.  

For Shape-From-Shading (SFS), laparoscopic images do 
not obey many of the traditional assumptions used to 
simplify the Bidirectional Reflectance Distribution Function 
(BRDF). Lambertian reflectance is not compatible with 
specular reflections, which are common due to the mucus 
layer of the soft-tissue and the relatively high intensity of 
the laparoscopic light source. Furthermore, the assumption 
of a light source located at infinity is not satisfied due to the 
co-positioning of the light source at the tip of the 
laparoscope. In addition, the camera cannot be assumed to 
perform orthographic projection as perspective effects and 
lens distortions are significant in laparoscopic images.  

Therefore, the special optical arrangement between the 
scope, illumination source and the surgical scene must be 
used to simplify the image irradiance equation. This was 
first proposed by Rashid and Berger in 1992 [10] where the 
light source and the optical centre of the camera were 
considered to be coincident. This approach was 
subsequently combined with the assumption that the BRDF 
is a monotonically decreasing function with respect to the 
viewing angle [21]. More recent work has expanded the 
camera projection model to incorporate lens distortion [15] 
and perspective projection [6, 16]. The assumption of 
coincident camera and light source positions has also been 
relaxed [23], although this requires the calibration of the 
relative positions [27]. 

One of the main drawbacks of SFS approaches in MIS is 
that the information recovered is not in a metric coordinate 
space and only relative surface orientation information can 
be measured. Passive stereo techniques and SFS are 
complementary and can be combined to overcome this 
limitation [24]. 

Early work on stereo methods in MIS used a simple 
normalized cross correlation algorithm [11]. Subsequently 
this was adapted to incorporate hierarchical solutions with a 
geometric surface prior and to recover the 3D shape of the 
heart [17, 18, 19]. The use of explicit assumptions (e.g. 
smoothness) about the observed soft-tissue surfaces enables 
the reconstruction of homogenous tissue regions but does 
not handle discontinuities arising at instrument-tissue 
boundaries. To address this issue, methods based on a 
sparse set of salient features have been used to first recover 
a sparse 3D reconstruction of the surgical site and then 

propagate this information to achieve a semi-dense 3D map 
[28].  

It is worth noting that an important feature of MIS 
images is the abundance of specular reflections. They are 
view-dependent and can cause significant errors in 
recovering 3D structure and tracking deformation. It is 
therefore necessary to correctly identify these regions prior 
to stereo-correspondence [19, 29]. Alternatively they can be 
used as constraints when the illumination direction is known 
or as a starting point in SFS algorithms [24, 27]. 

The main limitation of passive reconstruction techniques 
is that they have limited robustness when dealing with the 
dynamic environment of MIS. For this reason, methods 
based on fiducial markers or the use of structured lighting 
have been proposed. Fiducial markers are predominantely 
used for temporal tissue tracking, which is discussed in 
more detail in the following section. In terms of structured 
lighting, an overview of the general techinques is provided 
in [30]. In surgery, the use of light projection for 3D 
measurements has attracted extensive attention [25]. For 
augmented reality, a structured light system was developed 
to recover the shape of the surgical site [22]. Subsequently, 
methods based on a laser plane sweeping over the surgical 
scene have been developed  [2, 26]. All of these systems 
require an additional instrument port, which has not been 
clinically popular. 

More recently, the use of projected coded patterns has 
been investigated [20] and methods based on time-of-flight 
technologies have been explored. They have been shown to 
produce promising results, albeit at limited resolution and 
frame rates with the current technologies [31]. 

