
Red Hat Enterprise Linux 8

Security hardening

Securing Red Hat Enterprise Linux 8

Last Updated: 2021-08-18

Red Hat Enterprise Linux 8 Security hardening

Securing Red Hat Enterprise Linux 8

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This title assists users and administrators in learning the processes and practices of securing
workstations and servers against local and remote intrusion, exploitation, and malicious activity.
Focused on Red Hat Enterprise Linux but detailing concepts and techniques valid for all Linux
systems, this guide details the planning and the tools involved in creating a secured computing
environment for the data center, workplace, and home. With proper administrative knowledge,
vigilance, and tools, systems running Linux can be both fully functional and secured from most
common intrusion and exploit methods.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. OVERVIEW OF SECURITY HARDENING IN RHEL
1.1. WHAT IS COMPUTER SECURITY?
1.2. STANDARDIZING SECURITY
1.3. CRYPTOGRAPHIC SOFTWARE AND CERTIFICATIONS
1.4. SECURITY CONTROLS

1.4.1. Physical controls
1.4.2. Technical controls
1.4.3. Administrative controls

1.5. VULNERABILITY ASSESSMENT
1.5.1. Defining assessment and testing
1.5.2. Establishing a methodology for vulnerability assessment
1.5.3. Vulnerability assessment tools

1.6. SECURITY THREATS
1.6.1. Threats to network security
1.6.2. Threats to server security
1.6.3. Threats to workstation and home PC security

1.7. COMMON EXPLOITS AND ATTACKS

CHAPTER 2. SECURING RHEL DURING INSTALLATION
2.1. BIOS AND UEFI SECURITY

2.1.1. BIOS passwords
2.1.2. Non-BIOS-based systems security

2.2. DISK PARTITIONING
2.3. RESTRICTING NETWORK CONNECTIVITY DURING THE INSTALLATION PROCESS
2.4. INSTALLING THE MINIMUM AMOUNT OF PACKAGES REQUIRED
2.5. POST-INSTALLATION PROCEDURES

CHAPTER 3. SECURING SERVICES
3.1. SECURING RPCBIND
3.2. SECURING RPC.MOUNTD

CHAPTER 4. INSTALLING A RHEL 8 SYSTEM WITH FIPS MODE ENABLED
4.1. FEDERAL INFORMATION PROCESSING STANDARD (FIPS)
4.2. INSTALLING THE SYSTEM WITH FIPS MODE ENABLED
4.3. ADDITIONAL RESOURCES

CHAPTER 5. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES
5.1. SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

Tool for managing crypto policies
Strong crypto defaults by removing insecure cipher suites and protocols
Cipher suites and protocols disabled in all policy levels
Cipher suites and protocols enabled in the crypto-policies levels

5.2. SWITCHING THE SYSTEM-WIDE CRYPTOGRAPHIC POLICY TO MODE COMPATIBLE WITH EARLIER
RELEASES
5.3. SWITCHING THE SYSTEM TO FIPS MODE
5.4. ENABLING FIPS MODE IN A CONTAINER

5.4.1. Enabling FIPS mode in a container in RHEL 8.2
5.4.2. Enabling FIPS mode in a container in RHEL 8.1 and earlier

5.5. LIST OF RHEL APPLICATIONS USING CRYPTOGRAPHY THAT IS NOT COMPLIANT WITH FIPS 140-2

6

7

8
8
8
8
9
9
9

10
10
10
12
12
12
12
13
14
15

19
19
19
19
19

20
20
20

22
22
23

25
25
25
26

27
27
28
28
28
29

29
30
31
31
31
32

Table of Contents

1

. .

. .

. .

. .

5.6. EXCLUDING AN APPLICATION FROM FOLLOWING SYSTEM-WIDE CRYPTO POLICIES
5.6.1. Examples of opting out of system-wide crypto policies

5.7. CUSTOMIZING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES WITH POLICY MODIFIERS
5.8. DISABLING SHA-1 BY CUSTOMIZING A SYSTEM-WIDE CRYPTOGRAPHIC POLICY
5.9. CREATING AND SETTING A CUSTOM SYSTEM-WIDE CRYPTOGRAPHIC POLICY
5.10. RELATED INFORMATION

CHAPTER 6. SETTING A CUSTOM CRYPTOGRAPHIC POLICY ACROSS SYSTEMS
6.1. CRYPTO POLICIES SYSTEM ROLE VARIABLES AND FACTS
6.2. SETTING A CUSTOM CRYPTOGRAPHIC POLICY USING THE CRYPTO POLICIES SYSTEM ROLE
6.3. ADDITIONAL RESOURCES

CHAPTER 7. CONFIGURING APPLICATIONS TO USE CRYPTOGRAPHIC HARDWARE THROUGH PKCS #11

7.1. CRYPTOGRAPHIC HARDWARE SUPPORT THROUGH PKCS #11
7.2. USING SSH KEYS STORED ON A SMART CARD
7.3. CONFIGURING APPLICATIONS TO AUTHENTICATE USING CERTIFICATES FROM SMART CARDS
7.4. USING HSMS PROTECTING PRIVATE KEYS IN APACHE
7.5. USING HSMS PROTECTING PRIVATE KEYS IN NGINX
7.6. RELATED INFORMATION

CHAPTER 8. USING SHARED SYSTEM CERTIFICATES
8.1. THE SYSTEM-WIDE TRUST STORE
8.2. ADDING NEW CERTIFICATES
8.3. MANAGING TRUSTED SYSTEM CERTIFICATES
8.4. ADDITIONAL RESOURCES

CHAPTER 9. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES
9.1. CONFIGURATION COMPLIANCE TOOLS IN RHEL
9.2. VULNERABILITY SCANNING

9.2.1. Red Hat Security Advisories OVAL feed
9.2.2. Scanning the system for vulnerabilities
9.2.3. Scanning remote systems for vulnerabilities

9.3. CONFIGURATION COMPLIANCE SCANNING
9.3.1. Configuration compliance in RHEL 8
9.3.2. Possible results of an OpenSCAP scan
9.3.3. Viewing profiles for configuration compliance
9.3.4. Assessing configuration compliance with a specific baseline

9.4. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC BASELINE
9.5. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC BASELINE USING THE SSG ANSIBLE
PLAYBOOK
9.6. CREATING A REMEDIATION ANSIBLE PLAYBOOK TO ALIGN THE SYSTEM WITH A SPECIFIC BASELINE

9.7. CREATING A REMEDIATION BASH SCRIPT FOR A LATER APPLICATION
9.8. SCANNING THE SYSTEM WITH A CUSTOMIZED PROFILE USING SCAP WORKBENCH

9.8.1. Using SCAP Workbench to scan and remediate the system
9.8.2. Customizing a security profile with SCAP Workbench
9.8.3. Related information

9.9. DEPLOYING SYSTEMS THAT ARE COMPLIANT WITH A SECURITY PROFILE IMMEDIATELY AFTER AN
INSTALLATION

9.9.1. Deploying baseline-compliant RHEL systems using the graphical installation
9.9.2. Deploying baseline-compliant RHEL systems using Kickstart

9.10. SCANNING CONTAINER AND CONTAINER IMAGES FOR VULNERABILITIES
9.11. ASSESSING SECURITY COMPLIANCE OF A CONTAINER OR A CONTAINER IMAGE WITH A SPECIFIC
BASELINE

33
33
34
35
36
37

38
38
38
40

41
41
41

43
43
44
44

45
45
45
46
47

48
48
48
48
49
50
51
51
52
52
53
54

55

56
57
57
57
59
61

61
61

62
63

64

Red Hat Enterprise Linux 8 Security hardening

2

. .

. .

. .

. .

9.12. SUPPORTED VERSIONS OF THE SCAP SECURITY GUIDE IN RHEL
9.13. SCAP SECURITY GUIDE PROFILES SUPPORTED IN RHEL 8
9.14. RELATED INFORMATION

CHAPTER 10. CHECKING INTEGRITY WITH AIDE
10.1. INSTALLING AIDE
10.2. PERFORMING INTEGRITY CHECKS WITH AIDE
10.3. UPDATING AN AIDE DATABASE
10.4. RELATED INFORMATION

CHAPTER 11. ENCRYPTING BLOCK DEVICES USING LUKS
11.1. LUKS DISK ENCRYPTION
11.2. LUKS VERSIONS IN RHEL 8
11.3. OPTIONS FOR DATA PROTECTION DURING LUKS2 RE-ENCRYPTION
11.4. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING LUKS2
11.5. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING LUKS2 WITH A DETACHED HEADER
11.6. ENCRYPTING A BLANK BLOCK DEVICE USING LUKS2
11.7. CREATING A LUKS ENCRYPTED VOLUME USING THE STORAGE ROLE

CHAPTER 12. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES USING POLICY-BASED
DECRYPTION

12.1. NETWORK-BOUND DISK ENCRYPTION
12.2. INSTALLING AN ENCRYPTION CLIENT - CLEVIS
12.3. DEPLOYING A TANG SERVER WITH SELINUX IN ENFORCING MODE
12.4. ROTATING TANG SERVER KEYS AND UPDATING BINDINGS ON CLIENTS
12.5. CONFIGURING AUTOMATED UNLOCKING USING A TANG KEY IN THE WEB CONSOLE
12.6. BASIC NBDE AND TPM2 ENCRYPTION-CLIENT OPERATIONS
12.7. REMOVING A CLEVIS PIN FROM A LUKS-ENCRYPTED VOLUME MANUALLY
12.8. CONFIGURING MANUAL ENROLLMENT OF LUKS-ENCRYPTED VOLUMES
12.9. CONFIGURING MANUAL ENROLLMENT OF LUKS-ENCRYPTED VOLUMES USING A TPM 2.0 POLICY

12.10. CONFIGURING AUTOMATED ENROLLMENT OF LUKS-ENCRYPTED VOLUMES USING KICKSTART
12.11. CONFIGURING AUTOMATED UNLOCKING OF A LUKS-ENCRYPTED REMOVABLE STORAGE DEVICE

12.12. DEPLOYING HIGH-AVAILABILITY NBDE SYSTEMS
12.12.1. High-available NBDE using Shamir’s Secret Sharing

12.12.1.1. Example 1: Redundancy with two Tang servers
12.12.1.2. Example 2: Shared secret on a Tang server and a TPM device

12.13. DEPLOYMENT OF VIRTUAL MACHINES IN A NBDE NETWORK
12.14. BUILDING AUTOMATICALLY-ENROLLABLE VM IMAGES FOR CLOUD ENVIRONMENTS USING NBDE

12.15. DEPLOYING TANG AS A CONTAINER
12.16. INTRODUCTION TO THE CLEVIS AND TANG SYSTEM ROLES
12.17. USING THE NBDE_SERVER SYSTEM ROLE FOR SETTING UP MULTIPLE TANG SERVERS
12.18. USING THE NBDE_CLIENT SYSTEM ROLE FOR SETTING UP MULTIPLE CLEVIS CLIENTS
12.19. ADDITIONAL RESOURCES

CHAPTER 13. AUDITING THE SYSTEM
13.1. LINUX AUDIT
13.2. AUDIT SYSTEM ARCHITECTURE
13.3. CONFIGURING AUDITD FOR A SECURE ENVIRONMENT
13.4. STARTING AND CONTROLLING AUDITD
13.5. UNDERSTANDING AUDIT LOG FILES
13.6. USING AUDITCTL FOR DEFINING AND EXECUTING AUDIT RULES

65
66
69

70
70
70
71
71

72
72
73
74
74
75
76
77

79
79
80
81

82
84
87
88
89

92
93

94
95
95
95
96
96

97
97
99
99
101
102

103
103
104
105
106
107

111

Table of Contents

3

. .

. .

13.7. DEFINING PERSISTENT AUDIT RULES
13.8. USING PRE-CONFIGURED RULES FILES
13.9. USING AUGENRULES TO DEFINE PERSISTENT RULES
13.10. DISABLING AUGENRULES
13.11. RELATED INFORMATION

CHAPTER 14. BLOCKING AND ALLOWING APPLICATIONS USING FAPOLICYD
14.1. INTRODUCTION TO FAPOLICYD
14.2. DEPLOYING FAPOLICYD
14.3. MARKING FILES AS TRUSTED USING AN ADDITIONAL SOURCE OF TRUST
14.4. ADDING CUSTOM ALLOW AND DENY RULES FOR FAPOLICYD
14.5. ENABLING FAPOLICYD INTEGRITY CHECKS
14.6. TROUBLESHOOTING PROBLEMS RELATED TO FAPOLICYD
14.7. ADDITIONAL RESOURCES

CHAPTER 15. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES
15.1. USBGUARD
15.2. INSTALLING USBGUARD
15.3. BLOCKING AND AUTHORIZING A USB DEVICE USING CLI
15.4. PERMANENTLY BLOCKING AND AUTHORIZING A USB DEVICE
15.5. CREATING A CUSTOM POLICY FOR USB DEVICES
15.6. CREATING A STRUCTURED CUSTOM POLICY FOR USB DEVICES
15.7. AUTHORIZING USERS AND GROUPS TO USE THE USBGUARD IPC INTERFACE
15.8. LOGGING USBGUARD AUTHORIZATION EVENTS TO THE LINUX AUDIT LOG
15.9. ADDITIONAL RESOURCES

112
112
113
113
114

115
115
116
116
117
119

120
122

123
123
123
124
125
126
127
129
130
130

Red Hat Enterprise Linux 8 Security hardening

4

Table of Contents

5

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Enterprise Linux 8 Security hardening

6

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Please let us know how we could make it better. To do
so:

For simple comments on specific passages:

1. Make sure you are viewing the documentation in the Multi-page HTML format. In addition,
ensure you see the Feedback button in the upper right corner of the document.

2. Use your mouse cursor to highlight the part of text that you want to comment on.

3. Click the Add Feedback pop-up that appears below the highlighted text.

4. Follow the displayed instructions.

For submitting more complex feedback, create a Bugzilla ticket:

1. Go to the Bugzilla website.

2. As the Component, use Documentation.

3. Fill in the Description field with your suggestion for improvement. Include a link to the
relevant part(s) of documentation.

