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Abstract
Recovery of lower extremity muscular 
strength and neuromuscular control are two 
of the most vital aspects of anterior cruciate 
ligament (ACL) rehabilitation, as well as 
efforts to prevent noncontact ACL injury. 
There is strong evidence regarding the asso-
ciation between decreased hip range of 
motion, particularly internal and external 
rotation, and noncontact ACL injury. Given 
that females are at greater risk for ACL injury 
compared with males, increased emphasis 
has been placed on identifying risk factors in 
the hip as well as throughout the kinetic 
chain for this injury. In this chapter, we dis-
cuss the relationship between hip and knee 
injury patterns and its implications for ACL 
reconstruction and rehabilitation and non-
contact ACL injury prevention efforts.

12.1  Introduction

An anterior cruciate ligament (ACL) injury can 
be a debilitating entity, not only due to the lack of 
reestablishment of normal knee biomechanics in 
some cases, but also because of the muscular 
imbalance produced after ligament reconstruc-
tion. A staged and customized muscle rehabilita-
tion program can be tailored to allow the patient 
to return to their activities in a timely fashion and 
diminish the risks of an ACL reinjury.

Identification of muscular deficits after an 
ACL injury is vital to prevent further injuries. In 
this regard, Petersen et al. [1] reported in a recent 
systematic review of 45 articles that all studies 
identified strength deficits after ACL reconstruc-
tion compared with control subjects. Of note, 
some of these deficits persisted up to 5 years after 
surgery depending on the rehabilitation protocol 
instituted. Knee flexion strength was more 
impaired with hamstring grafts and quadriceps 
strength was more impaired after bone–patellar 
tendon–bone ACL reconstruction. These authors 
suggested that muscular strength testing is impor-
tant to determine if an athlete can return to com-
petitive sports after an ACL reconstruction.

Female athletes are a specific population at 
increased risk for both primary and secondary ACL 
injuries. Prodromos et al. conducted a meta-analy-
sis of 33 articles and reported that the mean ACL 
injury rate for females was significantly greater 
than males in basketball, (0.28 and 0.08 per 1000 
exposures, respectively, P < 0.0001), soccer (0.32 
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and 0.12 per 1000 exposures, respectively, 
P < 0.0001), and handball (0.56 and 0.11 per 1000 
exposures, respectively, P  <  0.0001) [2]. Such 
injury rates have resulted in a growing body of lit-
erature focused on the treatment of these injuries in 
addition to identifying risk factors and prevention 
programs [3]. Several studies have reported a 
reduction in the number of ACL tears after implant-
ing a preseason neuromuscular training program 
[3–5]. Furthermore, studies have reported altered 
landing biomechanics in female athletes before and 
after ACL injury. The observed abnormal knee 
kinematics are associated with abnormal hip 
strength and movements [6]. Because of this, 
increased attention has been directed toward identi-
fying the optimal balance of hip and knee motion in 
the female athlete, with the aim of preventing or 
reducing the rate of female ACL injuries.

For the abovementioned reasons, the purpose of 
this chapter is to describe important facts regarding 
the recovery of muscle strength after ACL recon-
structions in female athletes and to outline the cur-
rent interventions to diminish the risk of ACL 
reinjury. Combined lower limb biomechanics, patho-
genesis, and prevention strategies will be presented.

12.2  Interaction Between Altered 
Hip Mechanics and Knee 
Injury Patterns

In the United States, approximately 200,000 ACL 
injuries per year are reported, resulting in an 
expense of billions of dollars for the health system 
[7]. Importantly, one of the most common causes 
of osteoarthritis (OA), but often overlooked, is the 
development of post-traumatic osteoarthritis after 
ACL tears in the young and active population [8, 
9]. For these reasons, prevention and identification 
of risk factors for ACL tears are key to prevent the 
cascade of joint degenerative process. Importantly, 
female athletes are at an increased risk of injury. 
Potential explanations for this include increased 
knee valgus or abduction moments, generalized 
joint laxity [10], genu recurvatum [11], a compara-
tively smaller ACL [12], and the hormonal effects 
of estrogen on the ACL [13].

