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Abstract

A plausible representation of relational infor-
mation among entities in dynamic systems
such as a living cell or a social community
is a stochastic network which is topologically
rewiring and semantically evolving over time.
While there is a rich literature on model-
ing static or temporally invariant networks,
much less has been done toward modeling the
dynamic processes underlying rewiring net-
works, and on recovering such networks when
they are not observable. We present a class
of hidden temporal exponential random graph
models (htERGMs) to study the yet unex-
plored topic of modeling and recovering tem-
porally rewiring networks from time series of
node attributes such as activities of social ac-
tors or expression levels of genes. We show
that one can reliably infer the latent time-
specific topologies of the evolving networks
from the observation. We report empirical re-
sults on both synthetic data and a Drosophila
lifecycle gene expression data set, in compar-
ison with a static counterpart of htERGM.

1. Introduction

In many problems arising in biology, social sciences
and various other fields, it is often necessary to analyze
populations of entities such as molecules or individu-
als that are interconnected by a set of relationships
(e.g., physical interactions or functional regulations in
biological contexts, friendships or communications in
social contexts). Studying networks of these kinds can
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reveal a wide range of information, such as how bio-
logical entities or individuals organize themselves into
groups (Airoldi et al., 2005), which individuals are in
positions of power or which molecules or genes are
the key orchestrators of cellular functions (Barabási
& Albert, 1999), and how patterns of biological regu-
lations or social interactions evolve over time (Sarkar
& Moore, 2006). While there is a rich literature on
modeling a static network or time-invariant networks,
much less has been done towards modeling the dy-
namic processes underlying networks that are topolog-
ically rewiring and semantically evolving over time,
and on developing inference and learning techniques,
especially in a dynamic context, for recovering unob-
served network topologies from observed attributes of
entities constituting the network. In this paper, we
propose a new formalism for modeling network evolu-
tion over time on a fixed set of nodes, and an algo-
rithm for recovering unobserved temporally rewiring
networks from time series of entity attributes.

A classical model of network analysis, which will be
generalized in this paper, is the exponential random
graph model (ERGM) (Frank & Strauss, 1986; Strauss
& Ikeda, 1990). According to the Hammersley-Clifford
theorem, the distribution of the topology (denoted by
A) of a graph can be modeled by an ERGM defined
as follows:

P (A) =
1

Z(θ)
exp

{∑
c

θcΦc(A)

}
, (1)

where c denotes a clique in A, Φc is a potential function
defined on c which corresponds to the network statis-
tics of clique c, θc is the parameter corresponding to
clique c, and Z(θ) is a normalization constant, also
known as the partition function. The general class of
stochastic block models (Fienberg et al., 1985) is an ex-
ample of dyadic ERGMs, which only take into account
singleton and pairwise cliques. More general depen-
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dency assumptions also lead to richer network mod-
els, such as the Markov random graphs (Wasserman &
Pattison, 1996; Robins et al., 2007). These statistical
formalisms, along with recent developments in related
areas such as latent space models (Hoff et al., 2002),
Bayesian networks (Heckerman, 1995) and graph min-
ing techniques (Hu et al., 2005), have provided rich
methodological foundation for a wide range of analy-
sis of social, biological, or other kinds of networks.

While these advances have offered important insight
and tools for analyzing network data, a limitation of
most of current methods is that they usually assume
that networks are topologically static and, in many
cases, fully observable. In many complex dynamic sys-
tems, such as a developing biological organism, the in-
teractions between network entities such as genes and
regulatory proteins depend on various external and in-
ternal conditions. Therefore the underlying network
of these entities may exhibit large topological changes
over time (Luscombe et al., 2004). In most of such cir-
cumstances, it is technically impossible to experimen-
tally determine time-specific network topologies for a
series of time points. Resorting to standard compu-
tational inference methods such as structural learning
algorithms for Bayesian networks is also difficult be-
cause we can only obtain a single snapshot of the node
states at each time point. Indeed, if we follow the
näıve assumption that each snapshot is independently
distributed, this task would be statistically impossible
because our estimator (from only one sample) would
suffer from extremely high variance. For this reason, to
our knowledge, in current network inference literature,
samples from all time points are often pooled together
to infer a single time-invariant network, e.g. (Fried-
man et al., 2000), which means they choose to ig-
nore network rewiring and simply assume that the net-
work snapshots are independently and identically dis-
tributed 1. There is a recent paper (Lawrence et al.,
2007) using Gaussian processes to model the dynam-
ics of a very simple transcriptional regulatory network
motif, which is a small biological subnetwork. The ap-
proach they took focused on the continuous-time dy-
namics of node attributes rather than the dynamics of
interactions studied in this paper.