  

4. SOFT-TISSUE TRACKING AND MORPHOLOGY 

ESTIMATION 

 

4.1. Tissue Tracking 

The 2D/3D morphology and dynamic motion of soft tissue 
can be recovered by temporally tracking regions of interest 
in the image. This approach is illustrated in Fig. 3(a-b) and 
has been used to recover 3D tissue morphology and 
deformation in a variety of anatomical regions as 
summarized in Table II. The problem of locating a region of 
interest in one image and finding the corresponding region 
in another is difficult in MIS. This is because MIS images 
can be low in contrast, noisy and poorly illuminated. The 
appearance of tissue also varies greatly from homogenous, 
to highly textured and many regions contain view dependent 
specular reflections. It is also necessary to deal with 
occlusion by surgical instruments, image artifacts and 
dynamic effects such as bleeding and cauterisation smoke. 
The performance of a region tracking algorithm is largely 
influenced by how distinguishable the region is from its 
surroundings. This is affected by what regions are detected 
for tracking, how the region is represented in image or 

TABLE I SUMMARY OF METHODS USED FOR 3D RECONSTRUCTION 

FROM IMAGES IN MIS 

SFS Assumptions 
 

Stereo Approaches Active Technique 

Orthographic [10] 
Computational [11, 

12] 
Fiducial [13, 14] 

Perspective [6, 15, 
16] 

Surface Priors [17, 18, 
19, 20, 21] 

One-shot [22] 

Illumination [23] Cue Fusion [6, 24] 
Progressive [2, 25, 

26] 



feature space, and the matching strategy used to locate the 
corresponding region in a new image or video frame. 

Region detection is the process of identifying salient 
regions in the image which are distinguished from their 
surroundings. Passive techniques that detect naturally 
occurring features such as vessels, corners or blobs [32, 33, 
34, 35, 36, 37] are preferred as they do not interfere with the 
surgeon’s view or require user interaction. A comparison of 
region detectors in MIS is provided in [38]. Tissue can 
appear homogenous, making region detection challenging. 
This can be overcome by manually selecting regions [39, 
40], using fiducial markers [13, 14] or by marking the tissue 
of interest (e.g. with diathermy) [39, 41]. These active 
approaches limit the number of tracked regions. 

In general, the region can be represented in image space 

or feature space. In image space, the region is simply 
represented by pixels as an image patch or template [33, 
39]. The main problems with this approach are that the 
representation is not invariant to large image transformation 
and the image information may not be sufficient to 
distinguish a region from its surroundings. Alternatively, 
descriptors can be used to represent the region in feature 
space. Feature descriptors select what information from the 
image will be used (e.g. grayscale, color, gradient) and how 
this information will be represented (e.g. energy in the co-
occurrence matrix [40], non-uniformity of the run length 
matrix [40],  probability density histograms [41], histograms 
of gradients [34], contours, active appearance models).  

Descriptors can be made invariant to image 
transformation such as scale and rotation through explicit 
modeling. However, ad hoc modeling of non-linear 
deformation is not trivial. Selecting a feature descriptor is 
context specific and the performance of descriptors can be 
affected by low contrast images, changes in illumination 
and specular highlights, making the selection of a robust 
descriptor challenging. In [13, 34, 40], machine learning 
techniques are used to select and combine discriminant 
descriptors.  

For tracking purposes, the region representation can be 
created on the first frame and remain constant or updated at 

each frame. Updating enables temporal persistency to be 
assumed but can lead to error propagation.  

Matching strategies can be categorized as recursive 
methods or ‘tracking by detection’ [42]. Recursive methods 
such as Lucas Kanade (LK) attempt to minimize the 
difference between the region representation and a region in 
the new image. LK operates in image space and uses the 
previous location of the region to search for a match locally. 
This minimization approach works well on small 
deformations and has been successfully applied to MIS [17, 
29, 32, 33, 36, 39, 43]. However, recursive approaches 
using image space can be sensitive to changes in 
illumination and specular highlights. They are not well 
suited to dealing with occlusion and require frame-to-frame 
updates, leading to error propagation.  