Although many risk factors have been identified 
such as age, sex, anthropometric measures, and psy-

chological and inherent anatomical factors [3], lim-
ited evidence exists regarding the relationship 
between the range of motion of the hip (which acts 
as a “buffer” in forced rotation of the knee) in 
patients with an ACL injury. In this regard, available 
literature suggests an association between decreased 
hip motion in patients with ACL injuries, predomi-
nantly with decreased internal rotation of the hip. 
This suggests that an ACL injury may not only have 
an intrinsic knee etiology but can also be related to 
an adjacent joint-based problem [14–17].

Tainaka et al. [18] reported the possibility of an 
association between noncontact ACL injuries in 
high school athletes and hip range of motion. These 
investigators found that the incidence of ACL injury 
increased as hip internal rotation (IR) or external 
rotation (ER) decreased. However, the odds ratios 
were small and no other potential risk factors were 
included in the analysis. As previously reported, a 
restricted IR of the hip is in most cases associated 
with abnormal proximal femoral or acetabular anat-
omy [19] and has been correlated with ACL rup-
tures and reruptures in soccer players [20, 21] and in 
professional American football athletes [22].

Both femoral (decreased femoral head–neck 
offset or increased alpha angle) and acetabular 
(decreased center-edge angle [CEA]) bone defor-
mities can place the ACL at risk [15, 23]. 
Yamazaki et al. [23] reported that the CEA of the 
ACL-injured patients group was significantly 
smaller than that of a control group, suggesting 
that ACL-injured patients may have a higher 
prevalence of acetabular dysplasia. Philippon 
et al. [15] reported that patients with a decreased 
femoral head–neck offset (alpha angle >60°) 
were at increased risk of having an ACL injury 
because of altered lower limb biomechanics. This 
increased risk was evident in both males and 
females, with a slight predominance in males. 
The ACL injury cohort had a mean alpha angle of 
86° and 79° in males and females, respectively, 
the values of which are markedly higher than pre-
viously reported limits of normal alpha angles.

Beaulieu et  al. [24] performed a simulated 
single-leg pivot landing study to assess the peak 
relative strain of the anteromedial bundle of the 
ACL in relation to the available range of internal 
femoral rotation. In their statistical model, peak 
ACL relative strain increased by 1.3% with every 
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10° decrease in femoral rotation. From this con-
cept, these authors suggested that an athlete pre-
senting with femoral acetabular impingement 
(FAI) with a 10° deficiency in internal femoral 
rotation would experience 20% more peak ACL 
strain during landing than a healthy athlete. 
Importantly, patients with abnormally elevated 
alpha angles may have diminished capacity at the 
hip to accommodate overall lower extremity 
internal rotation moments, potentially predispos-
ing the knee (and other intra-articular structures) 
to a greater rotational stress. In this regard, Girard 
et al. [25] suggested that improving the femoral 
head–neck offset could result in an improved 
range of motion in the hip, specifically in flexion, 
thereby allowing knee forces to be normalized.

Given that females are at greater risk for ACL 
injury, increased emphasis has been placed on 
identifying risk factors throughout the kinetic 
chain for ACL injuries in female patients. In this 
regard, Imwalle et al. [26] studied lower extrem-
ity kinematics during 45° and 90° cutting move-
ments and examined the amount of hip and knee 
internal rotation during each movement. Mean 
hip and knee internal rotation, in addition to hip 
flexion, were greater during the 90° cutting 
motion in female athletes. These authors con-
cluded that increased knee abduction in female 
athletes was secondary to abnormal coronal plane 
motion of the hip. They proposed that neuromus-
cular training of the trunk and hips may be able to 
reduce ACL injury by improving extremity align-
ment. Similar findings were reported by Leetun 
et al. [27] who demonstrated athletes with greater 
hip abduction strength were significantly less 
likely to sustain a lower extremity injury. It has 
also been reported that adolescent males experi-
ence an equal hip abduction strength increase 
relative to their developing body mass, while 
their female counterparts have less hip abduction 
in relation to their developing body mass [28]. 
The lack of hip abduction strength in adolescent 
girls may be related to the elevated risk of ACL 
injury observed in adolescent females [6, 28]. 
Taken together, these findings demonstrate the 
need for young athletes, in particular young 
female athletes, to perform hip abduction 
strengthening exercises prior to high-level com-
petition. Moreover, young female athletes should 

begin these strength training protocols around 
age 13, when their body mass grows dispropor-
tionally to their hip abduction strength.