4. Click Submit Bug.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

7

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Enterprise Linux 8

CHAPTER 1. OVERVIEW OF SECURITY HARDENING IN RHEL
Due to the increased reliance on powerful, networked computers to help run businesses and keep track
of our personal information, entire industries have been formed around the practice of network and
computer security. Enterprises have solicited the knowledge and skills of security experts to properly
audit systems and tailor solutions to fit the operating requirements of their organization. Because most
organizations are increasingly dynamic in nature, their workers are accessing critical company IT
resources locally and remotely, hence the need for secure computing environments has become more
pronounced.

Unfortunately, many organizations, as well as individual users, regard security as more of an
afterthought, a process that is overlooked in favor of increased power, productivity, convenience, ease
of use, and budgetary concerns. Proper security implementation is often enacted postmortem — after
an unauthorized intrusion has already occurred. Taking the correct measures prior to connecting a site to
an untrusted network, such as the Internet, is an effective means of thwarting many attempts at
intrusion.

1.1. WHAT IS COMPUTER SECURITY?

Computer security is a general term that covers a wide area of computing and information processing.
Industries that depend on computer systems and networks to conduct daily business transactions and
access critical information regard their data as an important part of their overall assets. Several terms
and metrics have entered our daily business vocabulary, such as total cost of ownership (TCO), return on
investment (ROI), and quality of service (QoS). Using these metrics, industries can calculate aspects
such as data integrity and high-availability (HA) as part of their planning and process management
costs. In some industries, such as electronic commerce, the availability and trustworthiness of data can
mean the difference between success and failure.

1.2. STANDARDIZING SECURITY

Enterprises in every industry rely on regulations and rules that are set by standards-making bodies such
as the American Medical Association (AMA) or the Institute of Electrical and Electronics Engineers
(IEEE). The same concepts hold true for information security. Many security consultants and vendors
agree upon the standard security model known as CIA, or Confidentiality, Integrity, and Availability . This
three-tiered model is a generally accepted component to assessing risks of sensitive information and
establishing security policy. The following describes the CIA model in further detail:

Confidentiality — Sensitive information must be available only to a set of pre-defined individuals.
Unauthorized transmission and usage of information should be restricted. For example,
confidentiality of information ensures that a customer’s personal or financial information is not
obtained by an unauthorized individual for malicious purposes such as identity theft or credit
fraud.

Integrity — Information should not be altered in ways that render it incomplete or incorrect.
Unauthorized users should be restricted from the ability to modify or destroy sensitive
information.

Availability — Information should be accessible to authorized users any time that it is needed.
Availability is a warranty that information can be obtained with an agreed-upon frequency and
timeliness. This is often measured in terms of percentages and agreed to formally in Service
Level Agreements (SLAs) used by network service providers and their enterprise clients.

1.3. CRYPTOGRAPHIC SOFTWARE AND CERTIFICATIONS

Red Hat Enterprise Linux undergoes several security certifications, such as FIPS 140-2 or Common

Red Hat Enterprise Linux 8 Security hardening

8

Red Hat Enterprise Linux undergoes several security certifications, such as FIPS 140-2 or Common
Criteria (CC), to ensure that industry best practices are followed.

The RHEL 8 core crypto components Knowledgebase article provides an overview of the Red Hat
Enterprise Linux 8 core crypto components, documenting which are they, how are they selected, how
are they integrated into the operating system, how do they support hardware security modules and
smart cards, and how do crypto certifications apply to them.

1.4. SECURITY CONTROLS

Computer security is often divided into three distinct main categories, commonly referred to as
controls:

Physical

Technical

Administrative

These three broad categories define the main objectives of proper security implementation. Within
these controls are sub-categories that further detail the controls and how to implement them.

1.4.1. Physical controls

Physical control is the implementation of security measures in a defined structure used to deter or
prevent unauthorized access to sensitive material. Examples of physical controls are:

Closed-circuit surveillance cameras

Motion or thermal alarm systems

Security guards

Picture IDs

Locked and dead-bolted steel doors

Biometrics (includes fingerprint, voice, face, iris, handwriting, and other automated methods
used to recognize individuals)

1.4.2. Technical controls

Technical controls use technology as a basis for controlling the access and usage of sensitive data
throughout a physical structure and over a network. Technical controls are far-reaching in scope and
encompass such technologies as:

Encryption

Smart cards

Network authentication

Access control lists (ACLs)

File integrity auditing software

CHAPTER 1. OVERVIEW OF SECURITY HARDENING IN RHEL

9

https://access.redhat.com/articles/3655361

1.4.3. Administrative controls

Administrative controls define the human factors of security. They involve all levels of personnel within
an organization and determine which users have access to what resources and information by such
means as:

Training and awareness

Disaster preparedness and recovery plans

Personnel recruitment and separation strategies

Personnel registration and accounting

1.5. VULNERABILITY ASSESSMENT

Given time, resources, and motivation, an attacker can break into nearly any system. All of the security
procedures and technologies currently available cannot guarantee that any systems are completely safe
from intrusion. Routers help secure gateways to the Internet. Firewalls help secure the edge of the
network. Virtual Private Networks safely pass data in an encrypted stream. Intrusion detection systems
warn you of malicious activity. However, the success of each of these technologies is dependent upon a
number of variables, including:

The expertise of the staff responsible for configuring, monitoring, and maintaining the
technologies.

The ability to patch and update services and kernels quickly and efficiently.

The ability of those responsible to keep constant vigilance over the network.

Given the dynamic state of data systems and technologies, securing corporate resources can be quite
complex. Due to this complexity, it is often difficult to find expert resources for all of your systems. While
it is possible to have personnel knowledgeable in many areas of information security at a high level, it is
difficult to retain staff who are experts in more than a few subject areas. This is mainly because each
subject area of information security requires constant attention and focus. Information security does not
stand still.

A vulnerability assessment is an internal audit of your network and system security; the results of which
indicate the confidentiality, integrity, and availability of your network. Typically, vulnerability assessment
starts with a reconnaissance phase, during which important data regarding the target systems and
resources is gathered. This phase leads to the system readiness phase, whereby the target is essentially
checked for all known vulnerabilities. The readiness phase culminates in the reporting phase, where the
findings are classified into categories of high, medium, and low risk; and methods for improving the
security (or mitigating the risk of vulnerability) of the target are discussed

If you were to perform a vulnerability assessment of your home, you would likely check each door to your
home to see if they are closed and locked. You would also check every window, making sure that they
closed completely and latch correctly. This same concept applies to systems, networks, and electronic
data. Malicious users are the thieves and vandals of your data. Focus on their tools, mentality, and
motivations, and you can then react swiftly to their actions.

1.5.1. Defining assessment and testing

Vulnerability assessments may be broken down into one of two types: outside looking in and inside
looking around.

When performing an outside-looking-in vulnerability assessment, you are attempting to compromise

Red Hat Enterprise Linux 8 Security hardening

10

When performing an outside-looking-in vulnerability assessment, you are attempting to compromise
your systems from the outside. Being external to your company provides you with the cracker’s point of
view. You see what a cracker sees — publicly-routable IP addresses, systems on your DMZ, external
interfaces of your firewall, and more. DMZ stands for "demilitarized zone", which corresponds to a
computer or small subnetwork that sits between a trusted internal network, such as a corporate private
LAN, and an untrusted external network, such as the public Internet. Typically, the DMZ contains devices
accessible to Internet traffic, such as web (HTTP) servers, FTP servers, SMTP (e-mail) servers and DNS
servers.

When you perform an inside-looking-around vulnerability assessment, you are at an advantage since you
are internal and your status is elevated to trusted. This is the point of view you and your co-workers have
once logged on to your systems. You see print servers, file servers, databases, and other resources.

There are striking distinctions between the two types of vulnerability assessments. Being internal to your
company gives you more privileges than an outsider. In most organizations, security is configured to
keep intruders out. Very little is done to secure the internals of the organization (such as departmental
firewalls, user-level access controls, and authentication procedures for internal resources). Typically,
there are many more resources when looking around inside as most systems are internal to a company.
Once you are outside the company, your status is untrusted. The systems and resources available to you
externally are usually very limited.

Consider the difference between vulnerability assessments and penetration tests. Think of a vulnerability
assessment as the first step to a penetration test. The information gleaned from the assessment is used
for testing. Whereas the assessment is undertaken to check for holes and potential vulnerabilities, the
penetration testing actually attempts to exploit the findings.

Assessing network infrastructure is a dynamic process. Security, both information and physical, is
dynamic. Performing an assessment shows an overview, which can turn up false positives and false
negatives. A false positive is a result, where the tool finds vulnerabilities which in reality do not exist. A
false negative is when it omits actual vulnerabilities.

Security administrators are only as good as the tools they use and the knowledge they retain. Take any
of the assessment tools currently available, run them against your system, and it is almost a guarantee
that there are some false positives. Whether by program fault or user error, the result is the same. The
tool may find false positives, or, even worse, false negatives.

Now that the difference between a vulnerability assessment and a penetration test is defined, take the
findings of the assessment and review them carefully before conducting a penetration test as part of
your new best practices approach.

WARNING

Do not attempt to exploit vulnerabilities on production systems. Doing so can have
adverse effects on productivity and efficiency of your systems and network.

The following list examines some of the benefits of performing vulnerability assessments.

Creates proactive focus on information security.

Finds potential exploits before crackers find them.

Results in systems being kept up to date and patched.



CHAPTER 1. OVERVIEW OF SECURITY HARDENING IN RHEL

11

Promotes growth and aids in developing staff expertise.

Abates financial loss and negative publicity.

1.5.2. Establishing a methodology for vulnerability assessment

To aid in the selection of tools for a vulnerability assessment, it is helpful to establish a vulnerability
assessment methodology. Unfortunately, there is no predefined or industry approved methodology at
this time; however, common sense and best practices can act as a sufficient guide.

What is the target? Are we looking at one server, or are we looking at our entire network and everything
within the network? Are we external or internal to the company? The answers to these questions are
important as they help determine not only which tools to select but also the manner in which they are
used.

To learn more about establishing methodologies, see the following website:

https://www.owasp.org/ — The Open Web Application Security Project

1.5.3. Vulnerability assessment tools

An assessment can start by using some form of an information-gathering tool. When assessing the entire
network, map the layout first to find the hosts that are running. Once located, examine each host
individually. Focusing on these hosts requires another set of tools. Knowing which tools to use may be
the most crucial step in finding vulnerabilities.

The following tools are just a small sampling of the available tools:

Nmap is a popular tool that can be used to find host systems and open ports on those systems.
To install Nmap from the AppStream repository, enter the yum install nmap command as the
root user. See the nmap(1) man page for more information.

The tools from the OpenSCAP suite, such as the oscap command-line utility and the scap-
workbench graphical utility, provides a fully automated compliance audit. See Scanning the
system for security compliance and vulnerabilities for more information.

Advanced Intrusion Detection Environment (AIDE) is a utility that creates a database of files on
the system, and then uses that database to ensure file integrity and detect system intrusions.
See Checking integrity with AIDE for more information.

1.6. SECURITY THREATS

1.6.1. Threats to network security

Bad practices when configuring the following aspects of a network can increase the risk of an attack.

Insecure architectures

A misconfigured network is a primary entry point for unauthorized users. Leaving a trust-based, open
local network vulnerable to the highly-insecure Internet is much like leaving a door ajar in a crime-ridden
neighborhood — nothing may happen for an arbitrary amount of time, but someone exploits the
opportunity eventually.

Broadcast networks

System administrators often fail to realize the importance of networking hardware in their security

Red Hat Enterprise Linux 8 Security hardening

12

https://www.owasp.org/

schemes. Simple hardware, such as hubs and routers, relies on the broadcast or non-switched principle;
that is, whenever a node transmits data across the network to a recipient node, the hub or router sends a
broadcast of the data packets until the recipient node receives and processes the data. This method is
the most vulnerable to address resolution protocol (ARP) or media access control (MAC) address
spoofing by both outside intruders and unauthorized users on local hosts.

Centralized servers

Another potential networking pitfall is the use of centralized computing. A common cost-cutting
measure for many businesses is to consolidate all services to a single powerful machine. This can be
convenient as it is easier to manage and costs considerably less than multiple-server configurations.
However, a centralized server introduces a single point of failure on the network. If the central server is
compromised, it may render the network completely useless or worse, prone to data manipulation or
theft. In these situations, a central server becomes an open door that allows access to the entire
network.

1.6.2. Threats to server security

Server security is as important as network security because servers often hold a great deal of an
organization’s vital information. If a server is compromised, all of its contents may become available for
the cracker to steal or manipulate at will. The following sections detail some of the main issues.

Unused services and open ports

A full installation of Red Hat Enterprise Linux 8 contains more than 1000 applications and library
packages. However, most server administrators do not opt to install every single package in the
distribution, preferring instead to install a base installation of packages, including several server
applications.

A common occurrence among system administrators is to install the operating system without paying
attention to what programs are actually being installed. This can be problematic because unneeded
services may be installed, configured with the default settings, and possibly turned on. This can cause
unwanted services, such as Telnet, DHCP, or DNS, to run on a server or workstation without the
administrator realizing it, which in turn can cause unwanted traffic to the server or even a potential
pathway into the system for crackers.

Unpatched services

Most server applications that are included in a default installation are solid, thoroughly tested pieces of
software. Having been in use in production environments for many years, their code has been thoroughly
refined and many of the bugs have been found and fixed.

However, there is no such thing as perfect software and there is always room for further refinement.
Moreover, newer software is often not as rigorously tested as one might expect, because of its recent
arrival to production environments or because it may not be as popular as other server software.