In this paper, we describe a new framework for statis-
tical modeling of the evolution of networks based on
time series of node attributes such as levels of gene ex-
pressions, or activities of social actors. We study the

1It is worth noting that the dynamic Bayesian network
often used for modeling time series data is also a topo-
logically static network model because it employs a time-
invariant graph over nodes of every pair of adjacent time-
points to define the distribution of node attributes.

yet unexplored topic of recovering unobserved tempo-
rally rewiring networks from samples of node states
based on this new framework. We concern ourselves
with a dynamic network over a fixed set of nodes, and
posit that the network topology evolves over time ac-
cording to a Markov process characterized by global
topological features such as density, and local fea-
tures such as transitivity. Such a process is modeled
by a hidden temporal exponential random graph model
(tERGM). Conditioned on the topology of latent net-
works at each time point, the observations are gener-
ated from an emission model that can be tailored for
various data characteristics. For concreteness, the pro-
posed model is illustrated in the context of recovering
gene-coexpression networks scenario, but our approach
is generalizable to a broad range of contexts.

The rest of the paper is organized as follows. In Sec.
2 we described a temporal exponential random graph
model (tERGM) for longitudinal network analysis to
lay the ground work of the rest of the paper 2. In Sec.
3 we extend tEGRMs to hidden tEGRMs for modeling
time series of observed node-attributes. We develop a
Gibbs sampling algorithm for posterior inference of the
latent network topologies in Sec. 4. And we present
in Sec. 5 small scale empirical results on both syn-
thetic data and a Drosophila lifecycle gene expression
data set (Arbeitman et al., 2002), in comparison with
methods based on a single time-invariant network as-
sumption. We conclude with a discussion on the dif-
ficulty of the network inference problem studied here
and the limitations of our inference algorithms.

2. Temporal Exponential Random
Graph Model

As mentioned earlier, the exponential random graph
models (ERGMs) provide a general framework for de-
scriptively modeling a static network. However, in
their present form, ERGMs are unable to describe the
behavior of a network evolving over time. Here we
extended ERGMs to temporal ERGMs for modeling
networks evolving over discrete timesteps. We begin
with tERGMs over an observed sequence of networks.
In the next section we will extend tERGMs to hidden
tERGMs for modeling a sequence of node attribute
observations.

Let At represent the network topology observed at
time t, for t ∈ {1, 2, . . . , T} (the upper chain in Fig. 1).
We make a Markov assumption over time, and specify
a probability distribution over this sequence of T

2This model was initially announced in a paper pre-
sented at an ICML’06 workshop (Hanneke & Xing, 2006).
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networks as:
P (A1,A2, ...,AT ) = P (A1)

TY
t=2

P (At|At−1), (2)

where
P (At|At−1) =

1

Z(θ,At−1)
exp

˘
θ′Ψ(At,At−1)

¯
, (3)

and P (A1) is the prior distribution for the network
at the initial time point. Here θ is a parameter vector
and Ψ is a vector-valued function. Note that the
temporal evolution model, P (At|At−1), also takes
the form of an ERGM conditioned on At−1, and the
potential functions or features, Ψ, for specifying this
ERGM can be designed to capture various dynamic
properties governing the network rewiring over time.
Appropriate choices of these features can provide an
expressive framework to model the network rewiring in
adjacent timesteps at a modest parameterization cost
(Hanneke & Xing, 2006). Unlike Bayesian networks
over nodes, which would usually employ numerous
local conditional distributions, one over each node
and its parents, and hence requires a large number
of parameters, in tERGMs, features can typically
be defined as functions of a small number of simple
summary statistics over pairs of attendant networks.
For example, one can explore simple features of
tERGMs by characterizing a distribution in terms of
“density”, “stability”, and “transitivity” features:

Ψ1(At,At−1) =
∑

ij

At
ij ,

Ψ2(At,At−1) =
∑

ij

I(At
ij = At−1

ij ),

Ψ3(At,At−1) =

∑
ijk At

ijA
t−1
ik At−1

kj∑
ijk At−1

ik At−1
kj

,

where I(·) is the indicator function. More specifi-
cally, Ψ1 captures the density of the network at current
timestep, which measures the relative number of inter-
actions in the network; Ψ2 captures network stability
over time, which measures the tendency of a network
to stay the same from one timestep to the next at the
edge level; Ψ3 represents a temporal notion of transi-
tivity, which measures the tendency of node i having
an interaction with node k which has an interaction
with node j at timestep t−1 to result in node i having
an interaction with node j at timestep t. The natural
parameter vector θ = (θ1, θ2, θ3) can be used to adjust
the strength of each of these features and thereby net-
work evolution dynamics. The degree of randomness
is implicitly determined by the magnitude of θ.

Finally, to complete any tERGM, we need to specify
a prior distribution for the initial network A1. An
informed prior distribution could be more helpful than
a uniform one and speed up the convergence of the

Figure 1. The graphical structure of a htERGM. A1:T rep-
resent latent network topologies over T timesteps. Shaded
nodes x1:T represent observed node attributes. At timestep
t there are Dt iid observations. A0 and Λ are fixed and
estimated a priori. They are related to the prior on the
initial network topology and global activation function re-
spectively.

inference algorithm. We let the prior distribution have
the same ERGM representation as Eq. 3 conditioned
on some fixed network A0 to obtain P (A1|A0). A0

can be estimated from the static counterpart of the
proposed model, abbreviated as sERGM.

3. Hidden Temporal Exponential
Random Graph Model

In the previous section, we assume that the evolving
sequence of networks is available to fit a tERGM. But
where do we obtain such a sequence during a dynamic
biological/socialogical process? Now we describe an
approach that systematically explores the possible de-
pendencies of an unobserved rewiring network under-
lying biological/socialogical temporal processes, and
leads to the inference algorithm that can reconstruct
temporally rewiring networks from a sequence of node-
attribute snapshots.

Our proposed statistical model would allow a time-
specific network topology of each timestep to be in-
ferred based on node-attribute samples measured over
the entire time series. The intuition underlying this
scheme is as follows. Although the whole network is
not likely to be repeated over time, its building blocks,
such as motifs and subgraphs do recur over time, as
suggested by a number of empirical studies (Hu et al.,
2005). This suggests that a network can be assembled
from small subgraphs, and each subgraph can be esti-
mated from relevant node attributes observed at those
time points at which the subgraph is present. In the
simplest scenario, we can tie the sequence of unob-
served rewiring networks, from which node-attribute
sequences are sampled, by a latent Markov chain, to fa-
cilitate the aforementioned information sharing across
time. The tERGM described in Sec. 2 provides a use-
ful building block to formulate this model. Also, as a
starting point, we only consider recurring subgraphs at
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the dyadic level – recurring edges, and design pairwise
features in the emission model detailed in Sec. 3.1.

Let xt = {xt
1:N} denote observed attributes over all N

nodes of a network At at timestep t. And let Λ denote
a time-invariant global “activation function” that
specifies distributions of node states (e.g., discrete
gene expression levels) under specific pairwise node
interactions (e.g., gene a activates or suppresses gene
b and vice versa). Our model takes the following form,
which we would refer to as a hidden temporal ERGM
(htERGM):

P (A1:T ,x1:T |A0,Λ) =

TY
t=1

P (At|At−1)P (xt|At,Λ). (4)

Figure 1 gives a graphical illustration of a htERGM.
Note that this graphical model is conceptually simi-
lar to a hidden Markov model, however, in our model
each node represents a mega variable of a set of all
possible pairwise interactions or a full node-attribute
profile, rather than a simple random vector or variable.
The activation function parameterized by Λ represents
information beyond the topology of each timestep-
specific network, which is assumed to be invariant over
all timesteps. We made this set of time-independent
parameters explicit in Fig. 1 to provide a fuller pic-
ture of the emission model. Depending on the spe-
cific modeling assumptions and data characteristics,
one can explore various instantiations of htERGMs,
resulting from different choices of the transition model
P (At|At−1) and the emission model P (xt|At,Λ).