Critical Points

• Potential association between decreased hip 
range of motion (especially decreased internal 
rotation) and ACL injury.

• Femoral and acetabular bone deformities may 
increase risk of ACL injury.
 – Decreased femoral head–neck offset
 – Increased alpha angle
 – Decreased center-edge angle
 – Femoral acetabular impingement

• Athletes with greater hip abduction strength may 
be less likely to sustain lower extremity injury.
 – Young female athletes should perform hip 

abduction strengthening exercises begin-
ning around age 13.

12.3  Femoral Acetabular 
Impingement (FAI) and ACL 
Injury

As previously discussed, altered hip kinematics 
secondary to pathologic conditions such as FAI 
may increase a patient’s susceptibility to ACL 
injury. FAI is a well-known hip condition caused 
by alterations in the bony anatomy of the hip. 
First described in 2003, Ganz and colleagues [29] 
coined the term femoroacetabular impingement 
to describe a “mechanism for the development of 
early osteoarthritis for most nondysplastic hips.” 
FAI is due to abnormal contact between the prox-
imal femur and acetabular rim that occurs during 
terminal motion of the hip, leading to lesions of 
the acetabular labrum and/or adjacent acetabular 
cartilage. Subtle, previously overlooked deformi-
ties of the proximal femur and acetabulum were 
recognized as the cause of FAI, including the 
presence of a bony prominence typically in the 
anterolateral head and neck junction (cam mor-
phology), or changes caused by an abnormal 
acetabular rim abutting against a normal femoral 
head and neck (pincer deformity). Therefore, 
cam-type and pincer-type FAI deformities were 
introduced as two distinct mechanisms of FAI.

12 Recovery of Hip Muscle Strength After ACL Injury and Reconstruction
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12.3.1  Cam FAI

Cam-type impingement is caused by an abnormal 
shear force between an aspherical femoral head 
and a normal acetabulum during hip flexion and 
internal rotation [30]. During motion, the cam 
deformity is rotated into the acetabular socket 
with a shearing-type injury pattern, causing a 
labral tear and delamination of the articular carti-
lage (Fig. 12.1). The damage is localized to the 
corresponding location where the abnormal 
head–neck junction and acetabular rim make 
contact. Eventually, there is separation of the 
labrum from the underlying subchondral bone 
(Fig.  12.2) that occurs at the transitional zone 
between the labrum and hyaline cartilage [31]. 
Johnston et  al. [32] reported an association 
between the lack of femoral head–neck spheric-
ity and the size of the cam lesion with the extent 
of acetabular chondral damage and delamination. 
These investigators noted more intra-articular 
damage in patients with a higher alpha angle 
(Fig. 12.3), including detachment of the labrum 
and full-thickness delamination of the articular 
cartilage. Bhatia et al. [33] and Ho et al. [34] have 
also noted this same finding.

Fig. 12.1 During motion, the cam deformity is rotated 
into the acetabular socket with a shearing-type injury pat-
tern, causing a labral tear and delamination of the articular 
cartilage

Fig. 12.2 MRI depiction of separation of the labrum 
from the underlying subchondral bone on the acetabular 
rim, occurring at the transitional zone between the labrum 
and hyaline cartilage

Fig. 12.3 Alpha angle measurement. There is an associa-
tion between the lack of femoral head–neck sphericity and 
the size of the cam lesion with the extent of acetabular 
chondral damage and delamination. Higher alpha angles 
have been linked to more intra-articular damage, includ-
ing detachment of the labrum and full-thickness delami-
nation of the articular cartilage [20, 55, 61]
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Advances in understanding the prevalence of 
cam morphology and the association with OA 
have improved our understanding of the patho-
physiology of FAI. Several studies [35, 36] have 
established that cam morphology of the proximal 
femur (defined by a variety of metrics) is com-
mon among asymptomatic individuals. For 
example, Register et  al. [36] revealed a preva-
lence of FAI in asymptomatic patients of 15%, 
while 69% of asymptomatic volunteers demon-
strated a labral tear on magnetic resonance imag-
ing. Frank et  al. [35] revealed a prevalence of 
asymptomatic cam lesions in 37–54% of athletes 
and 23% of the general population. In light of 
these findings, a description of the femoral anat-
omy as a “cam morphology” rather than a cam 
deformity is now favored [37]. Similarly, FAI is 
better used to refer to symptomatic individuals 
and is not equivalent to cam morphology.