Developers and system administrators often find exploitable bugs in server applications and publish the
information on bug tracking and security-related websites such as the Bugtraq mailing list
(http://www.securityfocus.com) or the Computer Emergency Response Team (CERT) website
(http://www.cert.org). Although these mechanisms are an effective way of alerting the community to
security vulnerabilities, it is up to system administrators to patch their systems promptly. This is
particularly true because crackers have access to these same vulnerability tracking services and will use
the information to crack unpatched systems whenever they can. Good system administration requires
vigilance, constant bug tracking, and proper system maintenance to ensure a more secure computing
environment.

Inattentive administration

CHAPTER 1. OVERVIEW OF SECURITY HARDENING IN RHEL

13

http://www.securityfocus.com
http://www.cert.org

Administrators who fail to patch their systems are one of the greatest threats to server security. This
applies as much to inexperienced administrators as it does to overconfident or amotivated
administrators.

Some administrators fail to patch their servers and workstations, while others fail to watch log messages
from the system kernel or network traffic. Another common error is when default passwords or keys to
services are left unchanged. For example, some databases have default administration passwords
because the database developers assume that the system administrator changes these passwords
immediately after installation. If a database administrator fails to change this password, even an
inexperienced cracker can use a widely-known default password to gain administrative privileges to the
database. These are only a few examples of how inattentive administration can lead to compromised
servers.

Inherently insecure services

Even the most vigilant organization can fall victim to vulnerabilities if the network services they choose
are inherently insecure. For instance, there are many services developed under the assumption that they
are used over trusted networks; however, this assumption fails as soon as the service becomes available
over the Internet — which is itself inherently untrusted.

One category of insecure network services are those that require unencrypted user names and
passwords for authentication. Telnet and FTP are two such services. If packet sniffing software is
monitoring traffic between the remote user and such a service user names and passwords can be easily
intercepted.

Inherently, such services can also more easily fall prey to what the security industry terms the man-in-
the-middle attack. In this type of attack, a cracker redirects network traffic by tricking a cracked name
server on the network to point to his machine instead of the intended server. Once someone opens a
remote session to the server, the attacker’s machine acts as an invisible conduit, sitting quietly between
the remote service and the unsuspecting user capturing information. In this way a cracker can gather
administrative passwords and raw data without the server or the user realizing it.

Another category of insecure services include network file systems and information services such as
NFS or NIS, which are developed explicitly for LAN usage but are, unfortunately, extended to include
WANs (for remote users). NFS does not, by default, have any authentication or security mechanisms
configured to prevent a cracker from mounting the NFS share and accessing anything contained therein.
NIS, as well, has vital information that must be known by every computer on a network, including
passwords and file permissions, within a plain text ASCII or DBM (ASCII-derived) database. A cracker
who gains access to this database can then access every user account on a network, including the
administrator’s account.

By default, Red Hat Enterprise Linux 8 is released with all such services turned off. However, since
administrators often find themselves forced to use these services, careful configuration is critical.

1.6.3. Threats to workstation and home PC security

Workstations and home PCs may not be as prone to attack as networks or servers, but because they
often contain sensitive data, such as credit card information, they are targeted by system crackers.
Workstations can also be co-opted without the user’s knowledge and used by attackers as "bot"
machines in coordinated attacks. For these reasons, knowing the vulnerabilities of a workstation can
save users the headache of reinstalling the operating system, or worse, recovering from data theft.

Bad passwords

Bad passwords are one of the easiest ways for an attacker to gain access to a system.

Vulnerable client applications

Red Hat Enterprise Linux 8 Security hardening

14

Although an administrator may have a fully secure and patched server, that does not mean remote users
are secure when accessing it. For instance, if the server offers Telnet or FTP services over a public
network, an attacker can capture the plain text user names and passwords as they pass over the
network, and then use the account information to access the remote user’s workstation.

Even when using secure protocols, such as SSH, a remote user may be vulnerable to certain attacks if
they do not keep their client applications updated. For instance, SSH protocol version 1 clients are
vulnerable to an X-forwarding attack from malicious SSH servers. Once connected to the server, the
attacker can quietly capture any keystrokes and mouse clicks made by the client over the network. This
problem was fixed in the SSH version 2 protocol, but it is up to the user to keep track of what
applications have such vulnerabilities and update them as necessary.

1.7. COMMON EXPLOITS AND ATTACKS

Table 1.1, “Common exploits” details some of the most common exploits and entry points used by
intruders to access organizational network resources. Key to these common exploits are the
explanations of how they are performed and how administrators can properly safeguard their network
against such attacks.

Table 1.1. Common exploits

Exploit Description Notes

Null or default passwords Leaving administrative passwords
blank or using a default password
set by the product vendor. This is
most common in hardware such
as routers and firewalls, but some
services that run on Linux can
contain default administrator
passwords as well (though
Red Hat Enterprise Linux 8 does
not ship with them).

Commonly associated with
networking hardware such as
routers, firewalls, VPNs, and
network attached storage (NAS)
appliances.

Common in many legacy
operating systems, especially
those that bundle services (such
as UNIX and Windows.)

Administrators sometimes create
privileged user accounts in a rush
and leave the password null,
creating a perfect entry point for
malicious users who discover the
account.

Default shared keys Secure services sometimes
package default security keys for
development or evaluation testing
purposes. If these keys are left
unchanged and are placed in a
production environment on the
Internet, all users with the same
default keys have access to that
shared-key resource, and any
sensitive information that it
contains.

Most common in wireless access
points and preconfigured secure
server appliances.

CHAPTER 1. OVERVIEW OF SECURITY HARDENING IN RHEL

15

IP spoofing A remote machine acts as a node
on your local network, finds
vulnerabilities with your servers,
and installs a backdoor program
or Trojan horse to gain control
over your network resources.

Spoofing is quite difficult as it
involves the attacker predicting
TCP/IP sequence numbers to
coordinate a connection to target
systems, but several tools are
available to assist crackers in
performing such a vulnerability.

Depends on target system
running services (such as rsh,
telnet, FTP and others) that use
source-based authentication
techniques, which are not
recommended when compared to
PKI or other forms of encrypted
authentication used in ssh or
SSL/TLS.

Eavesdropping Collecting data that passes
between two active nodes on a
network by eavesdropping on the
connection between the two
nodes.

This type of attack works mostly
with plain text transmission
protocols such as Telnet, FTP, and
HTTP transfers.

Remote attacker must have
access to a compromised system
on a LAN in order to perform such
an attack; usually the cracker has
used an active attack (such as IP
spoofing or man-in-the-middle)
to compromise a system on the
LAN.

Preventative measures include
services with cryptographic key
exchange, one-time passwords, or
encrypted authentication to
prevent password snooping;
strong encryption during
transmission is also advised.

Exploit Description Notes

Red Hat Enterprise Linux 8 Security hardening

16

Service vulnerabilities An attacker finds a flaw or
loophole in a service run over the
Internet; through this vulnerability,
the attacker compromises the
entire system and any data that it
may hold, and could possibly
compromise other systems on the
network.

HTTP-based services such as CGI
are vulnerable to remote
command execution and even
interactive shell access. Even if
the HTTP service runs as a non-
privileged user such as "nobody",
information such as configuration
files and network maps can be
read, or the attacker can start a
denial of service attack which
drains system resources or
renders it unavailable to other
users.

Services sometimes can have
vulnerabilities that go unnoticed
during development and testing;
these vulnerabilities (such as
buffer overflows, where attackers
crash a service using arbitrary
values that fill the memory buffer
of an application, giving the
attacker an interactive command
prompt from which they may
execute arbitrary commands) can
give complete administrative
control to an attacker.

Administrators should make sure
that services do not run as the
root user, and should stay vigilant
of patches and errata updates for
applications from vendors or
security organizations such as
CERT and CVE.

Exploit Description Notes

CHAPTER 1. OVERVIEW OF SECURITY HARDENING IN RHEL

17

Application vulnerabilities Attackers find faults in desktop
and workstation applications
(such as email clients) and
execute arbitrary code, implant
Trojan horses for future
compromise, or crash systems.
Further exploitation can occur if
the compromised workstation has
administrative privileges on the
rest of the network.

Workstations and desktops are
more prone to exploitation as
workers do not have the expertise
or experience to prevent or
detect a compromise; it is
imperative to inform individuals of
the risks they are taking when
they install unauthorized software
or open unsolicited email
attachments.

Safeguards can be implemented
such that email client software
does not automatically open or
execute attachments.
Additionally, the automatic
update of workstation software
using Red Hat Network; or other
system management services can
alleviate the burdens of multi-
seat security deployments.

Denial of Service (DoS) attacks Attacker or group of attackers
coordinate against an
organization’s network or server
resources by sending
unauthorized packets to the
target host (either server, router,
or workstation). This forces the
resource to become unavailable
to legitimate users.

The most reported DoS case in
the US occurred in 2000. Several
highly-trafficked commercial and
government sites were rendered
unavailable by a coordinated ping
flood attack using several
compromised systems with high
bandwidth connections acting as
zombies, or redirected broadcast
nodes.

Source packets are usually forged
(as well as rebroadcast), making
investigation as to the true source
of the attack difficult.

Advances in ingress filtering (IETF
rfc2267) using iptables and
Network Intrusion Detection
Systems such as snort assist
administrators in tracking down
and preventing distributed DoS
attacks.

Exploit Description Notes

Red Hat Enterprise Linux 8 Security hardening

18

CHAPTER 2. SECURING RHEL DURING INSTALLATION
Security begins even before you start the installation of Red Hat Enterprise Linux. Configuring your
system securely from the beginning makes it easier to implement additional security settings later.

2.1. BIOS AND UEFI SECURITY

Password protection for the BIOS (or BIOS equivalent) and the boot loader can prevent unauthorized
users who have physical access to systems from booting using removable media or obtaining root
privileges through single user mode. The security measures you should take to protect against such
attacks depends both on the sensitivity of the information on the workstation and the location of the
machine.

For example, if a machine is used in a trade show and contains no sensitive information, then it may not
be critical to prevent such attacks. However, if an employee’s laptop with private, unencrypted SSH keys
for the corporate network is left unattended at that same trade show, it could lead to a major security
breach with ramifications for the entire company.

If the workstation is located in a place where only authorized or trusted people have access, however,
then securing the BIOS or the boot loader may not be necessary.

2.1.1. BIOS passwords

The two primary reasons for password protecting the BIOS of a computer are[1]:

1. Preventing changes to BIOS settings — If an intruder has access to the BIOS, they can set it to
boot from a CD-ROM or a flash drive. This makes it possible for them to enter rescue mode or
single user mode, which in turn allows them to start arbitrary processes on the system or copy
sensitive data.

2. Preventing system booting — Some BIOSes allow password protection of the boot process.
When activated, an attacker is forced to enter a password before the BIOS launches the boot
loader.

Because the methods for setting a BIOS password vary between computer manufacturers, consult the
computer’s manual for specific instructions.

If you forget the BIOS password, it can either be reset with jumpers on the motherboard or by
disconnecting the CMOS battery. For this reason, it is good practice to lock the computer case if
possible. However, consult the manual for the computer or motherboard before attempting to
disconnect the CMOS battery.

2.1.2. Non-BIOS-based systems security

Other systems and architectures use different programs to perform low-level tasks roughly equivalent
to those of the BIOS on x86 systems. For example, the Unified Extensible Firmware Interface (UEFI)
shell.

For instructions on password protecting BIOS-like programs, see the manufacturer’s instructions.

2.2. DISK PARTITIONING

Red Hat recommends creating separate partitions for the /boot, /, /home, /tmp, and /var/tmp/
directories.

CHAPTER 2. SECURING RHEL DURING INSTALLATION

19

/boot

This partition is the first partition that is read by the system during boot up. The boot loader and
kernel images that are used to boot your system into Red Hat Enterprise Linux 8 are stored in this
partition. This partition should not be encrypted. If this partition is included in / and that partition is
encrypted or otherwise becomes unavailable then your system is not able to boot.

/home

When user data (/home) is stored in / instead of in a separate partition, the partition can fill up
causing the operating system to become unstable. Also, when upgrading your system to the next
version of Red Hat Enterprise Linux 8 it is a lot easier when you can keep your data in the /home
partition as it is not be overwritten during installation. If the root partition (/) becomes corrupt your
data could be lost forever. By using a separate partition there is slightly more protection against data
loss. You can also target this partition for frequent backups.

/tmp and /var/tmp/

Both the /tmp and /var/tmp/ directories are used to store data that does not need to be stored for a
long period of time. However, if a lot of data floods one of these directories it can consume all of your
storage space. If this happens and these directories are stored within / then your system could
become unstable and crash. For this reason, moving these directories into their own partitions is a
good idea.

NOTE

During the installation process, you have an option to encrypt partitions. You must supply
a passphrase. This passphrase serves as a key to unlock the bulk encryption key, which is
used to secure the partition’s data.

2.3. RESTRICTING NETWORK CONNECTIVITY DURING THE
INSTALLATION PROCESS

When installing Red Hat Enterprise Linux 8, the installation medium represents a snapshot of the system
at a particular time. Because of this, it may not be up-to-date with the latest security fixes and may be
vulnerable to certain issues that were fixed only after the system provided by the installation medium
was released.

When installing a potentially vulnerable operating system, always limit exposure only to the closest
necessary network zone. The safest choice is the “no network” zone, which means to leave your machine
disconnected during the installation process. In some cases, a LAN or intranet connection is sufficient
while the Internet connection is the riskiest. To follow the best security practices, choose the closest
zone with your repository while installing Red Hat Enterprise Linux 8 from a network.

2.4. INSTALLING THE MINIMUM AMOUNT OF PACKAGES REQUIRED

It is best practice to install only the packages you will use because each piece of software on your
computer could possibly contain a vulnerability. If you are installing from the DVD media, take the
opportunity to select exactly what packages you want to install during the installation. If you find you
need another package, you can always add it to the system later.

2.5. POST-INSTALLATION PROCEDURES

The following steps are the security-related procedures that should be performed immediately after
installation of Red Hat Enterprise Linux 8.