Also, there is a more general case of temporal network
learning than we discussed above, where we concern
ourselves with “epoch-specific” networks. Each epoch
t may consist of one or multiple timesteps. The model
could accommodate non-uniform observation intervals
and network evolution rate by changing the granular-
ity of an epoch and allowing epoches to be of different
lengths. To simplify the discussion in the sequel, we
do not explicitly differentiate between an epoch and a
timestep, but allow multiple observations to be gener-
ated iid from the same network topology as illustrated
in Fig. 1. Also, the static version of the model could
be interpreted as a special case with T = 1.

3.1. Energy-based Emission Model for Gene
Expression Data

For gene network modeling, a popular approach of
modeling discrete gene expression levels given the net-
work topology is to adapt a Bayesian network (BN)
formalism. In this BN framework, the local conditional
probability tables (CPTs) need to be specified besides
the network topology to generate expression data. The

BN approach could model directional regulation inter-
actions and computation is usually tractable as a result
of factorization of the joint probability distribution.
However, it cannot be simply integrated into our model
because the configurations of local CPTs depend on
the network topology. When the network topology is
evolving, both the size of and the variables involved in
the CPTs are different from different timesteps. So it
is difficult to allow the timestep-invariant information
to be incorporated into a BN-based emission model.

An energy-based model, on the other hand, places
soft constraints on the variables usually simplifies the
parameterization via summary statistics. It is difficult
to find an intuitive interpretation on how to draw
samples from an energy-based model because the
probability distribution is generally not factorized.
Our design follows an exponential family distribution
as in the transition model and pairwise features can
be defined to reflect our assumption of recurring edges:

P (xt|At) =
1

Z(η,At)
exp

(
η′
X
ij

Φ
`
xt

i, x
t
j , A

t
ij , Λij

´
)

,

(5)

where Λij is the global activation for expression lev-
els of gene i and gene j, which ranges in [−1, 1].
Λij = 1,−1 indicate a perfect mutual activation (posi-
tive correlation) or suppression (negative correlation).

We propose only one feature for the emission model:

Φ(xt
i, x

t
j , Aij , Λij) = At

ijΛij

`
2I(xt

i =xt
j)− 1

´
. (6)

When At
ij = 0, i.e. at timestep t there is no in-

teraction between gene i and gene j, then whatever
their expression levels are, the feature Φ = 0. When
At

ij = 1, if the values xt
i and xt

j agree with the direction
of the correlation specified by Λij , Φ > 0; otherwise
Φ < 0. The absolute value of Φ depends the absolute
value of Λij which indicates the strength of the acti-
vation/depression. The parameter η > 0 reflects the
level of randomness in the emission model.

4. Inference and Learning

4.1. The Inference Algorithm

The posterior distribution P (A1:T |x1:T ) in a htERGM
is intractable because there is no conjugate rela-
tionship between the local probabilistic distributions.
Moreover, the derivation of an exact MCMC sampling
scheme is non-trivial and involves evaluation of the
ratios of two partition functions. This is a doubly-
intractable problem. Similar problems also arise in
Bayesian learning of undirected graphical models, and
approximate MCMC algorithms have been presented
in (Murray & Ghahramani, 2004) and (Murray et al.,
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2006). However, neither of them can be simply applied
to our setting because in practice we can only make at
most a few observations per timestep (so the approxi-
mation in (Murray & Ghahramani, 2004) is subject to
high variance), and we also have a high-dimensional
space of latent variables (so the MCMC sampler in
(Murray et al., 2006) would have unacceptably low ac-
ceptance rates). In this section, we apply the Gibbs
sampling algorithm and derive the sampling formulae
for hidden variables of binary interactions plausible for
relatively small networks.

In order to obtain the sampling formula for updating
a binary hidden variable At

ij ,

At
ij ∼ Bernoulli

`
1/(1 + exp(−µt

ij)
´
, (7)

we compute the log-odds:

µt
ij = log

P (At
ij = 1|At−1,At

−ij ,A
t+1,xt)

P (At
ij = 0|At−1,At

−ij ,A
t+1,xt)

(8)

where we use At
−ij to denote the set of variables

{At
kl|kl 6= ij}. To simplify the notation, we de-

fine At
1[ij] ≡ (At

ij = 1,A−ij) and At
0[ij] ≡ (At

ij =
0,A−ij), then

µt
ij = log

P (At
1[ij]|At−1)

P (At
0[ij]|At−1)

+ log
P (At+1|At

1[ij])

P (At+1|At
0[ij])

+ log
P (xt|At

1[ij])

P (xt|At
0[ij])

(9)

The first two terms on the right side are related to the
local probability distributions in the transition model.
Evaluation of the first term is straightforward:

log
P (At

1[ij]|At−1)

P (At
0[ij]|At−1)

=

θ1 + θ2(2At−1
ij − 1) + θ3

P
k At−1

ik At−1
jkP

klm At−1
lk At−1

mk

.