In ‘tracking by detection,’ the region detector is applied 
to each new video frame to extract a set of potential 
matches. This set is searched to find a match by comparing 
feature descriptors. Matching strategies can be one to one 
(e.g. nearest neighbor), one to many (e.g. nearest neighbor 
ratio) or many to many (e.g. RANSAC [44]). Detectors and 
descriptors can be complementary such as SIFT [45] and 
SURF [46]. ‘Tracking by detection’ is well suited to dealing 
with occlusion as no temporal information about the 
region’s location is required. The main problem with the 
application of these techniques in MIS is related to the ad 

hoc assumptions they make about what image features to 
use and the expected image transformations. In addition, 
this approach is dependent on the region detector to 
correctly locate the region in each new video frame and the 
global uniqueness of the region as represented in the feature 
space. ‘Tracking by detection’ has been applied in MIS 
[34], and in [35], an approach is proposed which exploits a 
recursive technique (which requires no prior knowledge) to 
learn a feature descriptor online. 

 
4.2. Tissue Morphology Modeling 

Extracting and modeling the 2D/3D motion of dynamic 
tissue is an important prerequisite of image guided surgery. 
The 3D position of tissue, shown in Fig. 3 (c) can be 
estimated with a stereo laparoscope as described earlier or 

Fig. 3. (a) A region tracked on the cardiac surface illustrating motion from the cardiac and respiratory cycles, (b) a region tracked on the liver illustrating 
motion resulting from respiration, (c) the tracked 3D motion of a region on the surface of the heart, (d) a dense stereo reconstruction of the tissue surface. 



with a monocular laparoscope based on fiducial markers 
with known geometry [13]. In practice, tissue deformation 
can be caused by the cardiac and respiratory cycles, tissue 
tool interaction or muscular contraction.  

Deformation resulting from cardiac and respiratory 
cycles can be modeled as quasi-periodic or periodic signals 
[47]. Respiration during MIS is usually regulated by a 
ventilator, creating an asymmetric periodic signal with an 
extended exhale phase. For example, the effect of 
respiration on the liver is modeled in [41] by a Prototype 
Repetitive Controller and using a weighted-frequency 
Fourier linear combiner in [48]. The motion of the cardiac 
surface, however, is more complex as it contains 
deformations caused by both the cardiac and respiratory 
cycle. The deformations can be decoupled [33, 35] into their 
intrinsic components or considered together. A number of 
approaches have been suggested for modeling cardiac 
motion, which include Fourier series [49], vector 
autoregressive models [49], Taken’s theorem [36] and 
Linear Parameter Variant Finite Impulse Response Models 
[50]. Information from the ventilator and ECG has also been 
incorporated to increase accuracy [51]. Modeling large 
scale, non-periodic tissue deformation caused by tissue-tool 
interaction or muscular contraction is more challenging. It is 
likely to require the application of statistical shape, finite 
element and biomechanical models such as those used in 
needle steering and surgical simulators [52]. 

 

5. STRUCTURE AND CAMERA MOTION 

ESTIMATION 

 
The methods described in the previous sections are based on 
the assumption that the laparoscopic camera is static. This is 
not true in practice, particularly with the recent emergence 
of Natural Orifice Transluminal Endoscopic Surgery 
(NOTES) or Single Port Access (SPA) techniques. In this 
section, we will describe two approaches for recovering the 
structure of the MIS environment, as well as the camera 
position: Structure from Motion and Simultaneous 
Localization And Mapping (SLAM). These competing 
techniques are compared schematically in Fig. 4. Both 
approaches are based on the assumption that the structure of 
the environment is relatively stable. It is worth noting that 
this is a strong assumption for MIS. Nevertheless, these 
methods have been applied to various parts of the anatomy 
(Table II) where tissue motion or deformation is minimal. 
The extension of these techniques to non static 
environments will be discussed.  
 
5.1. Structure from Motion 

Structure from Motion [4] is a computer vision technique 
developed to recover the structure of a scene and the motion 
of the camera. A wide variety of approaches exist. 
However, the basic framework contains three components 
as illustrated in Fig. 4; 1) image registration and frame-to-

frame camera motion estimation; 2) global optimization or 
bundle adjustment where multiple images are registered; 
and 3) scene reconstruction.  
 