Update your system. Enter the following command as root:

Red Hat Enterprise Linux 8 Security hardening

20

yum update

Even though the firewall service, firewalld, is automatically enabled with the installation of Red
Hat Enterprise Linux, there are scenarios where it might be explicitly disabled, for example in the
kickstart configuration. In such a case, it is recommended to consider re-enabling the firewall.
To start firewalld enter the following commands as root:

systemctl start firewalld
systemctl enable firewalld

To enhance security, disable services you do not need. For example, if there are no printers
installed on your computer, disable the cups service using the following command:

systemctl disable cups

To review active services, enter the following command:

$ systemctl list-units | grep service

[1] Since system BIOSes differ between manufacturers, some may not support password protection of either type,
while others may support one type but not the other.

CHAPTER 2. SECURING RHEL DURING INSTALLATION

21

CHAPTER 3. SECURING SERVICES
It is important in an organization to monitor the active network services that are important to administers
and Linux system admins. Red Hat Enterprise Linux 8 supports many network servers. When a network
service is running on a machine, daemon keeps listening for connections on the network ports. These
daemons can lead to any kind of attach. As a result, the services needs to be secured in order to prevent
any mishappenings. This chapter helps you secure different services.

3.1. SECURING RPCBIND

The rpcbind service is a dynamic port assignment daemon for Remote Procedure Calls (RPC) services
such as Network Information Service (NIS) and Network File Sharing (NFS). Because it has weak
authentication mechanisms and can assign a wide range of ports for the services it controls, it is
important to secure the rpcbind service.

You can secure the rpcbind service by adding firewall rules to the server. You can restrict access to all
networks and define specific exceptions using the firewall rules.

NOTE

The rpcbind service is required by NFSv2 and NFSv3 servers and you should
secure the rpcbind service when you are working on it.

NFSv4 does not require the rpcbind service to listen on the network.

Procedure

Following are examples for the firewalld commands:

Limit TCP connection and accept packages only from the 192.168.0.0/24 host via the 111
port:

firewall-cmd --add-rich-rule='rule family="ipv4" port port="111" protocol="tcp" source
address="192.168.0.0/24" invert="True" drop'

Limit TCP connection and accept packages only from local host via the 111 port:

firewall-cmd --add-rich-rule='rule family="ipv4" port port="111" protocol="tcp" source
address="127.0.0.1" accept'

Limit UDP connection and accept packages only from the 192.168.0.0/24 host via the 111
port:

firewall-cmd --add-rich-rule='rule family="ipv4" port port="111" protocol="udp" source
address="192.168.0.0/24" invert="True" drop'

NOTE

To make the firewall settings permanent, use the --permanent option
when adding firewall rules.

Reload firewall to accept the new rules using # firewall-cmd --reload
command.

Red Hat Enterprise Linux 8 Security hardening

22

Verification steps

Verify the firewall rules:

firewall-cmd --list-rich-rule
rule family="ipv4" port port="111" protocol="tcp" source address="192.168.0.0/24"
invert="True" drop
rule family="ipv4" port port="111" protocol="tcp" source address="127.0.0.1" accept
rule family="ipv4" port port="111" protocol="udp" source address="192.168.0.0/24"
invert="True" drop

Additional resources

To learn about NFSv4-only Server, see Configuring an NFSv4-only Server section.

To learn more about firewall rules, see Chapter 5 Using and configuring firewalld .

3.2. SECURING RPC.MOUNTD

The rpc.mountd daemon implements the server side of the NFS mount protocol. The NFS mount
protocol is used by NFS version 2 (RFC 1904) and NFS version 3 (RFC 1813).

You can secure the rpc.mountd service by adding firewall rules to the server. You can restrict access to
all networks and define specific exceptions using the firewall rules.

Procedure

Following are examples for the firewalld commands:

Accept mountd connections from the 192.168.0.0/24 host:

firewall-cmd --add-rich-rule 'rule family="ipv4" service name="mountd" source
address="192.168.0.0/24" invert="True" drop'

Accept mountd connections from the local host:

firewall-cmd --add-rich-rule 'rule family="ipv4" source address="127.0.0.1" service
name="mountd" accept'

NOTE

To make the firewall settings permanent, use the --permanent option
when adding firewall rules.

Reload firewall to accept the new rules using the # firewall-cmd --reload
command.

Verification steps

Verify the firewall rules:

firewall-cmd --list-rich-rule
rule family="ipv4" service name="mountd" source address="192.168.0.0/24" invert="True"
drop

CHAPTER 3. SECURING SERVICES

23

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/exporting-nfs-shares_deploying-different-types-of-servers#configuring-an-nfsv4-only-server_exporting-nfs-shares
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/securing_networks/using-and-configuring-firewalld_securing-networks

rule family="ipv4" source address="127.0.0.1" service name="mountd" accept

Additional resources

To learn more about firewall rules, see Chapter 5 Using and configuring firewalld .

Red Hat Enterprise Linux 8 Security hardening

24

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/securing_networks/using-and-configuring-firewalld_securing-networks

CHAPTER 4. INSTALLING A RHEL 8 SYSTEM WITH FIPS MODE
ENABLED

To enable the cryptographic module self-checks mandated by the Federal Information Processing
Standard (FIPS) Publication 140-2, you have to operate RHEL 8 in FIPS mode.

You can achieve this by:

Starting the installation in FIPS mode.

Switching the system into FIPS mode after the installation.

To avoid cryptographic key material regeneration and reevaluation of the compliance of the resulting
system associated with converting already deployed systems, Red Hat recommends starting the
installation in FIPS mode.

4.1. FEDERAL INFORMATION PROCESSING STANDARD (FIPS)

The Federal Information Processing Standard (FIPS) Publication 140-2 is a computer security standard
developed by the U.S. Government and industry working group to validate the quality of cryptographic
modules. See the official FIPS publications at NIST Computer Security Resource Center .

The FIPS 140-2 standard ensures that cryptographic tools implement their algorithms correctly. One of
the mechanisms for that is runtime self-checks. See the full FIPS 140-2 standard at FIPS PUB 140-2 for
further details and other specifications of the FIPS standard.

To learn about compliance requirements, see the Red Hat Government Standards page.

4.2. INSTALLING THE SYSTEM WITH FIPS MODE ENABLED

To enable the cryptographic module self-checks mandated by the Federal Information Processing
Standard (FIPS) Publication 140-2, enable FIPS mode during the system installation.

IMPORTANT

Red Hat recommends installing Red Hat Enterprise Linux 8 with FIPS mode enabled, as
opposed to enabling FIPS mode later. Enabling FIPS mode during the installation ensures
that the system generates all keys with FIPS-approved algorithms and continuous
monitoring tests in place.

Procedure

Add the fips=1 option to the kernel command line during the system installation.
During the software selection stage, do not install any third-party software.

After the installation, the system starts in FIPS mode automatically.

Verification

After the system starts, check that FIPS mode is enabled:

$ fips-mode-setup --check
FIPS mode is enabled.

CHAPTER 4. INSTALLING A RHEL 8 SYSTEM WITH FIPS MODE ENABLED

25

https://csrc.nist.gov/publications/fips
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://access.redhat.com/articles/2918071

Additional resources

Editing boot options section in the Performing an advanced RHEL installation

4.3. ADDITIONAL RESOURCES

Switching the system to FIPS mode

Enabling FIPS mode in a container

List of RHEL 8 applications using cryptography that is not compliant with FIPS 140-2

Red Hat Enterprise Linux 8 Security hardening

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_an_advanced_rhel_installation/kickstart-and-advanced-boot-options_installing-rhel-as-an-experienced-user#editing-boot-options_kickstart-and-advanced-boot-options
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_an_advanced_rhel_installation/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#switching-the-system-to-fips-mode_using-the-system-wide-cryptographic-policies
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#enabling-fips-mode-in-a-container_using-the-system-wide-cryptographic-policies
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#ref_list-of-rhel-applications-using-cryptography-that-is-not-compliant-with-fips-140-2_using-the-system-wide-cryptographic-policies

CHAPTER 5. USING SYSTEM-WIDE CRYPTOGRAPHIC
POLICIES

Crypto policies is a system component that configures the core cryptographic subsystems, covering the
TLS, IPSec, SSH, DNSSec, and Kerberos protocols. It provides a small set of policies, which the
administrator can select.

5.1. SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

Once a system-wide policy is set up, applications in RHEL follow it and refuse to use algorithms and
protocols that do not meet the policy, unless you explicitly request the application to do so. That is, the
policy applies to the default behavior of applications when running with the system-provided
configuration but you can override it if required so.

Red Hat Enterprise Linux 8 contains the following policy levels:

DEFAULT The default system-wide cryptographic policy level offers secure settings for current
threat models. It allows the TLS 1.2 and 1.3 protocols, as well as the IKEv2 and SSH2
protocols. The RSA keys and Diffie-Hellman parameters are accepted if they are at
least 2048 bits long.

LEGACY This policy ensures maximum compatibility with Red Hat Enterprise Linux 5 and earlier;
it is less secure due to an increased attack surface. In addition to the DEFAULT level
algorithms and protocols, it includes support for the TLS 1.0 and 1.1 protocols. The
algorithms DSA, 3DES, and RC4 are allowed, while RSA keys and Diffie-Hellman
parameters are accepted if they are at least 1023 bits long.

FUTURE A conservative security level that is believed to withstand any near-term future attacks.
This level does not allow the use of SHA-1 in signature algorithms. The RSA keys and
Diffie-Hellman parameters are accepted if they are at least 3072 bits long.

FIPS A policy level that conforms with the FIPS 140-2 requirements. This is used internally by
the fips-mode-setup tool, which switches the RHEL system into FIPS mode.

Red Hat continuously adjusts all policy levels so that all libraries, except when using the LEGACY policy,
provide secure defaults. Even though the LEGACY profile does not provide secure defaults, it does not
include any algorithms that are easily exploitable. As such, the set of enabled algorithms or acceptable
key sizes in any provided policy may change during the lifetime of the Red Hat Enterprise Linux 8.

Such changes reflect new security standards and new security research. If you must ensure
interoperability with a specific system for the whole lifetime of Red Hat Enterprise Linux 8, you should
opt-out from cryptographic-policies for components that interact with that system.

IMPORTANT

Because a cryptographic key used by a certificate on the Customer Portal API does not
meet the requirements by the FUTURE system-wide cryptographic policy, the redhat-
support-tool utility does not work with this policy level at the moment.

To work around this problem, use the DEFAULT crypto policy while connecting to the
Customer Portal API.

NOTE

CHAPTER 5. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

27

NOTE

The specific algorithms and ciphers described in the policy levels as allowed are available
only if an application supports them.

Tool for managing crypto policies
To view or change the current system-wide cryptographic policy, use the update-crypto-policies tool,
for example:

$ update-crypto-policies --show
DEFAULT
update-crypto-policies --set FUTURE
Setting system policy to FUTURE

To ensure that the change of the cryptographic policy is applied, restart the system.

Strong crypto defaults by removing insecure cipher suites and protocols
The following list contains cipher suites and protocols removed from the core cryptographic libraries in
Red Hat Enterprise Linux 8. They are not present in the sources, or their support is disabled during the
build, so applications cannot use them.

DES (since RHEL 7)

All export grade cipher suites (since RHEL 7)

MD5 in signatures (since RHEL 7)

SSLv2 (since RHEL 7)

SSLv3 (since RHEL 8)

All ECC curves < 224 bits (since RHEL 6)

All binary field ECC curves (since RHEL 6)

Cipher suites and protocols disabled in all policy levels
The following cipher suites and protocols are disabled in all crypto policy levels. They can be enabled
only by an explicit configuration of individual applications.

DH with parameters < 1024 bits

RSA with key size < 1024 bits

Camellia

ARIA

SEED

IDEA

Integrity-only cipher suites

TLS CBC mode cipher suites using SHA-384 HMAC

AES-CCM8

Red Hat Enterprise Linux 8 Security hardening

28

All ECC curves incompatible with TLS 1.3, including secp256k1

IKEv1 (since RHEL 8)

Cipher suites and protocols enabled in the crypto-policies levels
The following table shows the enabled cipher suites and protocols in all four crypto-policies levels.

 LEGACY DEFAULT FIPS FUTURE

IKEv1 no no no no

3DES yes no no no

RC4 yes no no no

DH min. 1024-bit min. 2048-bit min. 2048-bit min. 3072-bit

RSA min. 1024-bit min. 2048-bit min. 2048-bit min. 3072-bit

DSA yes no no no

TLS v1.0 yes no no no

TLS v1.1 yes no no no

SHA-1 in digital
signatures

yes yes no no

CBC mode
ciphers

yes yes yes no[a]

Symmetric
ciphers with keys
< 256 bits

yes yes yes no

SHA-1 and SHA-
224 signatures in
certificates

yes yes yes no

[a] CBC ciphers are disabled for TLS. In a non-TLS scenario, AES-128-CBC is disabled but AES-256-CBC is
enabled. To disable also AES-256-CBC, apply a custom subpolicy.

Additional resources

update-crypto-policies(8) man page

5.2. SWITCHING THE SYSTEM-WIDE CRYPTOGRAPHIC POLICY TO
MODE COMPATIBLE WITH EARLIER RELEASES

CHAPTER 5. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

29

The default system-wide cryptographic policy in Red Hat Enterprise Linux 8 does not allow
communication using older, insecure protocols. For environments that require to be compatible with
Red Hat Enterprise Linux 5 and in some cases also with earlier releases, the less secure LEGACY policy
level is available.

WARNING

Switching to the LEGACY policy level results in a less secure system and
applications.

Procedure

1. To switch the system-wide cryptographic policy to the LEGACY level, enter the following
command as root:

update-crypto-policies --set LEGACY
Setting system policy to LEGACY

Additional resources

For the list of available cryptographic policy levels, see the update-crypto-policies(8) man
page.

5.3. SWITCHING THE SYSTEM TO FIPS MODE

The system-wide cryptographic policies contain a policy level that enables cryptographic modules self-
checks in accordance with the requirements by the Federal Information Processing Standard (FIPS)
Publication 140-2. The fips-mode-setup tool that enables or disables FIPS mode internally uses the
FIPS system-wide cryptographic policy level.