For the second term,

log
P (At+1|At

1[ij])

P (At+1|At
0[ij])

=

θ′
`
Ψ(At+1,At

1[ij])−Ψ(At+1,At
0[ij])

´− log
Z(θ,At

1[ij])

Z(θ,At
0[ij])

,

All the features Ψ(At+1,At) factorize over each binary
variable At+1

ij , therefore the binary interactions of a
timestep are conditionally independent of each other
given all the interactions of the previous timestep. The
log partition function becomes tractable:

log Z(θ,At) =
X
ij

log
“
1 + exp

“
θ1 + θ2(2Aij−1) + θ3

P
k AikAkjP

klm AlkAkm

””
.

so we know that this second term can be computed
efficiently. Its further derivation is omitted here.

The third term on the right side of Eq. 9 is related
to the local probability distributions in the emission
model,

log
P (xt|At

1[ij])

P (xt|At
1[ij])

= ηΛij

`
2I(xt

i = xt
j)− 1

´− Z(η,At
1[ij])

Z(η,At
0[ij])

.

Now this ratio of two partition functions is intractable
because components of xt are generally not condition-
ally independent of each other given At. However,
At does determine the conditional independence
relationship within xt. To make it clearer, we rewrite
the emission model as follows:

P (xt|At) =
1

Z(η,At)
exp

 X

(i,j)∈Et

ηΛij

“
2I(xt

i = xt
j)−1

”ff
,

where Et = {(i, j)|At
ij = 1} is the set of undirected

edges in the network at timestep t. The conditional
distribution in the equation above induces a (condi-
tional) random field whose graphical structure Gt con-
sists of xt as the node and the edge set Et. Con-
ditioned on At, the Markov property holds for the
undirected graph Gt. Therefore, we can perform the
standard variable elimination procedure on Gt to elim-
inate all the variables xt in order to exactly compute
the partition function Z(η,At). The worst case com-
plexity of this computation is exponential. However,
since the At is usually sparse, in practice we can find
pretty efficient elimination orderings by applying some
heuristics such as “min-fill” method which finds the
vertex due to whose elimination a minimum number
of edges need to be added to the induced graph for
variable elimination.

4.2. The Learning Algorithm

The unknown parameters in a htERG model are θ and
η, which govern the transition and emission model re-
spectively. Usually they are of very low dimension,
e.g. in the example of the model, the number of un-
known parameters is only 4. Therefore, it is possible
to use grid search to find a good starting point for any
iterated parameter estimation algorithm.

A natural algorithm for parameter estimation fol-
lows from the Monte Carlo expectation-maximization
framework. The algorithm iteratively draws samples
from the posterior distribution of the network topolo-
gies using the Gibbs sampling algorithm in Sec. 4.1
(E step) followed by one step of gradient update of
the parameter values using the posterior samples (M
step). The detailed update schemes are akin to those
presented in (Hanneke & Xing, 2006) and are omitted
here due to space limitations. Convergence is usually
fast by virtue of a good choice of starting point.
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Figure 2. Empirical results for simulated data with vary-
ing values of θ2 and η. θ1(density parameter) = −0.5,
θ3(transitivity parameter) = 4. Transitivity features tend
to increase the number of interactions in the network, so
θ1 < 0 to balance this effect. Five iid samples are generated
from the emission model for each timestep.

5. Empirical Analysis

5.1. Simulation-based Evaluation

We simulated network evolving processes from tERGM
and generated in silico time series data conditioned on
the network topology of each timestep and global ac-
tivation functions in the emission model. Exact sam-
ples can be obtained because both partition functions
encountered can be computed exactly as discussed in
Sec. 4.1. The simulation was repeated under differ-
ent combinations of parameters to mimic different sce-
narios of network evolution and noise in observation.
To evaludate network reconstruction performance, we
compared htERGM against its static version, sERGM,
as well as an “average of the truth” or “avg” method,
which uses the information from the ground truth and
outputs the average of underlying networks over all
timesteps. This is approximately the optimal static
network under most performance measures. There-
fore, it provides an estimate of the modeling limitation
of all static network reconstruction methods.