Interestingly, cam morphology appears to be 
significantly more common among athletes and 
may be a precursor for osteoarthritis in the future 
[35, 38, 39]. Siebenrock et al. [38] demonstrated 
the correlation of high-level athletics during late 
stages of skeletal immaturity and development of 
a cam morphology. A recent systematic review of 
nine studies found that elite male athletes in late 
skeletal immaturity were 2–8 times more likely 
to develop a cam morphology before skeletal 
maturity [40]. Finally, in a prospective study, 
Agricola et  al. [41] found the risk of OA was 
increased 2.4 times in the setting of moderate 
cam morphology (α angle, >60°) over a 5-year 
period.

Therefore, given that FAI is quite common in 
the general population and especially in athletes, 
several authors have attempted to correlate FAI 
with downstream pathology along the lower 
kinetic chain. As discussed previously, Tainaka 
et al. [18] reported that hip rotation is inversely 
proportional to ACL injury risk. In other words, 
as hip rotation is reduced, the likelihood of expe-
riencing an ACL rupture is increased. Further, in 
their single-leg pivot landing study, Beaulieu 
et al. [24] reported that peak ACL strain, which 
can predispose an athlete to an ACL tear, is 
increased by 1.3% with every 10° decrease in 
femoral rotation. Philippon et  al. [15] reported 

that both males and females with a decreased 
femoral head–neck offset (alpha angle >60°) 
were at increased risk of having an ACL injury.

These findings suggest that that an athlete 
with cam-type FAI and a significant deficiency in 
hip internal rotation may experience significantly 
more peak ACL strain during landing than a 
healthy athlete, placing this structure at risk for 
injury [24]. Indeed, restricted internal rotation of 
the hip, as is the case in most patients with cam-
type FAI [19], has been correlated with ACL rup-
tures and reruptures in soccer players [16, 21] 
and in professional American football athletes 
[22]. Patients with abnormally elevated alpha 
angles may also have diminished capacity at the 
hip to accommodate overall lower extremity 
internal rotation moments, potentially predispos-
ing the knee (and other intra-articular structures) 
to a greater rotational stress. In this regard, Girard 
et al. [25] suggested that improving the femoral 
head–neck offset could result in an improved 
range of motion in the hip, specifically in flexion 
allowing the knee forces to be normalized.

12.3.2  Pincer FAI

Pincer-type FAI results from acetabular-sided 
deformities in which the acetabular deformity 
leads to impaction-type impingement with con-
tact between the acetabular rim and the femoral 
head–neck junction. Pincer FAI causes primarily 
labral damage with progressive degeneration 
and, in some cases, ossification of the acetabular 
labrum that further worsens the acetabular 
 overcoverage and premature rim impaction. 
Chondral damage in pincer-type FAI is generally 
less significant and limited to the peripheral ace-
tabular rim or a contrecoup lesion in the postero-
inferior acetabulum (Fig. 12.4).

Pincer-type FAI may be caused by acetabular 
retroversion, coxa profunda, or protrusio acetab-
uli. The definition of a pincer morphology has 
evolved significantly over the past several years. 
Through efforts to better define structural features 
of the acetabular rim that represent abnormalities, 
hip specialists now have a greater understanding 
of how these features may influence OA develop-
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ment. One example of improved understanding 
involves coxa profunda, classically defined as the 
medial acetabular fossa touching or projecting 
medial to the ilioischial line on an anteroposterior 
(AP) pelvis radiograph. Several studies have found 
that this classic definition poorly describes the 
“overcovered” hip, as it is present in 70% of 
females and commonly present (41%) in the set-
ting of acetabular dysplasia [42].