IMPORTANT

Red Hat recommends installing Red Hat Enterprise Linux 8 with FIPS mode enabled, as
opposed to enabling FIPS mode later. Enabling FIPS mode during the installation ensures
that the system generates all keys with FIPS-approved algorithms and continuous
monitoring tests in place.

Procedure

1. To switch the system to FIPS mode in RHEL 8:

fips-mode-setup --enable
Setting system policy to FIPS
FIPS mode will be enabled.
Please reboot the system for the setting to take effect.

2. Restart your system to allow the kernel to switch to FIPS mode:

reboot



Red Hat Enterprise Linux 8 Security hardening

30

Verification

1. After the restart, you can check the current state of FIPS mode:

fips-mode-setup --check
FIPS mode is enabled.

Additional resources

fips-mode-setup(8) man page

List of RHEL 8 applications using cryptography that are not compliant with FIPS 140-2

Security Requirements for Cryptographic Modules on the National Institute of Standards and
Technology (NIST) web site.

5.4. ENABLING FIPS MODE IN A CONTAINER

In RHEL 8.3 and later versions, you do not need to manually enable cryptographic modules self-checks
in accordance with the requirements by Federal Information Processing Standard (FIPS) Publication
140-2. On systems with FIPS mode enabled, the podman utility automatically configures containers to
FIPS mode.

NOTE

In RHEL 8, the fips-mode-setup command does not work correctly in containers, and it
cannot be used to enable or check FIPS mode in this scenario.

5.4.1. Enabling FIPS mode in a container in RHEL 8.2

In RHEL 8.2 and later versions, you can manually switch a container to FIPS mode by using only a single
command in the container. Note that the host system must be in FIPS mode, see Switching the system
to FIPS mode.

mount --bind /usr/share/crypto-policies/back-ends/FIPS /etc/crypto-policies/back-ends

5.4.2. Enabling FIPS mode in a container in RHEL 8.1 and earlier

In RHEL 8.1 and earlier versions, to enable cryptographic modules self-checks in accordance with the
requirements by Federal Information Processing Standard (FIPS) Publication 140-2 in a container:

Prerequisites

The host system must be in FIPS mode, see Switching the system to FIPS mode .

Procedure

1. Mount the /etc/system-fips file on the container from the host.

2. Set the FIPS cryptographic policy level in the container:

CHAPTER 5. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

31

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#ref_list-of-rhel-applications-using-cryptography-that-is-not-compliant-with-fips-140-2_using-the-system-wide-cryptographic-policies
https://csrc.nist.gov/publications/detail/fips/140/2/final

$ update-crypto-policies --set FIPS

5.5. LIST OF RHEL APPLICATIONS USING CRYPTOGRAPHY THAT IS
NOT COMPLIANT WITH FIPS 140-2

Red Hat recommends to utilize libraries from the core crypto components set, as they are guaranteed to
pass all relevant crypto certifications, such as FIPS 140-2, and also follow the RHEL system-wide crypto
policies.

See the RHEL 8 core crypto components article for an overview of the RHEL 8 core crypto components,
the information on how are they selected, how are they integrated into the operating system, how do
they support hardware security modules and smart cards, and how do crypto certifications apply to
them.

In addition to the following table, in some RHEL 8 Z-stream releases (for example, 8.1.1), the Firefox
browser packages have been updated, and they contain a separate copy of the NSS cryptography
library. This way, Red Hat wants to avoid the disruption of rebasing such a low-level component in a
patch release. As a result, these Firefox packages do not use a FIPS 140-2-validated module.

Table 5.1. List of RHEL 8 applications using cryptography that is not compliant with FIPS 140-2

Application Details

FreeRADIUS The RADIUS protocol uses MD5

ghostscript Custom cryptogtaphy implementation (MD5, RC4,
SHA-2, AES) to encrypt and decrypt documents

Grafana Cryptographic implementations from the Golang
x/crypto module (Ed25519, CBC, OCFB, …​)

ipxe Crypto stack for TLS is compiled in, however, it is
unused

libica Software fallbacks for various algorithms such as RSA
and ECDH through CPACF instructions

Ovmf (UEFI firmware), Edk2, shim Full crypto stack (an embedded copy of the
OpenSSL library)

perl-Digest-HMAC HMAC, HMAC-SHA1, HMAC-MD5

perl-Digest-SHA SHA-1, SHA-224, …​

pidgin DES, RC4

qatengine Mixed hardware and software implementation of
cryptographic primitives (RSA, EC, DH, AES, …​)

samba[a] AES, DES, RC4

Red Hat Enterprise Linux 8 Security hardening

32

https://access.redhat.com/articles/3655361

valgrind AES, hashes[b]

[a] Starting with RHEL 8.3, samba uses FIPS-compliant cryptography.

[b] Re-implements in software hardware-offload operations, such as AES-NI.

Application Details

5.6. EXCLUDING AN APPLICATION FROM FOLLOWING SYSTEM-WIDE
CRYPTO POLICIES

You can customize cryptographic settings used by your application preferably by configuring supported
cipher suites and protocols directly in the application.

You can also remove a symlink related to your application from the /etc/crypto-policies/back-ends
directory and replace it with your customized cryptographic settings. This configuration prevents the
use of system-wide cryptographic policies for applications that use the excluded back end.
Furthermore, this modification is not supported by Red Hat.

5.6.1. Examples of opting out of system-wide crypto policies

wget

To customize cryptographic settings used by the wget network downloader, use --secure-protocol and
--ciphers options. For example:

$ wget --secure-protocol=TLSv1_1 --ciphers="SECURE128" https://example.com

See the HTTPS (SSL/TLS) Options section of the wget(1) man page for more information.

curl

To specify ciphers used by the curl tool, use the --ciphers option and provide a colon-separated list of
ciphers as a value. For example:

$ curl https://example.com --ciphers '@SECLEVEL=0:DES-CBC3-SHA:RSA-DES-CBC3-SHA'

See the curl(1) man page for more information.

Firefox

Even though you cannot opt out of system-wide cryptographic policies in the Firefox web browser, you
can further restrict supported ciphers and TLS versions in Firefox’s Configuration Editor. Type
about:config in the address bar and change the value of the security.tls.version.min option as
required. Setting security.tls.version.min to 1 allows TLS 1.0 as the minimum required,
security.tls.version.min 2 enables TLS 1.1, and so on.

OpenSSH

To opt out of the system-wide crypto policies for your OpenSSH server, uncomment the line with the
CRYPTO_POLICY= variable in the /etc/sysconfig/sshd file. After this change, values that you specify in
the Ciphers, MACs, KexAlgoritms, and GSSAPIKexAlgorithms sections in the /etc/ssh/sshd_config
file are not overridden. See the sshd_config(5) man page for more information.

CHAPTER 5. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

33

To opt out of system-wide crypto policies for your OpenSSH client, perform one of the following tasks:

For a given user, override the global ssh_config with a user-specific configuration in the
~/.ssh/config file.

For the entire system, specify the crypto policy in a drop-in configuration file located in the
/etc/ssh/ssh_config.d/ directory, with a two-digit number prefix smaller than 50, so that it
lexicographically precedes the 50-redhat.conf file, and with a .conf suffix, for example, 49-
crypto-policy-override.conf.

See the ssh_config(5) man page for more information.

Libreswan

See the Configuring IPsec connections that opt out of the system-wide crypto policies in the Securing
networks document for detailed information.

Additional resources

update-crypto-policies(8) man page

5.7. CUSTOMIZING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES WITH
POLICY MODIFIERS

Use this procedure to adjust certain algorithms or protocols of any system-wide cryptographic policy
level or a full custom policy.

NOTE

Customization of system-wide cryptographic policies is available from RHEL 8.2.

Procedure

1. Checkout to the /etc/crypto-policies/policies/modules/ directory:

cd /etc/crypto-policies/policies/modules/

2. Create policy modules for your adjustments, for example:

touch MYCRYPTO1.pmod
touch NO-AES128.pmod

IMPORTANT

Use upper-case letters in file names of policy modules.

3. Open the policy modules in a text editor of your choice and insert options that modify the
system-wide cryptographic policy, for example:

vi MYCRYPTO1.pmod

sha1_in_certs = 0
min_rsa_size = 3072

Red Hat Enterprise Linux 8 Security hardening

34

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/securing_networks/configuring-a-vpn-with-ipsec_securing-networks#configuring-ipsec-connections-that-opt-out-of-the-system-wide-crypto-policies_configuring-a-vpn-with-ipsec
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/securing_networks/

vi NO-AES128.pmod

cipher = -AES-128-GCM -AES-128-CCM -AES-128-CTR -AES-128-CBC

4. Save the changes in the module files.

5. Apply your policy adjustments to the DEFAULT system-wide cryptographic policy level:

update-crypto-policies --set DEFAULT:MYCRYPTO1:NO-AES128

6. To make your cryptographic settings effective for already running services and applications,
restart the system:

reboot

Additional resources

Custom Policies section in the update-crypto-policies(8) man page and the Crypto Policy
Definition Format section in the crypto-policies(7) man page

How to customize crypto policies in RHEL 8.2 Red Hat blog article

5.8. DISABLING SHA-1 BY CUSTOMIZING A SYSTEM-WIDE
CRYPTOGRAPHIC POLICY

Because the SHA-1 hash function has an inherently weak design, and advancing cryptanalysis has made it
vulnerable to attacks, RHEL 8 does not use SHA-1 by default. Nevertheless, some third party
applications, for example public signatures, still use SHA-1. To disable the use of SHA-1 in signature
algorithms on your system, you can use the NO-SHA1 policy module.

IMPORTANT

The NO-SHA1 policy module disables the SHA-1 hash function only in signatures and not
elsewhere. In particular, the NO-SHA1 module still allows the use of SHA-1 with hash-
based message authentication codes (HMAC). This is because HMAC security properties
do not rely on collision resistance of the corresponding hash function, and therefore the
recent attacks on SHA-1 have a significantly lower impact on the use of SHA-1 for HMAC.

NOTE

The module for disabling SHA-1 is available from RHEL 8.3. Customization of system-
wide cryptographic policies is available from RHEL 8.2.

Procedure

1. Apply your policy adjustments to the DEFAULT system-wide cryptographic policy level:

update-crypto-policies --set DEFAULT:NO-SHA1

2. To make your cryptographic settings effective for already running services and applications,
restart the system:

CHAPTER 5. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

35

https://www.redhat.com/en/blog/how-customize-crypto-policies-rhel-82

reboot

Additional resources

Custom Policies section in the update-crypto-policies(8) man page.

The Crypto Policy Definition Format section in the crypto-policies(7) man page.

How to customize crypto policies in RHEL 8.2 Red Hat blog article.

5.9. CREATING AND SETTING A CUSTOM SYSTEM-WIDE
CRYPTOGRAPHIC POLICY

The following steps demonstrate customizing the system-wide cryptographic policies by a complete
policy file.

NOTE

Customization of system-wide cryptographic policies is available from RHEL 8.2.

Procedure

1. Create a policy file for your customizations:

cd /etc/crypto-policies/policies/
touch MYPOLICY.pol

Alternatively, start by copying one of the four predefined policy levels:

cp /usr/share/crypto-policies/policies/DEFAULT.pol /etc/crypto-
policies/policies/MYPOLICY.pol

2. Edit the file with your custom cryptographic policy in a text editor of your choice to fit your
requirements, for example:

vi /etc/crypto-policies/policies/MYPOLICY.pol

3. Switch the system-wide cryptographic policy to your custom level:

update-crypto-policies --set MYPOLICY

4. To make your cryptographic settings effective for already running services and applications,
restart the system:

reboot

Additional resources

Custom Policies section in the update-crypto-policies(8) man page and the Crypto Policy
Definition Format section in the crypto-policies(7) man page

How to customize crypto policies in RHEL 8.2 Red Hat blog article

Red Hat Enterprise Linux 8 Security hardening

36

https://www.redhat.com/en/blog/how-customize-crypto-policies-rhel-82
https://www.redhat.com/en/blog/how-customize-crypto-policies-rhel-82

5.10. RELATED INFORMATION

System-wide crypto policies in RHEL 8 and Strong crypto defaults in RHEL 8 and deprecation
of weak crypto algorithms Knowledgebase articles

CHAPTER 5. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

37

https://access.redhat.com/articles/3666211
https://access.redhat.com/articles/3642912

CHAPTER 6. SETTING A CUSTOM CRYPTOGRAPHIC POLICY
ACROSS SYSTEMS

As an administrator, you can use the Crypto Policies System Role on RHEL to quickly and consistently
configure custom cryptographic policies across many different systems using Red Hat Ansible
Automation Platform.

6.1. CRYPTO POLICIES SYSTEM ROLE VARIABLES AND FACTS

In a Crypto Policies System Role playbook, you can define the parameters for the crypto policies
configuration file according to your preferences and limitations.

If you do not configure any variables, the system role does not configure the system and only reports
the facts.

Selected variables for the Crypto Policies System Role

crypto_policies_policy

Determines the cryptographic policy level the system role applies to the managed nodes. For details
about the different crypto policy levels, see System-wide cryptographic policies .

crypto_policies_reload

If set to yes, the affected services, currently the ipsec, bind, and sshd services, reload after
applying a crypto policy. Defaults to yes.

crypto_policies_reboot_ok

If set to yes, and a reboot is necessary after the system role changes the crypto policy, it sets
crypto_policies_reboot_required to yes. Defaults to no.

Facts set by the Crypto Policies System Role

crypto_policies_active

Lists the currently selected policy.

crypto_policies_available_policies

Lists all available policy levels available on the system.

crypto_policies_available_modules

Lists all available subpolicy modules available on the system.

Additional resources

* Creating and setting a custom system-wide cryptographic policy .

6.2. SETTING A CUSTOM CRYPTOGRAPHIC POLICY USING THE
CRYPTO POLICIES SYSTEM ROLE

You can use the Crypto Policies System Role to configure a large number of managed nodes
consistently from a single control node.