 
Fig. 4. Illustration of structure and camera motion estimation. Structure 
from Motion (left) with frame to frame estimation and global optimization. 
Simultaneous Localization And Mapping (right) with sequential 
incremental long term mapping, uncertainty estimates, motion prediction 
and state updates.  

 
Image registration and frame-to-frame motion 

estimation can be performed in the image space by using 
direct alignment [53, 54, 55, 56] or in feature space using 
region matching [57, 58, 59, 60]. Direct alignment uses 
every pixel in the image and is well suited to environments 
with sparse regions of interest. However, it requires a large 
image overlap, suffers from the aperture problem and can be 
affected by specular highlights. Operating in feature space 
enables registration with smaller image overlap and non 
sequential matching. Camera motion is estimated by 
minimizing the equation [4] defined by the motion model.  

The motion model describes the assumptions made 
about the structure and geometry of the environment. It 
defines the mathematical relationship between pixels in 
images captured from different locations. In MIS, planar 
models have been used on a variety of organs [59, 61, 62, 
63, 64] (see Table II), cylindrical models for the esophagus 
and colon [53, 54, 55, 56] and full projective models for the 
abdomen, colon [57], heart [58] and bladder [60]. The main 
problem with Structure from Motion is error propagation 



caused by the frame-to-frame camera motion estimation. 
Small errors propagate over time and can cause inaccuracies 
in the camera and structure estimations. This problem can 
be addressed using global optimization. 

Global optimization is the use of batch operations or 
bundle adjustment to register multiple images together and 
find the optimal set of transformations which minimizes 
error and removes drift. Global optimization with multiple 
images can be computationally expensive, making it 
inappropriate for online in vivo, in situ applications. 
Nevertheless, it is suited to offline applications [56, 59, 61]. 

Scene reconstruction is the process of generating a 
model of the tissue structure. Given the estimated positions 
of the camera, scene reconstruction can be performed by 
matching regions of interest between images. The matched 
regions are triangulated to estimate 3D points relative to the 
camera. These points can be meshed or interpolated to 
create a model of the tissue structure. 

The work described above is based on the assumption 
that the MIS environment is static. Non rigid Structure from 
Motion has been proposed for tracking faces [65] and 
clothing [66]. These techniques are based on the 
factorization method and shape basis representation. They 
are not suitable for real-time applications as the deformation 
is dealt with in an offline, global optimization step. Non-
rigid Structure from Motion has been applied to the heart 
[67]. However, it is used to deal with residual motion when 
constructing a static cardiac surface at a preselected point in 
the cardiac cycle and not to generate a deforming surface 
model. 

 
 5.2. Simultaneous Localization And Mapping (SLAM) 

SLAM has its origin in autonomous robotic navigation. 
It is designed to solve the problems of consistent 
incremental environment mapping and localization of a 
robot within the map. Previously, these had been treated as 
separate problems where either the map or robot location is 
assumed to be known. This approach was unsuccessful as 
neither can be known for certain due to noise in sensor 

measurements. The solution is to formulate mapping and 
localization into a single state estimation problem within a 
probabilistic framework. Originally developed for laser 
ranger finders and sonar, SLAM has been reformulated for 
cameras [68].  

In MIS, SLAM has been applied to the abdomen [69, 70, 
71], esophagus [72] and sinus [73] (in conjunction with pre-
operative data) where deformation and tissue motion is 
minimal. Fig. 5 shows the results of SLAM when applied to 
laparoscopic surgery, illustrating the 3D map and camera 
position. The fulcrum effect of the laparoscope is clearly 
visible. In MIS, the goal is to localize the laparoscope 
camera and build a map of the tissue surface. A typical 
feature based SLAM system is illustrated in Fig. 4. The 
SLAM system alternates between a prediction step, where 
the motion of the camera is blindly predicted, and an update 
step, where the map is measured relative to the camera. A 
vision SLAM system consists of a state vector, a 
probabilistic framework, feature initialization, a prediction 
model and a measurement model. 