Acetabular retroversion is another type of pin-
cer deformity that has been previously associated 
with hip OA. Although central acetabular retro-
version is relatively uncommon, cranial acetabu-
lar retroversion is more common. Presence of a 
crossover sign on AP pelvis radiographs gener-
ally has been viewed as indicative of acetabular 
retroversion. However, alterations in pelvic tilt 
on supine or standing AP pelvis radiographs can 
result in apparent retroversion in the setting of 
normal acetabular anatomy and potentially influ-

ence the development of impingement [43, 44]. 
Zaltz et al. [45] reported that abnormal morphol-
ogy of the anterior inferior iliac spine can also 
lead to the presence of a crossover sign in an oth-
erwise anteverted acetabulum. Nepple et al. [46] 
recently found that a crossover sign is present in 
11% of asymptomatic hips (19% of males) and 
may be considered a normal variant. A crossover 
sign can also be present in the setting of posterior 
acetabular deficiency with normal anterior ace-
tabular coverage. Ultimately, acetabular retrover-
sion might indicate pincer-type FAI or dysplasia, 
or simply be a normal variant that does not 
require treatment. Global acetabular overcover-
age, including coxa protrusio, may be associated 
with OA in population-based studies, but is not 
uniformly demonstrated in all studies [39]. A lat-
eral center edge angle of >40° and a Tönnis angle 
(acetabular inclination) of <0° are commonly 
viewed as markers of global overcoverage.

Beck et  al. [31] examined 302 cases of FAI 
and found that 5% had an isolated pincer lesion, 
9% had an isolated cam lesion, and 86% had a 
combination of these two abnormalities. 
Philippon and Schenker [47] found mixed FAI 
patterns to be the predominant cause of hip pain 
among athletes with complaints of decreased hip 
range of motion as well as impaired athletic per-
formance. Athletes participating in ice hockey, 
soccer, football, and ballet were most affected.

Therefore, a majority of athletes present with 
a mixed picture of FAI, including both cam mor-
phology and pincer defect. These factors may act 
in a synergistic fashion to further limit the hip 
range of motion and place the knee, and specifi-
cally the ACL, at increased risk of injury.

Critical Points

• Cam-type impingement caused by abnormal 
shear force between an aspherical femoral 
head and a normal acetabulum during hip flex-
ion and internal rotation.

• Causes separation of labrum from underlying 
subchondral bone.

• Cam morphology more common among ath-
letes may be a precursor for osteoarthritis.

Fig. 12.4 Pincer-type FAI results from acetabular-sided 
deformities in which acetabular deformity leads to impac-
tion-type impingement with contact between the acetabu-
lar rim and the femoral head–neck junction. Pincer FAI 
causes primarily labral damage with progressive degen-
eration and, in some cases, ossification of the acetabular 
labrum that further worsens the acetabular overcoverage 
and premature rim impaction. Chondral damage in pincer-
type FAI is generally less significant and limited to the 
peripheral acetabular rim or a contrecoup lesion in the 
posteroinferior acetabulum
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• Athletes with cam-type FAI and significant 
deficiency in hip internal rotation may be at 
greater risk for ACL injury.

• Pincer-type FAI caused by acetabular-sided 
deformities causes labral damage with pro-
gressive degeneration. Chondral damage lim-
ited to peripheral acetabular rim.

• Pincer-type FAI caused by acetabular retrover-
sion, coxa profunda, or protrusio acetabuli.

• Majority of athletes have both cam morphol-
ogy and pincer defect.

12.4  Hip and Core Strength 
Deficits in Post-ACL 
Reconstruction State

The majority of secondary ACL injuries are 
caused by noncontact mechanisms [48], high-
lighting the alteration of neuromuscular control 
following primary ACL reconstruction. The risk 
of secondary ACL injury is approximately seven 
times the risk of primary ACL injury [49]. One of 
the major but often overlooked contributors to 
ACL reinjury is hip and core strength deficiency. 
An increasing body of literature has suggested 
that strength within the core and hip muscle 
groups may be influenced negatively by both an 
ACL injury and subsequent reconstruction proce-
dure; specifically, weakness of hip flexors and 
extensors after ACL surgery has been noted. 
Hiemstra et al. [50] reported hip adductor weak-
ness after hamstring autograft ACL reconstruc-
tion, which persisted up to 2 years after surgery 
in ACL-reconstructed knees compared with unin-
jured knees. Furthermore, Khayambashi et al. [6] 
studied isometric hip abduction and external 
rotation strength in 501 patients for one season 
and reported that 15 (3%) suffered an ACL tear. 
Importantly, the authors noted significantly lower 
hip strength in the ACL-injured patients.