Now we are ready to describe our experimental set-
tings and evaluation scheme. A0 was initialized as an
N = 10 node network with 14 edges. The total number
of timesteps T was fixed to be 50, but we may vary the
number of observations per timestep. The parameters
θ and η may also be different in different experimen-
tal settings. For each setting, we did 10 repetitions
of simulation and reconstruction. The inference al-
gorithm initialized all the latent network structures to
be equal to A0 and performed 100k iterations of Gibbs
sampling to ensure convergence. The harmonic mean
of sensitivity and specificity of the reconstructed net-
work known as F1 score was used as the measure of
performance. The score presented is the mean of F1
scores obtained by comparing the inferred network and
the ground truth for every timestep.

Figure 3. Empirical results on edge-switching events in
simulated and reconstructed networks. Listed are the three
cases: offset, fp, miss. For each case, the number of oc-
currences, mean absolute value ∆t and root mean square

value
p

∆t2 were shown. The numbers listed were aver-
aged over 10 repetitions. Parameter settings are similar to
those in Fig. 2 (therefore T = 50), with θ2 = 4, η = 1.

We first compared performances of three approaches
under varying stability parameter θ2 in the transition
model and varying η which governs the noise level of
the emission. Fig. 2 shows F1 scores in box plots. Plots
within each row share the same stability parameter,
and the bottom row has the larger θ2 value, which sug-
gests a slower evolution pace of the network topology.
Empirically, the averaged proportion of edge switch-
ing between adjacent timesteps in the simulated net-
works are around 5 percent when θ2 = 4 and around
2 percent when θ2 = 5 out of all possible 45 pair-
wise interactions. Downwards each column in Fig. 2
as θ2 increases, all the three algorithms get higher F1
scores. For sERGM, it is because networks in differ-
ent timesteps are more similar, therefore the modeling
assumption becomes a better approximate. The effect
of larger θ2 on htERGM is that the network topol-
ogy becomes more dependent on the observed node
attributes of adjacent timesteps. This additional in-
formation increases the quality of the network recon-
struction. htERGM consistently outperforms “avg” as
well as sERGM which suggests that it could get better
performance than any static network reconstruction
methods which have limited modeling power. And the
margin is larger when the problem is harder (smaller
θ2). On the other hand, plots within the same column
share the same emission parameter η, and the right-
most row corresponds to the largest η value. Larger
η suggests smaller noises in the observation and peaks
posterior probability distributions, but this does not
necessarily boost the performance of network recov-
ery because those posterior distributions are generally
multi-modal, and large η may cause overfitting.

Besides statistics on network reconstruction averaged
over all timesteps, we also investigated the edge-
switching events in simulated truth and networks re-
constructed by htERGM. An edge-switching happens
when At+1

ij 6= At
ij for some i, j and t. We found the
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Figure 4. Comparison of F1 scores with different amount
of data available. The number of iid samples generated
from the emission model for each timestep ranges from 1
to 10. Parameter settings are similar to those in Fig. 3.
Ten repetitions performed to obtain the error bar.

following three cases of disagreement between the es-
timation and underlying truth. An offset happens
when the edge-switching in the estimation occurs a few
timesteps before or after that in the truth and their di-
rections agree. An fp (false positive) takes place when
there are two consecutive edge-switchings in the esti-
mation but none in the truth. A miss occurs when
there are two consecutive edge-switchings in the truth
but none in the estimation. Disagreements of a single
edge-switching at the beginning or end of the time se-
ries and perfect agreements are treated as occurrences
of offset. No other cases of disagreements were dis-
covered in the experimental results. Figure 3 sum-
marizes our findings in one simulation setting over 10
repetitions. htREGM was able to capture most of the
edge-switching events with good sensitivity and speci-
ficity: the mean missing rate was 63/617 = 11.6% and
the mean false positive rate was only 22/617 = 3.6%.
Most of the offsets are within 4 timesteps, whereas the
length of the time series T = 50.