The state vector contains a map and the position of the 
laparoscope camera. The map contains the 3D xyz  position 
of a set of features or points in the environment. The 
camera’s position is represented by xyz  position and roll, 

pitch, yaw rotations. In addition, this state vector contains 
the velocity and angular velocity of the camera. Real-time 
performance has been demonstrated [68] on sparse maps 
containing 100 features with full covariance. 

The probabilistic framework in SLAM enables 
uncertainty or noise in the system to be modeled. The 
framework represents the joint probability between the 
position of the camera and the features in the map at a given 
point in time. It therefore corresponds to the current 
estimate of the state vector and the uncertainty in the state 
estimation. In MIS, the Extended Kalman Filter (EKF), 
which assumes Gaussian noise, has been employed [69, 70, 
71, 72, 74]. The uncertainty in the state estimate is 
represented in a covariance matrix, which describes the 
variance from the estimate. In the wider SLAM community, 

Fig. 5. Laparoscopic SLAM as applied to the abdominal MIS. Top – Laparoscopic video with tracked regions (squares) and projected uncertainly 
(circles). Bottom – Laparoscope position and (a-d) 3D sparse map of tissue with position uncertainties and (e) 3D surface mesh of tissue. 



a variety of approaches have been implemented included 
Unscented Kalman Filters and Rao-Blackwellised particle 
filters (FastSLAM) [75]. 

Features initialization is dependent on the optical set-
up. In stereoscopic systems [69, 71, 74], features are 
matched in the left and right images and the 3D position is 
triangulated relative to the camera. In monocular systems, 
the 3D position is estimated by matching features 
temporally and requires the camera motion to be estimated. 
This is estimated using inverse depth [70, 72] or structure 
from motion [73]. SLAM uses a full covariance matrix 
between all features in the map to enable map convergence. 
For real-time performance, the size of the map is restricted 
and feature initialization should be carefully managed.  

The prediction model or motion model describes how 
the camera is expected to move. This model contains two 
elements; 1) deterministic element - the motion is estimated 
based on a sensor (e.g. odometry) or an assumption. In [69, 
70, 72], a constant velocity constant acceleration model is 
assumed. 2) Stochastic element – this is a probability 
distribution represented by a Gaussian or collection of 
particles. It represents the unknown motion which cannot be 
easily modeled. A constant velocity, constant acceleration 
motion model assumes the camera motion will be smooth. 
This assumption can be violated in both handheld MIS and 
robotic assisted MIS, thus leading to system failure. The 
motion of a rigid laparoscope is limited by the fulcrum 
effect which may help to constrain the problem.  

In the update step, the predicted state is compared to 
the measured state. The measurement model provides a 
means of measuring the current state of the system. SLAM 
measures the location of features in the map relative to the 
camera. In stereo SLAM, visible features are compared in 
3D by stereo region matching and triangulation, while in 
monocular SLAM visible features are projected onto the 
camera image plane and regions are matched using 
measurements in the 2D image plane.  

SLAM is a recent success story in mobile robotics 
largely due to its probabilistic foundations and real-time 
capabilities. Unlike Structure from Motion, it is naturally 
suited to returning to previously visited areas and does not 
require a batch process to converge to an accurate 
estimation of the environment structure. Practical future 
work in the application of SLAM to MIS will be focused on 
creating denser maps covering larger areas, identifying more 
robust long term features, developing motion models better 
suited to rapid motion, and recovering from failure. 
However, the main challenge in the application of SLAM to 
MIS is the theoretical treatment of deformation.  