Other lower extremity muscle groups have 
also been studied in the context of ACL reinjury. 
Hamstring strength alone has not been shown to 
have a significant effect on knee function follow-
ing ACL reconstruction [51, 52]; however, ham-
string activation may be important for the 

neuromuscular control of an ACL-reconstructed 
knee [51]. Moreover, deficits in hamstring 
strength may alter the hamstrings–quadriceps 
torque production ratio, which has been hypoth-
esized to be one potential risk factor for primary 
ACL injury [1, 53–55].

Rehabilitation following ACL reconstruction 
is crucial to ensure good outcomes for the patient 
and to give athletes the best opportunity to return 
to high-level sport. The importance of rehabilita-
tion comes into focus when considering that 
muscular deficits are observed following ACL 
reconstruction up to 2 years after surgery [56]. 
Much of the observed muscle weakness is cen-
tered in the hip and core muscle groups. The core 
musculature plays an important role in stabilizing 
the lower extremity, especially during knee 
movement [57]. The primary core muscles firing 
during reaction activities like running are the 
transversus abdominis and internal oblique. 
Trunk neuromuscular control has been impli-
cated as a risk factor for knee ligament injuries 
[58, 59]; however, the current evidence for 
increases in trunk displacement and deficits in 
proprioception as risk factors for noncontact 
ACL injuries in female athletes is insufficient.

Because of the relationship between hip 
strength deficits and ACL injury, a growing body 
of literature of focused hip rehabilitation after 
ACL reconstruction has emerged. Stearns et  al. 
[60] evaluated a hip-focused training program on 
the lower extremity during a drop–jump test and 
found that training resulted in significantly 
greater hip extensor strength and knee flexion. 
These findings lead these authors to conclude 
that focused hip rehabilitation creates favorable 
lower extremity kinematics to reduce ACL inju-
ries. Paterno et al. [56] studied postural control 
and stability in 56 athletes after primary ACL 
reconstruction. The 13 athletes that suffered a 
second ACL injury had deficits in transverse 
plane hip kinematics and frontal plate knee kine-
matics during landing. These deficits were 92% 
sensitive for a second ACL injury. Dynamic sin-
gle-limb tests have also been used to identify 
post-ACL reconstruction strength deficits. 
Performance in the single-limb hop test for dis-
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tance in ACL-deficient patients has been reported 
to predict self-measured function 1 year after 
ACL reconstruction, with 71% sensitivity and 
specificity [61]. These findings indicate that 
decreasing or eliminating asymmetrical lower 
extremity movement after ACL reconstruction 
has the capacity to reduce secondary ACL injury 
risk and maximize performance.

Identifying and treating hip and core weakness 
in ACL-reconstructed athletes is crucial in getting 
the athlete back to competition. In a recent system-
atic review of return to sport rates following ACL 
injury, only 44% of athletes returned to sport after 
an average of 41.5 months after ACL reconstruction 
[62]. This level of return to sport may be secondary 
to the deficits in hip and core strength, leading to 
abnormal lower extremity kinematics during sport. 
This concept is supported by a recent study that 
demonstrated that aberrant lower extremity motion 
is a predictor of secondary ACL injury [56]. 
Rehabilitation of the ACL-injured patient must be 
performed in a bilateral fashion, because leg asym-
metry has been demonstrated to greatly increase the 
risk of second ACL injury. Furthermore, attention 
should be directed toward strengthening the core to 
create optimal motion symmetry and equal external 
knee abduction control [63].

Critical Points

• One of the major contributors to ACL reinjury 
is hip and core strength deficiency.

• Weakness of hip flexors and extensors after 
ACL reconstruction has been documented.

 – Attention on hip strengthening after ACL 
reconstruction is critical.

 – Identifying and treating hip and core weak-
ness is crucial for return to competition.

 – Rehabilitation must be done in a bilateral 
fashion.