Prerequisites

Access and permissions to one or more managed nodes, which are systems you want to

Red Hat Enterprise Linux 8 Security hardening

38

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/security_hardening/index#system-wide-crypto-policies_using-the-system-wide-cryptographic-policies
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/security_hardening/index#creating-and-setting-a-custom-system-wide-cryptographic-policy_using-the-system-wide-cryptographic-policies

Access and permissions to one or more managed nodes, which are systems you want to
configure with the Crypto Policies System Role.

Access and permissions to a control node, which is a system from which Red Hat Ansible Engine
configures other systems.
On the control node:

Red Hat Ansible Engine is installed

The rhel-system-roles package is installed

An inventory file which lists the managed nodes.

Procedure

1. Create a new playbook.yml file with the following content:

- hosts: all
 tasks:
 - name: Configure crypto policies
 include_role:
 name: linux-system-roles.crypto_policies
 vars:
 - crypto_policies_policy: FUTURE
 - crypto_policies_reboot_ok: true

You can replace the FUTURE value with your preferred crypto policy, for example: DEFAULT,
LEGACY, and FIPS:OSPP.

The crypto_policies_reboot_ok: true variable causes the system to reboot after the system
role changes the crypto policy.

For more details, see Crypto Policies System Role variables and facts .

2. Optional: Verify playbook syntax.

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory_file playbook.yml

Verification

1. On the control node, create another playbook named, for example, verify_playbook.yml:

- hosts: all
 tasks:
 - name: Verify active crypto policy
 include_role:
 name: linux-system-roles.crypto_policies

 - debug:
 var: crypto_policies_active

CHAPTER 6. SETTING A CUSTOM CRYPTOGRAPHIC POLICY ACROSS SYSTEMS

39

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/index#crypto-policies-system-role-variables_using-the-system-wide-cryptographic-policies

This playbook does not change any configurations on the system, only reports the active policy
on the managed nodes.

2. Run the playbook on the same inventory file:

ansible-playbook -i inventory_file verify_playbook.yml

TASK [debug] **************************
ok: [host] => {
 "crypto_policies_active": "FUTURE"
}

The "crypto_policies_active": variable shows the policy active on the managed node.

6.3. ADDITIONAL RESOURCES

/usr/share/ansible/roles/rhel-system-roles.crypto_policies/README.md file.

ansible-playbook(1) man page.

Installing RHEL System Roles .

Applying a system role .

Red Hat Enterprise Linux 8 Security hardening

40

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/administration_and_configuration_tasks_using_system_roles_in_rhel/index#installing-rhel-system-roles_administration-and-configuration-tasks-using-system-roles-in-rhel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/getting-started-with-system-administration_configuring-basic-system-settings#applying-a-role_getting-started-with-rhel-system-roles

CHAPTER 7. CONFIGURING APPLICATIONS TO USE
CRYPTOGRAPHIC HARDWARE THROUGH PKCS #11

Separating parts of your secret information on dedicated cryptographic devices, such as smart cards
and cryptographic tokens for end-user authentication and hardware security modules (HSM) for server
applications, provides an additional layer of security. In Red Hat Enterprise Linux 8, support for
cryptographic hardware through the PKCS #11 API is consistent across different applications, and the
isolation of secrets on cryptographic hardware is not a complicated task.

7.1. CRYPTOGRAPHIC HARDWARE SUPPORT THROUGH PKCS #11

PKCS #11 (Public-Key Cryptography Standard) defines an application programming interface (API) to
cryptographic devices that hold cryptographic information and perform cryptographic functions. These
devices are called tokens, and they can be implemented in a hardware or software form.

A PKCS #11 token can store various object types including a certificate; a data object; and a public,
private, or secret key. These objects are uniquely identifiable through the PKCS #11 URI scheme.

A PKCS #11 URI is a standard way to identify a specific object in a PKCS #11 module according to the
object attributes. This enables you to configure all libraries and applications with the same configuration
string in the form of a URI.

Red Hat Enterprise Linux 8 provides the OpenSC PKCS #11 driver for smart cards by default. However,
hardware tokens and HSMs can have their own PKCS #11 modules that do not have their counterpart in
Red Hat Enterprise Linux. You can register such PKCS #11 modules with the p11-kit tool, which acts as a
wrapper over the registered smart card drivers in the system.

To make your own PKCS #11 module work on the system, add a new text file to the
/etc/pkcs11/modules/ directory

You can add your own PKCS #11 module into the system by creating a new text file in the
/etc/pkcs11/modules/ directory. For example, the OpenSC configuration file in p11-kit looks as follows:

$ cat /usr/share/p11-kit/modules/opensc.module
module: opensc-pkcs11.so

Additional resources

Consistent PKCS #11 support in Red Hat Enterprise Linux 8

The PKCS #11 URI Scheme

Controlling access to smart cards

7.2. USING SSH KEYS STORED ON A SMART CARD

Red Hat Enterprise Linux enables you to use RSA and ECDSA keys stored on a smart card on OpenSSH
clients. Use this procedure to enable authentication using a smart card instead of using a password.

Prerequisites

On the client side, the opensc package is installed and the pcscd service is running.

CHAPTER 7. CONFIGURING APPLICATIONS TO USE CRYPTOGRAPHIC HARDWARE THROUGH PKCS #11

41

https://www.redhat.com/en/blog/consistent-pkcs-11-support-red-hat-enterprise-linux-8
https://tools.ietf.org/html/rfc7512
https://access.redhat.com/blogs/766093/posts/1976313

Procedure

1. List all keys provided by the OpenSC PKCS #11 module including their PKCS #11 URIs and save
the output to the keys.pub file:

$ ssh-keygen -D pkcs11: > keys.pub
$ ssh-keygen -D pkcs11:
ssh-rsa AAAAB3NzaC1yc2E...KKZMzcQZzx
pkcs11:id=%02;object=SIGN%20pubkey;token=SSH%20key;manufacturer=piv_II?module-
path=/usr/lib64/pkcs11/opensc-pkcs11.so
ecdsa-sha2-nistp256 AAA...J0hkYnnsM=
pkcs11:id=%01;object=PIV%20AUTH%20pubkey;token=SSH%20key;manufacturer=piv_II?
module-path=/usr/lib64/pkcs11/opensc-pkcs11.so

2. To enable authentication using a smart card on a remote server (example.com), transfer the
public key to the remote server. Use the ssh-copy-id command with keys.pub created in the
previous step:

$ ssh-copy-id -f -i keys.pub username@example.com

3. To connect to example.com using the ECDSA key from the output of the ssh-keygen -D
command in step 1, you can use just a subset of the URI, which uniquely references your key, for
example:

$ ssh -i "pkcs11:id=%01?module-path=/usr/lib64/pkcs11/opensc-pkcs11.so" example.com
Enter PIN for 'SSH key':
[example.com] $

4. You can use the same URI string in the ~/.ssh/config file to make the configuration permanent:

$ cat ~/.ssh/config
IdentityFile "pkcs11:id=%01?module-path=/usr/lib64/pkcs11/opensc-pkcs11.so"
$ ssh example.com
Enter PIN for 'SSH key':
[example.com] $

Because OpenSSH uses the p11-kit-proxy wrapper and the OpenSC PKCS #11 module is
registered to PKCS#11 Kit, you can simplify the previous commands:

$ ssh -i "pkcs11:id=%01" example.com
Enter PIN for 'SSH key':
[example.com] $

If you skip the id= part of a PKCS #11 URI, OpenSSH loads all keys that are available in the proxy module.
This can reduce the amount of typing required:

$ ssh -i pkcs11: example.com
Enter PIN for 'SSH key':
[example.com] $

Additional resources

Fedora 28: Better smart card support in OpenSSH .

Red Hat Enterprise Linux 8 Security hardening

42

https://fedoramagazine.org/fedora-28-better-smart-card-support-openssh/

p11-kit(8), opensc.conf(5), pcscd(8), ssh(1), and ssh-keygen(1) man pages.

7.3. CONFIGURING APPLICATIONS TO AUTHENTICATE USING
CERTIFICATES FROM SMART CARDS

The wget network downloader enables you to specify PKCS #11 URIs instead of paths to locally
stored private keys, and thus simplifies creating scripts for tasks that require safely stored
private keys and certificates. For example:

$ wget --private-key 'pkcs11:token=softhsm;id=%01;type=private?pin-value=111111' --
certificate 'pkcs11:token=softhsm;id=%01;type=cert' https://example.com/

See the wget(1) man page for more information.

Specifying PKCS #11 URI for use by the curl tool is analogous:

$ curl --key 'pkcs11:token=softhsm;id=%01;type=private?pin-value=111111' --cert
'pkcs11:token=softhsm;id=%01;type=cert' https://example.com/

See the curl(1) man page for more information.

The Firefox web browser automatically loads the p11-kit-proxy module. This means that every
supported smart card in the system is automatically detected. For using TLS client
authentication, no additional setup is required and keys from a smart card are automatically
used when a server requests them.

Using PKCS #11 URIs in custom applications

If your application uses the GnuTLS or NSS library, support for PKCS #11 URIs is ensured by their built-
in support for PKCS #11. Also, applications relying on the OpenSSL library can access cryptographic
hardware modules thanks to the openssl-pkcs11 engine.

With applications that require working with private keys on smart cards and that do not use NSS,
GnuTLS, and OpenSSL, use p11-kit to implement registering PKCS #11 modules.

Additional resources

p11-kit(8) man page.

7.4. USING HSMS PROTECTING PRIVATE KEYS IN APACHE

The Apache HTTP server can work with private keys stored on hardware security modules (HSMs),
which helps to prevent the keys' disclosure and man-in-the-middle attacks. Note that this usually
requires high-performance HSMs for busy servers.

For secure communication in the form of the HTTPS protocol, the Apache HTTP server (httpd) uses
the OpenSSL library. OpenSSL does not support PKCS #11 natively. To utilize HSMs, you have to install
the openssl-pkcs11 package, which provides access to PKCS #11 modules through the engine interface.
You can use a PKCS #11 URI instead of a regular file name to specify a server key and a certificate in the
/etc/httpd/conf.d/ssl.conf configuration file, for example:

SSLCertificateFile "pkcs11:id=%01;token=softhsm;type=cert"
SSLCertificateKeyFile "pkcs11:id=%01;token=softhsm;type=private?pin-value=111111"

Install the httpd-manual package to obtain complete documentation for the Apache HTTP Server,

CHAPTER 7. CONFIGURING APPLICATIONS TO USE CRYPTOGRAPHIC HARDWARE THROUGH PKCS #11

43

Install the httpd-manual package to obtain complete documentation for the Apache HTTP Server,
including TLS configuration. The directives available in the /etc/httpd/conf.d/ssl.conf configuration file
are described in detail in /usr/share/httpd/manual/mod/mod_ssl.html.

7.5. USING HSMS PROTECTING PRIVATE KEYS IN NGINX

The Nginx HTTP server can work with private keys stored on hardware security modules (HSMs), which
helps to prevent the keys' disclosure and man-in-the-middle attacks. Note that this usually requires
high-performance HSMs for busy servers.

Because Nginx also uses the OpenSSL for cryptographic operations, support for PKCS #11 must go
through the openssl-pkcs11 engine. Nginx currently supports only loading private keys from an HSM,
and a certificate must be provided separately as a regular file. Modify the ssl_certificate and
ssl_certificate_key options in the server section of the /etc/nginx/nginx.conf configuration file:

ssl_certificate /path/to/cert.pem
ssl_certificate_key "engine:pkcs11:pkcs11:token=softhsm;id=%01;type=private?pin-value=111111";

Note that the engine:pkcs11: prefix is needed for the PKCS #11 URI in the Nginx configuration file.
This is because the other pkcs11 prefix refers to the engine name.

7.6. RELATED INFORMATION

pkcs11.conf(5) man page.

Red Hat Enterprise Linux 8 Security hardening

44

file:///usr/share/httpd/manual/mod/mod_ssl.html

CHAPTER 8. USING SHARED SYSTEM CERTIFICATES
The shared system certificates storage enables NSS, GnuTLS, OpenSSL, and Java to share a default
source for retrieving system certificate anchors and block-list information. By default, the trust store
contains the Mozilla CA list, including positive and negative trust. The system allows updating the core
Mozilla CA list or choosing another certificate list.

8.1. THE SYSTEM-WIDE TRUST STORE

In Red Hat Enterprise Linux, the consolidated system-wide trust store is located in the /etc/pki/ca-trust/
and /usr/share/pki/ca-trust-source/ directories. The trust settings in /usr/share/pki/ca-trust-source/
are processed with lower priority than settings in /etc/pki/ca-trust/.

Certificate files are treated depending on the subdirectory they are installed to the following directories:

for trust anchors

/usr/share/pki/ca-trust-source/anchors/ or

/etc/pki/ca-trust/source/anchors/

for distrusted certificates

/usr/share/pki/ca-trust-source/blacklist/ or

/etc/pki/ca-trust/source/blacklist/

for certificates in the extended BEGIN TRUSTED file format

/usr/share/pki/ca-trust-source/ or

/etc/pki/ca-trust/source/

NOTE

In a hierarchical cryptographic system, a trust anchor is an authoritative entity which other
parties consider being trustworthy. In the X.509 architecture, a root certificate is a trust
anchor from which a chain of trust is derived. To enable chain validation, the trusting
party must have access to the trust anchor first.

8.2. ADDING NEW CERTIFICATES

To acknowledge applications on your system with a new source of trust, add the corresponding
certificate to the system-wide store, and use the update-ca-trust command.

Prerequisites

The ca-certificates package is present on the system.