SLAM has been widely applied to non static civil 
environments where motion is caused by people and cars. 
Non static motions are treated as outliers. Outliers can be 
identified using approaches such as RANSAC [44]. This 
assumes a global rigidity model and identifies outliers as 
features which do not fit to the model. This approach relies 

on parts of the environment being static which may not be 
the case in MIS. In [77], however, moving objects (cars) are 
identified and incorporated into the probabilistic framework 
of SLAM. This work demonstrates that SLAM can be 
applied without the static assumption by explicitly creating 
motion models for moving objects. As we have seen in 
section 4.2, it is possible to estimate motion models 
representing the morphology of deforming tissue. Future 
work on deforming SLAM will investigate the incorporation 
of morphological models into the probabilistic framework. 

The output SLAM is generally a sparse set of 3D points 
representing the structure of the environment. These points 
can be meshed to create a solid model shown in Fig. 5 (e).  
Textures from the laparoscopic video can be applied to 
make the model visually accurate.  

 
5.3 Monocular and Stereo Systems 

Structure from Motion and SLAM can be used with either 
monocular or stereo cameras. Monocular systems are 
commonly used in operating theatre. However, the number 
of stereoscopic systems is steadily increasing particularly 
for robotic assisted MIS. Ideally, the integration of 
computer vision into the surgical theatre will operate with 
existing monocular laparoscopes, however, the significant 
drawback of monocular vision is that acquiring depth 
information requires camera motion or fiducials of a known 

size. Therefore, the application of monocular vision in MIS 
is more limited than stereo.  

 

 

6. VALIDATION AND VERIFICATION 

 
Validation is a crucial step in the evaluation of the discussed 
methods. Practically, the validation process is challenging 
due to a lack of ground truth for in vivo cases. Experiments 
are usually performed on numerically simulated data or on 

TABLE II SUMMARY OF TISSUE MORPHOLOGY AND STRUCTURE 

ESTIMATION METHODS APPLIED IN MIS 

Recovered Scene Geometry 

Organ 

Static Deforming 

Heart [11, 58, 67] 
[13, 14, 17, 18, 29, 
32, 33, 35, 36, 40, 

43, 49, 51, 76] 
Abdomen / Liver / 

Gall Bladder / Kidney 
[37, 59, 64, 69, 

70, 71, 74] 
[34, 35, 39, 41] 

Colon [53, 55, 57] - 

Bladder [60, 61, 62, 63] - 

Esophagus [54, 56, 72] - 

Sinus [73] - 

 



phantom models. The ideal metric for measuring error 
should be Euclidian distances in metric 3D space or in the 
projected 2D image plane. However, for algorithms where 
rotations need to be evaluated, as with mosaicing, the exact 
method for measurement is less well defined [59]. 
Qualitative evaluations using physiological signal frequency 
comparisons have been used in the literature [14, 36]. 

Computer simulations are used to test the numerical 
stability of algorithms under different levels of modeled 
noise to establish the baseline performance [41, 58, 60, 69].  
However, simulations are not capable of modeling all noise 
sources and the complexity of the MIS set-up. Therefore, 
more realistic phantom experiments with known ground 
truth geometry and motion characteristics are used [41, 58, 
60, 74, 76].  

In practice, the ground truth for phantom models can be 
obtained using tomographic scanning and reconstruction 
techniques or surface scanning using range finders [58, 60, 
73, 74, 76]. A practical challenge is to ensure the structural 
integrity of the model during ground truth acquisition. This 
is particularly difficult for dynamic models, where the 
model morphology must be consistently repeatable and 
synchronized between modalities [28]. Repeatable dynamic 
motions can be achieved by a combination of mechanical 
devices and signal generators [19, 28, 41]. High contrast 
fiducial markers are typically embedded in the phantom 
enabling registration between the experimental and ground 
truth coordinate systems. The quality of the resulting 
alignment is of crucial importance to the values obtained 
during validation and controlling the error in the ground 
truth to measurement registration is an important 
consideration. 