12.5  FAI Treatment with ACL 
Injury

In patients with concomitant knee and hip 
pathology, it is pertinent for the physician to 
address both issues. In athletes, an ACL injury 

should take precedence due to its acuity and 
the increased stress imparted on secondary sta-
bilizers of the knee, and should be recon-
structed in a timely fashion. However, if the 
ACL-injured patient presents with concomi-
tant, symptomatic FAI that is left untreated, 
this may increase the risk for reinjury of the 
reconstructed knee and potentiate chondral and 
labral pathology within the hip joint [15].

Improvements in hip arthroscopy techniques 
and instrumentation have led to hip arthros-
copy becoming the primary surgical technique 
for the treatment of most cases of FAI after 
failure of nonoperative treatments. Hip arthros-
copy allows for precise visualization and treat-
ment of labral and chondral disease in the 
central compartment by traction, as well as 
complete decompression of bony impingement 
lesions on the femur and acetabulum in the 
peripheral compartment. The importance of 
preserving the acetabular labrum is now well 
accepted from clinical and biomechanical evi-
dence [64–66]. As in previous studies in surgi-
cal hip dislocation, arthroscopic labral repair 
(vs. debridement) results in improved clinical 
outcomes [67, 68]. Labral repair techniques 
currently focus on stable fixation of the labrum 
while maintaining the normal position of the 
labrum relative to the femoral head and avoid-
ing labral eversion, which may compromise 
the hip suction seal (Fig. 12.5).

Open and arthroscopic techniques have 
shown similar ability to correct the typical mild 
to moderate cam morphology in FAI [69]. Yet, 
inadequate femoral bony correction of FAI is 
the most common cause for revision hip pres-
ervation surgery [70]. Inadequate bony resec-
tion may be the result of surgical inexperience, 
poor visualization, or lack of understanding 
of the underlying bony deformity. Modern 
osteoplasty techniques focus on gradual bony 
contour correction that restores the normal 
concavity–convexity transition of the head–
neck junction (Fig. 12.6). Overresection of the 
cam deformity may not only increase the risk 
of femoral neck fracture, but also may result in 
early disruption of the hip fluid seal from loss 
of contact between the femoral head and the 
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acetabular labrum earlier in the arc of motion. 
In addition, a high range of motion impinge-
ment can be seen in various athletic popula-
tions (dance, gymnastics, martial arts, hockey 
goalies), and the regions of impingement 
may to be farther away from the classically 

described impingement [37]. Impingement in 
these situations occurs at the distal femoral 
neck and subspine regions, adding a level of 
complexity and unpredictability from a surgi-
cal standpoint. Nevertheless, in a patient with 
concomitant FAI and knee pathology, accurate 
and complete resection of the cam deformity 
is necessary to improve the patient’s hip bio-
mechanics and range of motion, and therefore 
decrease the risk for ACL injury or reinjury in 
the future.

Similar to the treatment of cam deformi-
ties, mild to moderate pincer-type deformities 
are also commonly treated with hip arthros-
copy. As the understanding of pincer-type 
FAI continues to improve, many surgeons 
are performing less-aggressive bone resec-
tion along the anterior acetabulum. Severe 
acetabular deformities with global overcov-
erage or acetabular protrusion are particu-
larly challenging by arthroscopy, even for the 
most experienced surgeons. Although some 
improvement in deformity is feasible with 
arthroscopy, even cases reported in the litera-
ture have demonstrated incomplete deformity 
correction and persistent functional disability. 
Open surgical hip dislocation may continue 
to be the ideal treatment technique for severe 
pincer impingement to improve hip and lower 
extremity biomechanics.

Fig. 12.5 The importance of preserving the acetabular 
labrum is now well accepted from clinical and biome-
chanical evidence [2, 36, 47]. As in previous studies in 
surgical hip dislocation, arthroscopic labral repair (vs. 
debridement) results in improved clinical outcomes [38, 
44]. Labral repair techniques currently focus on stable 
fixation of the labrum while maintaining the normal posi-
tion of the labrum relative to the femoral head and avoid-
ing labral eversion, which may compromise the hip 
suction seal

a b c

Fig. 12.6 Modern osteoplasty techniques focus on grad-
ual bony contour correction that restores the normal con-
cavity–convexity transition of the head–neck junction. 
(a), a proximal femoral intraoperative frog-leg fluoros-
copy view before correction; (b), with a marked region of 
correction; and (c), after osteoplasty is complete. 