Procedure

1. To add a certificate in the simple PEM or DER file formats to the list of CAs trusted on the
system, copy the certificate file to the /usr/share/pki/ca-trust-source/anchors/ or /etc/pki/ca-
trust/source/anchors/ directory, for example:

CHAPTER 8. USING SHARED SYSTEM CERTIFICATES

45

cp ~/certificate-trust-examples/Cert-trust-test-ca.pem /usr/share/pki/ca-trust-
source/anchors/

2. To update the system-wide trust store configuration, use the update-ca-trust command:

update-ca-trust

NOTE

While the Firefox browser is able to use an added certificate without executing update-
ca-trust, Red Hat recommends to use the update-ca-trust command after a CA change.
Also note that browsers, such as Firefox, Epiphany, or Chromium, cache files, and you
might have to clear browser’s cache or restart your browser to load the current system
certificates configuration.

8.3. MANAGING TRUSTED SYSTEM CERTIFICATES

The trust command provides a convenient way for managing certificates in the shared system-wide
trust store.

To list, extract, add, remove, or change trust anchors, use the trust command. To see the built-
in help for this command, enter it without any arguments or with the --help directive:

$ trust
usage: trust command <args>...

Common trust commands are:
 list List trust or certificates
 extract Extract certificates and trust
 extract-compat Extract trust compatibility bundles
 anchor Add, remove, change trust anchors
 dump Dump trust objects in internal format

See 'trust <command> --help' for more information

To list all system trust anchors and certificates, use the trust list command:

$ trust list
pkcs11:id=%d2%87%b4%e3%df%37%27%93%55%f6%56%ea%81%e5%36%cc%8c%1e%3
f%bd;type=cert
 type: certificate
 label: ACCVRAIZ1
 trust: anchor
 category: authority

pkcs11:id=%a6%b3%e1%2b%2b%49%b6%d7%73%a1%aa%94%f5%01%e7%73%65%4c%
ac%50;type=cert
 type: certificate
 label: ACEDICOM Root
 trust: anchor
 category: authority
...

Red Hat Enterprise Linux 8 Security hardening

46

To store a trust anchor into the system-wide trust store, use the trust anchor sub-command
and specify a path to a certificate. Replace path.to/certificate.crt by a path to your certificate
and its file name:

trust anchor path.to/certificate.crt

To remove a certificate, use either a path to a certificate or an ID of a certificate:

trust anchor --remove path.to/certificate.crt
trust anchor --remove "pkcs11:id=%AA%BB%CC%DD%EE;type=cert"

Additional resources

All sub-commands of the trust commands offer a detailed built-in help, for example:

$ trust list --help
usage: trust list --filter=<what>

 --filter=<what> filter of what to export
 ca-anchors certificate anchors
...
 --purpose=<usage> limit to certificates usable for the purpose
 server-auth for authenticating servers
...

8.4. ADDITIONAL RESOURCES

update-ca-trust(8) and trust(1) man pages

CHAPTER 8. USING SHARED SYSTEM CERTIFICATES

47

CHAPTER 9. SCANNING THE SYSTEM FOR CONFIGURATION
COMPLIANCE AND VULNERABILITIES

A compliance audit is a process of determining whether a given object follows all the rules specified in a
compliance policy. The compliance policy is defined by security professionals who specify the required
settings, often in the form of a checklist, that a computing environment should use.

Compliance policies can vary substantially across organizations and even across different systems within
the same organization. Differences among these policies are based on the purpose of each system and
its importance for the organization. Custom software settings and deployment characteristics also raise
a need for custom policy checklists.

9.1. CONFIGURATION COMPLIANCE TOOLS IN RHEL

Red Hat Enterprise Linux provides tools that enable you to perform a fully automated compliance audit.
These tools are based on the Security Content Automation Protocol (SCAP) standard and are designed
for automated tailoring of compliance policies.

SCAP Workbench - The scap-workbench graphical utility is designed to perform configuration
and vulnerability scans on a single local or remote system. You can also use it to generate
security reports based on these scans and evaluations.

OpenSCAP - The OpenSCAP library, with the accompanying oscap command-line utility, is
designed to perform configuration and vulnerability scans on a local system, to validate
configuration compliance content, and to generate reports and guides based on these scans
and evaluations.

SCAP Security Guide (SSG) - The scap-security-guide package provides the latest collection
of security policies for Linux systems. The guidance consists of a catalog of practical hardening
advice, linked to government requirements where applicable. The project bridges the gap
between generalized policy requirements and specific implementation guidelines.

Script Check Engine (SCE) - SCE is an extension to the SCAP protocol that enables
administrators to write their security content using a scripting language, such as Bash, Python,
and Ruby. The SCE extension is provided in the openscap-engine-sce package. The SCE itself
is not part of the SCAP standard.

To perform automated compliance audits on multiple systems remotely, you can use the OpenSCAP
solution for Red Hat Satellite.

Additional resources

oscap(8), scap-workbench(8), and scap-security-guide(8) man pages

Red Hat Security Demos: Creating Customized Security Policy Content to Automate Security
Compliance

Red Hat Security Demos: Defend Yourself with RHEL Security Technologies

Security Compliance Management in the Administering Red Hat Satellite Guide .

9.2. VULNERABILITY SCANNING

9.2.1. Red Hat Security Advisories OVAL feed

Red Hat Enterprise Linux 8 Security hardening

48

https://2020-summit-labs.gitlab.io/rhel-custom-security-content/
https://github.com/RedHatDemos/SecurityDemos/blob/master/2020Labs/RHELSecurity/documentation/README.adoc
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/administering_red_hat_satellite/chap-red_hat_satellite-administering_red_hat_satellite-security_compliance_management

Red Hat Enterprise Linux security auditing capabilities are based on the Security Content Automation
Protocol (SCAP) standard. SCAP is a multi-purpose framework of specifications that supports
automated configuration, vulnerability and patch checking, technical control compliance activities, and
security measurement.

SCAP specifications create an ecosystem where the format of security content is well-known and
standardized although the implementation of the scanner or policy editor is not mandated. This enables
organizations to build their security policy (SCAP content) once, no matter how many security vendors
they employ.

The Open Vulnerability Assessment Language (OVAL) is the essential and oldest component of SCAP.
Unlike other tools and custom scripts, OVAL describes a required state of resources in a declarative
manner. OVAL code is never executed directly but using an OVAL interpreter tool called scanner. The
declarative nature of OVAL ensures that the state of the assessed system is not accidentally modified.

Like all other SCAP components, OVAL is based on XML. The SCAP standard defines several document
formats. Each of them includes a different kind of information and serves a different purpose.

Red Hat Product Security helps customers evaluate and manage risk by tracking and investigating all
security issues affecting Red Hat customers. It provides timely and concise patches and security
advisories on the Red Hat Customer Portal. Red Hat creates and supports OVAL patch definitions,
providing machine-readable versions of our security advisories.

Because of differences between platforms, versions, and other factors, Red Hat Product Security
qualitative severity ratings of vulnerabilities do not directly align with the Common Vulnerability Scoring
System (CVSS) baseline ratings provided by third parties. Therefore, we recommend that you use the
RHSA OVAL definitions instead of those provided by third parties.

The RHSA OVAL definitions are available individually and as a complete package, and are updated within
an hour of a new security advisory being made available on the Red Hat Customer Portal.

Each OVAL patch definition maps one-to-one to a Red Hat Security Advisory (RHSA). Because an
RHSA can contain fixes for multiple vulnerabilities, each vulnerability is listed separately by its Common
Vulnerabilities and Exposures (CVE) name and has a link to its entry in our public bug database.

The RHSA OVAL definitions are designed to check for vulnerable versions of RPM packages installed on
a system. It is possible to extend these definitions to include further checks, for example, to find out if
the packages are being used in a vulnerable configuration. These definitions are designed to cover
software and updates shipped by Red Hat. Additional definitions are required to detect the patch status
of third-party software.

Additional resources

Red Hat and OVAL compatibility

Red Hat and CVE compatibility

Notifications and Advisories in the Product Security Overview

Security Data Metrics

9.2.2. Scanning the system for vulnerabilities

The oscap command-line utility enables you to scan local systems, validate configuration compliance
content, and generate reports and guides based on these scans and evaluations. This utility serves as a
front end to the OpenSCAP library and groups its functionalities to modules (sub-commands) based on

CHAPTER 9. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

49

https://access.redhat.com/security/team/
https://www.redhat.com/security/data/oval/v2/
https://access.redhat.com/articles/221883
https://access.redhat.com/articles/2123171
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/overview
https://www.redhat.com/security/data/metrics/

the type of SCAP content it processes.

Prerequisites

The AppStream repository is enabled.

Procedure

1. Install the openscap-scanner and bzip2 packages:

yum install openscap-scanner bzip2

2. Download the latest RHSA OVAL definitions for your system:

wget -O - https://www.redhat.com/security/data/oval/v2/RHEL8/rhel-8.oval.xml.bz2 | bzip2 -
-decompress > rhel-8.oval.xml

3. Scan the system for vulnerabilities and save results to the vulnerability.html file:

oscap oval eval --report vulnerability.html rhel-8.oval.xml

Verification

1. Check the results in a browser of your choice, for example:

$ firefox vulnerability.html &

Additional resources

oscap(8) man page

Red Hat OVAL definitions

9.2.3. Scanning remote systems for vulnerabilities

You can check also remote systems for vulnerabilities with the OpenSCAP scanner using the oscap-ssh
tool over the SSH protocol.

Prerequisites

The AppStream repository is enabled.

The openscap-scanner package is installed on the remote systems.

The SSH server is running on the remote systems.

Procedure

1. Install the openscap-utils and bzip2 packages:

yum install openscap-utils bzip2

Red Hat Enterprise Linux 8 Security hardening

50

https://www.redhat.com/security/data/oval/v2/RHEL8/

2. Download the latest RHSA OVAL definitions for your system:

wget -O - https://www.redhat.com/security/data/oval/v2/RHEL8/rhel-8.oval.xml.bz2 | bzip2 -
-decompress > rhel-8.oval.xml

3. Scan a remote system with the machine1 host name, SSH running on port 22, and the joesec
user name for vulnerabilities and save results to the remote-vulnerability.html file:

oscap-ssh joesec@machine1 22 oval eval --report remote-vulnerability.html rhel-8.oval.xml

Additional resources

oscap-ssh(8)

Red Hat OVAL definitions

9.3. CONFIGURATION COMPLIANCE SCANNING

9.3.1. Configuration compliance in RHEL 8

You can use configuration compliance scanning to conform to a baseline defined by a specific
organization. For example, if you work with the US government, you might have to comply with the
Operating System Protection Profile (OSPP), and if you are a payment processor, you might have to be
compliant with the Payment Card Industry Data Security Standard (PCI-DSS). You can also perform
configuration compliance scanning to harden your system security.

Red Hat recommends you follow the Security Content Automation Protocol (SCAP) content provided
in the SCAP Security Guide package because it is in line with Red Hat best practices for affected
components.

The SCAP Security Guide package provides content which conforms to the SCAP 1.2 and SCAP 1.3
standards. The openscap scanner utility is compatible with both SCAP 1.2 and SCAP 1.3 content
provided in the SCAP Security Guide package.

IMPORTANT

Performing a configuration compliance scanning does not guarantee the system is
compliant.

The SCAP Security Guide suite provides profiles for several platforms in a form of data stream
documents. A data stream is a file that contains definitions, benchmarks, profiles, and individual rules.
Each rule specifies the applicability and requirements for compliance. RHEL 8 provides several profiles
for compliance with security policies. In addition to the industry standard, Red Hat data streams also
contain information for remediation of failed rules.

Structure of compliance scanning resources

Data stream
 ├── xccdf
 | ├── benchmark
 | ├── profile
 | | ├──rule reference
 | | └──variable

CHAPTER 9. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

51

https://www.redhat.com/security/data/oval/v2/RHEL8/

 | ├── rule
 | ├── human readable data
 | ├── oval reference
 ├── oval ├── ocil reference
 ├── ocil ├── cpe reference
 └── cpe └── remediation

A profile is a set of rules based on a security policy, such as OSPP, PCI-DSS, and Health Insurance
Portability and Accountability Act (HIPAA). This enables you to audit the system in an automated way
for compliance with security standards.

You can modify (tailor) a profile to customize certain rules, for example, password length. For more
information on profile tailoring, see Customizing a security profile with SCAP Workbench .

9.3.2. Possible results of an OpenSCAP scan

Depending on various properties of your system and the data stream and profile applied to an
OpenSCAP scan, each rule may produce a specific result. This is a list of possible results with brief
explanations of what they mean.

Table 9.1. Possible results of an OpenSCAP scan

Result Explanation

Pass The scan did not find any conflicts with this rule.

Fail The scan found a conflict with this rule.

Not checked OpenSCAP does not perform an automatic
evaluation of this rule. Check whether your system
conforms to this rule manually.

Not applicable This rule does not apply to the current configuration.

Not selected This rule is not part of the profile. OpenSCAP does
not evaluate this rule and does not display these rules
in the results.

Error The scan encountered an error. For additional
information, you can enter the oscap command with
the --verbose DEVEL option. Consider opening a
bug report.

Unknown The scan encountered an unexpected situation. For
additional information, you can enter the oscap
command with the `--verbose DEVEL option.
Consider opening a bug report.

9.3.3. Viewing profiles for configuration compliance

Before you decide to use profiles for scanning or remediation, you can list them and check their detailed
descriptions using the oscap info sub-command.

Red Hat Enterprise Linux 8 Security hardening

52

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Enterprise Linux 8
https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Enterprise Linux 8

Prerequisites

The openscap-scanner and scap-security-guide packages are installed.

Procedure

1. List all available files with security compliance profiles provided by the SCAP Security Guide
project:

$ ls /usr/share/xml/scap/ssg/content/
ssg-firefox-cpe-dictionary.xml ssg-rhel6-ocil.xml
ssg-firefox-cpe-oval.xml ssg-rhel6-oval.xml
...
ssg-rhel6-ds-1.2.xml ssg-rhel8-oval.xml
ssg-rhel8-ds.xml ssg-rhel8-xccdf.xml
...