Ground truth for the camera or surgical tools can be 
obtained using optical trackers or electromagnetic tracking 
devices [73, 74]. They require hand-eye calibration to relate 
the tracking device and the camera coordinate systems. In 
addition, controlling the error propagation between the 
optical, camera and phantom model coordinate systems can 
often be a practical challenge that needs to be handled with 
care. 

For better visual fidelity, a cadaver can be used in 
experiments, however, the ground truth for this is difficult 
to obtain and maintain due to gradual changes in tissue 
property [19, 74, 76]. The same problems arise during in 

vivo and wet lab experiments with animal studies. In these 
cases, structural and morphological ground truth is not 
available and results are usually presented to qualitatively 
demonstrate practical feasibility rather than metric 
measurements. Some experimental analysis may be 
performed by obtaining user feedback [34, 35, 39] and by 
comparisons with other physiological sensing equipment 
such as ECG signals [13, 18, 32, 35, 67]. 

Currently, there is no quality data repository providing a 
series of datasets for algorithm benchmarking, evaluation 
and comparison. This makes it particularly difficult for 

research centers without established MIS infrastructure to 
work in this area. To address this problem, we have 
introduced a database containing video data, calibration 
information and ground truth data http://vip.doc.ic.ac.uk.  
 

7. TECHNICAL CHALLENGES AND CLINICAL 

APPLICATIONS 

 

The future of navigation and control in robotic assisted MIS 
is in the intelligent use of pre-operative and intra-operative 
patient specific data. For intra-operative guidance and 
applying image guided, dynamic active constraints to avoid 
critical anatomical structures, it is necessary to develop fast 
and accurate techniques for 3D surface reconstruction and 
motion estimation in situ. However, the development of 
computer vision techniques for these dynamic and non-rigid 
surgical scenes remains challenging. 

The robustness of computer vision in MIS is affected by 
a number of factors including the paucity of features, 
specular highlights, rapid camera motion, small baseline, 
tissue deformation, surgical smoke and occlusion. One of 
the major challenges is the theoretical treatment of tissue 
deformation, in particular, when combined with camera 
motion. New methods are required to adapt to the changing 
environment and to understand the dynamics of the 
structural morphology in order to anticipate risks and apply 
motion prediction. 

Tissue motion caused by the respiratory and cardiac 
cycles can be modeled using periodic and quasi periodic 
models. This is particularly important for highly dynamic 
procedures around the beating heart where motions arising 
from the cardiac and respiratory cycles affect the stability of 
the operating field. In these cases, an important control issue 
to consider is motion compensation, where the robotic tools 
are synchronized with the physiological motion to cancel 
out its rhythmic components. In cardiothoracic surgery, 
despite the use of mechanical stabilizers the anastomosis 
site can be unstable and motion compensation is required 
facilitate less invasive procedures such as TECAB [36, 50]. 
For the effective deployment of motion compensation, the 
operating frequency of the robotic device control must be 
determined to avoid redundancy and signal aliasing. Some 
preliminary studies indicate that this may be in the region of 
100Hz, which requires fast intra-operative processing. In 
fact the frequency of operation required by the computer-
integrated surgical system to update information or robotic 
control needs to be identified and accuracy requirements 
clearly defined for different applications [78]. 

Non-periodic tissue deformation is likely to require the 
fusion of optical information with prior biomechanical or 
statistical anatomical models and patient specific 
information. The problem is complicated further by tissue-
tool interaction and topological changes of the tissue due to 
dissection. There is a critical need for a synergy between the 
robotic instruments’ interactions with tissue and the 



surgeon. For systems directed at orthopaedic surgery, for 
example, this can be achieved by imposing active 
constraints on the tool’s motion by using the pre-operatively 
acquired, segmented and modeled patient data [79].  