Finally, we compared performances varying the num-
ber of available observations and summarized the re-
sult in Fig. 4. When there were few observations per
timestep, htERGM would benefit from the increas-
ing amount of data. However, the performance of its
static counterpart did not change significantly because
it already pooled the data from T timesteps together,
which appeared to be sufficient for inferring a single
network. Also it is evident in the plot that no mat-
ter what amount of data is available, the modeling
assumption limits the performance of sERGM to be
no better than the “average of the truth” approach
(the middle straight line of error bars). So htERGM
has a greater potential to benefit from the increasing
microarray experiment data publicly available.

5.2. Results on a Small Biological Network

We applied a htERGM to reconstruct epoch-specific
subnetworks for the Drosophila lifecycle gene expres-
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Figure 5. (a) The regulatory network of Drosophila muscle
development genes reported in (Zhao et al., 2006); (b)-(d)
reconstructed muscle development regulatory networks for
(b) embryonic stage; (c) larval stage; (d) pupal stage and
adulthood stage.

sion data (Arbeitman et al., 2002). This data set mea-
sures 66 timesteps for 4028 Drosophila genes through
four stages of the life cycle, including embryonic, lar-
val, pupal and the first 30 days of adulthood. We
focused on the muscle development subnetwork which
consists of 11 genes that were reported to be related to
muscle development. Most recently, (Zhao et al., 2006)
employed information theoretic algorithms to infer the
same subnetwork from the same data set and reported
their system level regulatory diagram which was as-
sumed to be static over different timesteps. Although
they studied 19 genes, 8 of them were separated from
the main network. We only compared our results with
their network built upon the 11 overlapping genes.

We preprocessed continuous expression data using the
same methods as in (Zhao et al., 2006), which in-
cluded missing data imputation, outlier identification
and quantization into binary values. For this instance,
a slightly different set of features was employed in the
transition model (by replacing the transitivity feature
with a density stability feature) for a better fit of the
data. We performed a grid search to find a good ini-
tialization of parameters, and chose the final result
according to the log-likelihood in the single timestep
model. Figure 5 (a) and (b-d) show the network re-
ported in (Zhao et al., 2006) and networks inferred by
htERGM for each development stage, respectively. As
can be seen in Fig. 5, the regulatory network evolves
from embryonic stage to larval stage and finally to pu-
pal stage. The network for adulthood stage is the same
as that for pupal stage, suggesting that the regulatory
network in Drosophila muscle development can finish
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rewiring before adulthood. This result provides partial
evidence that our algorithm is able to capture the evo-
lution of regulatory networks for muscle development
pathways. Further biological experiments are neces-
sary for a complete verification of inferred networks.

6. Conclusion and Discussion

We proposed hidden temporal exponential random
graph models for recovering temporally rewiring net-
works from a sequence of node attributes, and pre-
sented a sampling-based algorithm for inference and
learning on htERGM. Empirical analysis on simulated
data from evolving networks demonstrated the supe-
rior performance of our approach over methods that
recover a single time-invariant network. We also ap-
plied our model to a portion of the Drosophila lifecycle
data and reconstructed a small-scale network of muscle
development related genes for each development stage.

One of the appealing properties of a htERGM is that
it provides a general framework in which to formalize
modeling assumptions in a standard and entirely read-
able way. Furthermore, the parameters often have use-
ful interpretations corresponding to properties of the
problem under investigation (e.g., stability of the net-
work). The specific model we employ in the empirical
study has particularly nice properties, in that for rela-
tively small networks we can quickly compute the par-
tition functions for the transition and emission models.
However, in general, htERGMs do not have such nice
properties. In particular, because the transition and
emission models’ partition functions depend directly
on unobserved network variables, we cannot tractably
compute likelihood ratios, so that even such staples as
Gibbs sampling can be intractable. Since our current
toolbox of approximate inference algorithms cannot be
applied here, we are left with the prospect of design-
ing novel inference algorithms for each new problem we
wish to model with a htERGM. This problem seems
to partially undermine the point of using a unified ap-
proach to modeling with htERGMs. We therefore pose
as an open problem the task of designing approximate
inference algorithms that can be tractably executed on
this type of model (or some significant subfamily). A
starting point is to apply loopy Metropolis algorithm
(Murray & Ghahramani, 2004) to approximate the ra-
tio of partition functions of the emission model while
keeping the transition model tractable.
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