Overresection of the cam deformity may not only increase 
the risk of femoral neck fracture but also may result in 
early disruption of the hip fluid seal from loss of contact 
between the femoral head and the acetabular labrum ear-
lier in the arc of motion

12 Recovery of Hip Muscle Strength After ACL Injury and Reconstruction
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Critical Points

• ACL-injured patient with concomitant symp-
tomatic untreated FAI may be at risk for rein-
jury in the reconstructed knee and chondral 
and labral pathology in the hip joint.

• Hip arthroscopy primary techniques for FAI.
 – Arthroscopic labral repair improves clini-

cal outcomes.
 – Modern osteoplasty techniques focus on 

gradual bony contour correction that 
restores the normal concavity–convexity 
transition of the head–neck junction.

• Mild to moderate pincer-type deformities 
commonly treated with hip arthroscopy.

12.6  The Role of the Hip in ACL 
Injury Prevention Efforts

ACL injury prevention efforts have made an 
incredible leap forward in recent decades. The 
first program of this type was Sportsmetrics, a 
neuromuscular knee ligament injury prevention 
program developed by Frank Noyes, M.D., and 
associates [4, 71]. There have since been a vari-
ety of ACL injury prevention programs all aimed 
at decreasing knee ligament injury risk by 
improving neuromuscular control in the lower 
extremity and thereby improving dynamic stabil-
ity. Many investigations regarding the efficacy of 
this approach have since been conducted and 
guidelines now exist on their recommended utili-
zation [72].

As demonstrated in the literature, abnormal hip 
muscle strength is a significant predictor of abnor-
mal knee kinematics and therefore a risk factor for 
noncontact ACL injury [6]. Athletes with poor 
motor control of the lower extremities have 
increased valgus loading and malalignment during 
jump landing and other athletic endeavors. Because 
of this link, Sportsmetrics (along with other vali-
dated prevention programs) aims to improve neu-
romuscular control of hip, quadriceps, hamstring, 
and general lower limb musculature. Studies have 
demonstrated that athletes undergoing such inter-
ventions have improved overall lower limb align-
ment on the drop–jump test [73], improved 
hamstring strength, increased knee flexion angles 
on landing, and reduced deleterious knee abduc-
tion and adduction moments and ground reactive 
forces [71]. From a clinical outcomes standpoint, 
such interventions have demonstrated efficacy in 
reducing the risk of noncontact ACL injuries in 
female athletes participating in soccer and basket-
ball (Table 12.1) [4]. Additionally, Sportsmetrics 
has been shown to enhance performance in female 
soccer [74], basketball [75], tennis [76], and vol-
leyball players [73].

 Conclusions
Current literature has demonstrated a relation-
ship between hip range of motion and risk of 
ACL injury and ACL reinjury. An increasing 
body of literature supports the notion that 
females are at an increased risk of these inju-
ries in part due to female pelvis anatomy, but 
also due to muscle weakness throughout the 

Table 12.1 Reduction in noncontact ACL injury incidence with Sportsmetrics program

Sportsmetrics neuromuscular training program:
Reduction in ACL injury risk
Trained athletes Control athletes Statistics
Athletes (n) Noncontact  

ACL injury  
ratea

Athletes (n) Noncontact ACL 
injury incidence  
ratea

P value Relative risk 
reduction  
(95% CI)

Number needed  
to treatb

(95% CI)
700 0.03 1120 0.21 0.03 88 (6–98) 98 (59–302)

aCalculated per 1000 exposures
bPositive value to benefit, negative value to harm
Reprinted from Noyes FR, Barber-Westin SD: Noyes FR, Barber-Westin SD (2014) Neuromuscular retraining interven-
tion programs: do they reduce noncontact anterior cruciate ligament injury rates in adolescent female athletes? 
Arthroscopy 30:245–255
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hip. All sports medicine professionals must be 
aware of the interplay between hip motion and 
ACL injury. Knowledge of this relationship is 
crucial so that athletes perform a comprehen-
sive proper return to sport protocol including 
hip and core strengthening following ACL 
reconstruction.
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