For soft-tissue procedures, the problem is significantly 
more complex, largely due to the deformation and dynamics 
of the anatomy during surgery. In order to impose control 
constraints on the robotic instruments and to establish “no 
go” zones for protecting delicate parts of the anatomy, 
patient specific data must be updated in vivo to reflect the 
current location and changes in anatomical structure. This 
requires 3D surface recovery in real-time and the 
subsequent augmentation of geometric and biomechanical 
models that are physically accurate. By incorporating 
biomechanical tissue properties, it may be possible, to 
accurately delineate critical anatomical structures and 
deliver tactile sensing to reflect the dynamic active 
constraints imposed. However, a major challenge of 
physical based modeling such as Finite Element Modeling 
(FEM) is how to obtain the model parameters using 
information from medical images to conform to the 
appearance and behavior of real tissue. By considering the 
tissue deformation in real-time, the model parameters may 
be updated to improve the most up-to-date anatomical 
representation. The modeled tissue can then be used for 
intra-operative simulations, establishing dynamic active 
constraints and delivering tactile feedback through the 
surgical console. 

Information regarding the computer-integrated system 
must be effectively presented to the surgeon with 
considerations for error and uncertainty in the data 
visualization. In image-guided surgery, Augmented Reality 
(AR) is the most common form of data fusion. The clinical 
benefit of image guidance has been well recognized in 
neuro and orthopaedic surgeries where the operating field is 
stable and undergoes only limited deformation [80].  

The main problem with implementing AR for surgical 
navigation in robotically assisted MIS is in the accurate 
alignment of the computer generated images with the real 
world. Accurate alignment of the real and virtual objects 
depends on the accurate tracking of the position and 
orientation of the viewing source with respect to the 
anatomy of interest. The complexity of tissue deformation 
during surgery imposes significant challenges to the AR 
display and it is a major factor that limits the more 
widespread use of AR for surgical guidance in soft-tissue 
procedures. In particular, deformation inhibits two 
important aspects of navigation: 1) recovery of the motion 
and the location of the imaging device with respect to the 
tissue; 2) the computation of the relationship between the 
pre-operative model of the anatomy and its intra-operative 
status. The incorporation of 3D shape recovery from stereo 
video sequences provides the possibility of AR being used 
for robotic assisted laparoscopic surgeries. An important 

area of work is how to extend the current state-of-the art in 
localization techniques to handle deformable environments. 

Human computer/robot interaction is another important 
part of future MIS platforms. Developing interfaces for the 
surgical theatre is challenging as the surgeons use their 
hands to perform surgery, making traditional interfaces such 
as keyboards and mice inappropriate. Foot peddles offer an 
additional source of input however they are limited in their 
range of input and in [81], it has been shown that voice 
control can be employed to position the endoscope. Eye-
gaze tracking and brain machine interfaces are elegant 
solution to the interface problem and have the potential to 
provide more information than traditional techniques, such 
as the focus and attention of the surgeon. This information 
have been exploited for visual servoing in [82] and for 
motion compensation in [83]. Developing intuitive 
interfaces for surgery can be challenging as surgical 
workflow can vary greatly between surgeons. It is 
envisaged that for complex image guided procedures, a new 
profession of surgical analysts may be created in future.  
 

8. SUMMARY 

Advanced surgical techniques such as image guided 
navigation with intra-operative motion stabilization and 
dynamic active constraints have the potential to change the 
current functional capabilities of MIS. For these techniques 
to be successful in complex MIS procedures, accurate 
recovery of 3D tissue structure and morphology, as well as, 
camera motion estimation are important prerequisites. In 
this tutorial, we have outlined the current approaches to 
estimating this information using laparoscopic cameras. We 
have reviewed optical methods from camera models to 
tissue morphology recovery techniques for robotic 
guidance. This is an active research area which has 
witnessed a significant amount of research output in recent 
years. It is anticipated that with its maturity, the information 
derived will play a pivotal role in the future of image guided 
or robotic assisted MIS. 
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