2. Display detailed information about a selected data stream using the oscap info sub-command.
XML files containing data streams are indicated by the -ds string in their names. In the Profiles
section, you can find a list of available profiles and their IDs:

$ oscap info /usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml
...
Profiles:
 Title: Health Insurance Portability and Accountability Act (HIPAA)
 Id: xccdf_org.ssgproject.content_profile_hipaa
 Title: PCI-DSS v3.2.1 Control Baseline for Red Hat Enterprise Linux 8
 Id: xccdf_org.ssgproject.content_profile_pci-dss
 Title: OSPP - Protection Profile for General Purpose Operating Systems
 Id: xccdf_org.ssgproject.content_profile_ospp
...

3. Select a profile from the data-stream file and display additional details about the selected
profile. To do so, use oscap info with the --profile option followed by the last section of the ID
displayed in the output of the previous command. For example, the ID of the HIPPA profile is:
xccdf_org.ssgproject.content_profile_hipaa, and the value for the --profile option is hipaa:

$ oscap info --profile hipaa /usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml
...
Profile
 Title: Health Insurance Portability and Accountability Act (HIPAA)

 Description: The HIPAA Security Rule establishes U.S. national standards to protect
individuals’ electronic personal health information that is created, received, used, or
maintained by a covered entity.
...

Additional resources

scap-security-guide(8) man page

9.3.4. Assessing configuration compliance with a specific baseline

To determine whether your system conforms to a specific baseline, follow these steps.

CHAPTER 9. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

53

Prerequisites

The openscap-scanner and scap-security-guide packages are installed

You know the ID of the profile within the baseline with which the system should comply. To find
the ID, see Viewing Profiles for Configuration Compliance.

Procedure

1. Evaluate the compliance of the system with the selected profile and save the scan results in the
report.html HTML file, for example:

$ sudo oscap xccdf eval --report report.html --profile hipaa
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

2. Optional: Scan a remote system with the machine1 host name, SSH running on port 22, and the
joesec user name for compliance and save results to the remote-report.html file:

$ oscap-ssh joesec@machine1 22 xccdf eval --report remote_report.html --profile hipaa
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

Additional resources

scap-security-guide(8) man page

SCAP Security Guide documentation in the file:///usr/share/doc/scap-security-guide/
directory

Guide to the Secure Configuration of Red Hat Enterprise Linux 8 installed with the scap-
security-guide-doc package

9.4. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC
BASELINE

Use this procedure to remediate the RHEL 8 system to align with a specific baseline. This example uses
the Health Insurance Portability and Accountability Act (HIPAA) profile.

WARNING

If not used carefully, running the system evaluation with the Remediate option
enabled might render the system non-functional. Red Hat does not provide any
automated method to revert changes made by security-hardening remediations.
Remediations are supported on RHEL systems in the default configuration. If your
system has been altered after the installation, running remediation might not make
it compliant with the required security profile.

Prerequisites

The scap-security-guide package is installed on your RHEL 8 system.



Red Hat Enterprise Linux 8 Security hardening

54

file:///usr/share/doc/scap-security-guide/
file:///usr/share/doc/scap-security-guide/guides/ssg-rhel8-guide-index.html

Procedure

1. Use the oscap command with the --remediate option:

$ sudo oscap xccdf eval --profile hipaa --remediate /usr/share/xml/scap/ssg/content/ssg-
rhel8-ds.xml

2. Restart your system.

Verification

1. Evaluate compliance of the system with the HIPAA profile, and save scan results in the
hipaa_report.html file:

$ oscap xccdf eval --report hipaa_report.html --profile hipaa
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

Additional resources

scap-security-guide(8) and oscap(8) man pages

9.5. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC
BASELINE USING THE SSG ANSIBLE PLAYBOOK

Use this procedure to remediate your system with a specific baseline using the Ansible playbook file
from the SCAP Security Guide project. This example uses the Health Insurance Portability and
Accountability Act (HIPAA) profile.

WARNING

If not used carefully, running the system evaluation with the Remediate option
enabled might render the system non-functional. Red Hat does not provide any
automated method to revert changes made by security-hardening remediations.
Remediations are supported on RHEL systems in the default configuration. If your
system has been altered after the installation, running remediation might not make
it compliant with the required security profile.

Prerequisites

The scap-security-guide package is installed on your RHEL 8 system.

The ansible package is installed. See the Ansible Installation Guide for more information.

Procedure

1. Remediate your system to align with HIPAA using Ansible:

ansible-playbook -i localhost, -c local /usr/share/scap-security-guide/ansible/rhel8-
playbook-hipaa.yml



CHAPTER 9. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

55

https://docs.ansible.com/ansible/latest/installation_guide/

2. Restart the system.

Verification

1. Evaluate compliance of the system with the HIPAA profile, and save scan results in the
hipaa_report.html file:

oscap xccdf eval --profile hipaa --report hipaa_report.html
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

Additional resources

scap-security-guide(8) and oscap(8) man pages

Ansible Documentation

9.6. CREATING A REMEDIATION ANSIBLE PLAYBOOK TO ALIGN THE
SYSTEM WITH A SPECIFIC BASELINE

You can create an Ansible playbook containing only the remediations that are required to align your
system with a specific baseline. This example uses the Health Insurance Portability and Accountability
Act (HIPAA) profile. With this procedure, you create a smaller playbook that does not cover already
satisfied requirements. By following these steps, you do not modify your system in any way, you only
prepare a file for later application.

Prerequisites

The scap-security-guide package is installed on your RHEL 8 system.

Procedure

1. Scan the system and save the results:

oscap xccdf eval --profile hipaa --results hipaa-results.xml
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

2. Generate an Ansible playbook based on the file generated in the previous step:

oscap xccdf generate fix --fix-type ansible --output hipaa-remediations.yml hipaa-
results.xml

3. The hipaa-remediations.yml file contains Ansible remediations for rules that failed during the
scan performed in step 1. After reviewing this generated file, you can apply it with the ansible-
playbook hipaa-remediations.yml command.

Verification

1. In a text editor of your choice, review that the hipaa-remediations.yml file contains rules that
failed in the scan performed in step 1.

Additional resources

Red Hat Enterprise Linux 8 Security hardening

56

https://docs.ansible.com/

scap-security-guide(8) and oscap(8) man pages

Ansible Documentation

9.7. CREATING A REMEDIATION BASH SCRIPT FOR A LATER
APPLICATION

Use this procedure to create a Bash script containing remediations that align your system with a security
profile such as HIPAA. Using the following steps, you do not do any modifications to your system, you
only prepare a file for later application.

Prerequisites

The scap-security-guide package is installed on your RHEL 8 system.

Procedure

1. Use the oscap command to scan the system and to save the results to an XML file. In the
following example, oscap evaluates the system against the hipaa profile:

oscap xccdf eval --profile hipaa --results hipaa-results.xml
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

2. Generate a Bash script based on the results file generated in the previous step:

oscap xccdf generate fix --profile hipaa --fix-type bash --output hipaa-remediations.sh
hipaa-results.xml

3. The hipaa-remediations.sh file contains remediations for rules that failed during the scan
performed in step 1. After reviewing this generated file, you can apply it with the ./hipaa-
remediations.sh command when you are in the same directory as this file.

Verification

1. In a text editor of your choice, review that the hipaa-remediations.sh file contains rules that
failed in the scan performed in step 1.

Additional resources

scap-security-guide(8), oscap(8), and bash(1) man pages

9.8. SCANNING THE SYSTEM WITH A CUSTOMIZED PROFILE USING
SCAP WORKBENCH

SCAP Workbench, which is contained in the scap-workbench package, is a graphical utility that
enables users to perform configuration and vulnerability scans on a single local or a remote system,
perform remediation of the system, and generate reports based on scan evaluations. Note that SCAP
Workbench has limited functionality compared with the oscap command-line utility. SCAP
Workbench processes security content in the form of data-stream files.

9.8.1. Using SCAP Workbench to scan and remediate the system

CHAPTER 9. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

57

https://docs.ansible.com/

To evaluate your system against the selected security policy, use the following procedure.

Prerequisites

The scap-workbench package is installed on your system.

Procedure

1. To run SCAP Workbench from the GNOME Classic desktop environment, press the Super
key to enter the Activities Overview, type scap-workbench, and then press Enter.
Alternatively, use:

$ scap-workbench &

2. Select a security policy using either of the following options:

Load Content button on the starting window

Open content from SCAP Security Guide

Open Other Content in the File menu, and search the respective XCCDF, SCAP RPM, or
data stream file.

3. You can allow automatic correction of the system configuration by selecting the Remediate
check box. With this option enabled, SCAP Workbench attempts to change the system
configuration in accordance with the security rules applied by the policy. This process should fix
the related checks that fail during the system scan.

WARNING

If not used carefully, running the system evaluation with the Remediate
option enabled might render the system non-functional. Red Hat does not
provide any automated method to revert changes made by security-
hardening remediations. Remediations are supported on RHEL systems in
the default configuration. If your system has been altered after the
installation, running remediation might not make it compliant with the
required security profile.

4. Scan your system with the selected profile by clicking the Scan button.



Red Hat Enterprise Linux 8 Security hardening

58

5. To store the scan results in form of an XCCDF, ARF, or HTML file, click the Save Results
combo box. Choose the HTML Report option to generate the scan report in human-readable
format. The XCCDF and ARF (data stream) formats are suitable for further automatic
processing. You can repeatedly choose all three options.

6. To export results-based remediations to a file, use the Generate remediation role pop-up
menu.

9.8.2. Customizing a security profile with SCAP Workbench

You can customize a security profile by changing parameters in certain rules (for example, minimum
password length), removing rules that you cover in a different way, and selecting additional rules, to
implement internal policies. You cannot define new rules by customizing a profile.

The following procedure demonstrates the use of SCAP Workbench for customizing (tailoring) a
profile. You can also save the tailored profile for use with the oscap command-line utility.

Prerequisites

The scap-workbench package is installed on your system.

Procedure

1. Run SCAP Workbench, and select the profile to customize by using either Open content from
SCAP Security Guide or Open Other Content in the File menu.

2. To adjust the selected security profile according to your needs, click the Customize button.

This opens the new Customization window that enables you to modify the currently selected

CHAPTER 9. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

59

This opens the new Customization window that enables you to modify the currently selected
profile without changing the original data stream file. Choose a new profile ID.

3. Find a rule to modify using either the tree structure with rules organized into logical groups or
the Search field.

4. Include or exclude rules using check boxes in the tree structure, or modify values in rules where
applicable.

5. Confirm the changes by clicking the OK button.

6. To store your changes permanently, use one of the following options:

Save a customization file separately by using Save Customization Only in the File menu.

Save all security content at once by Save All in the File menu.
If you select the Into a directory option, SCAP Workbench saves both the data stream file
and the customization file to the specified location. You can use this as a backup solution.

Red Hat Enterprise Linux 8 Security hardening

60

By selecting the As RPM option, you can instruct SCAP Workbench to create an RPM
package containing the data stream file and the customization file. This is useful for
distributing the security content to systems that cannot be scanned remotely, and for
delivering the content for further processing.

NOTE

Because SCAP Workbench does not support results-based remediations for tailored
profiles, use the exported remediations with the oscap command-line utility.

9.8.3. Related information

scap-workbench(8) man page

SCAP Workbench User Manual

Deploy customized SCAP policies with Satellite 6.x - a Knowledge Base article on tailoring
scripts

9.9. DEPLOYING SYSTEMS THAT ARE COMPLIANT WITH A SECURITY
PROFILE IMMEDIATELY AFTER AN INSTALLATION

You can use the OpenSCAP suite to deploy RHEL systems that are compliant with a security profile,
such as OSPP, PCI-DSS, and HIPAA profile, immediately after the installation process. Using this
deployment method, you can apply specific rules that cannot be applied later using remediation scripts,
for example, a rule for password strength and partitioning.

9.9.1. Deploying baseline-compliant RHEL systems using the graphical installation

Use this procedure to deploy a RHEL system that is aligned with a specific baseline. This example uses
Protection Profile for General Purpose Operating System (OSPP).

Prerequisites

You have booted into the graphical installation program. Note that the OSCAP Anaconda
Add-on does not support text-only installation.

You have accessed the Installation Summary window.

Procedure

1. From the Installation Summary window, click Software Selection. The Software Selection
window opens.

2. From the Base Environment pane, select the Server environment. You can select only one
base environment.

CHAPTER 9. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

61

file:///usr/share/doc/scap-workbench/user_manual.html
https://access.redhat.com/solutions/2377951

WARNING

Do not use the Server with GUI base environment if you want to deploy a
compliant system. Security profiles provided as part of the SCAP Security
Guide may not be compatible with the extended package set of Server
with GUI. For more information, see, for example, BZ#1648162,
BZ#1787156, or BZ#1816199.

3. Click Done to apply the setting and return to the Installation Summary window.

4. Click Security Policy. The Security Policy window opens.

5. To enable security policies on the system, toggle the Apply security policy switch to ON.

6. Select Protection Profile for General Purpose Operating Systems from the profile pane.

7. Click Select Profile to confirm the selection.

8. Confirm the changes in the Changes that were done or need to be done pane that is
displayed at the bottom of the window. Complete any remaining manual changes.

9. Because OSPP has strict partitioning requirements that must be met, create separate partitions
for /boot, /home, /var, /var/log, /var/tmp, and /var/log/audit.

10. Complete the graphical installation process.

NOTE

The graphical installation program automatically creates a corresponding
Kickstart file after a successful installation. You can use the /root/anaconda-
ks.cfg file to automatically install OSPP-compliant systems.

Verification

1. To check the current status of the system after installation is complete, reboot the system and
start a new scan:

oscap xccdf eval --profile ospp --report eval_postinstall_report.html
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

Additional resources

For more details on partitioning, see Configuring manual partitioning.

9.9.2. Deploying baseline-compliant RHEL systems using Kickstart

Use this procedure to deploy RHEL systems that are aligned with a specific baseline. This example uses
Protection Profile for General Purpose Operating System (OSPP).

Prerequisites



Red Hat Enterprise Linux 8 Security hardening

62

https://bugzilla.redhat.com/show_bug.cgi?id=1648162
https://bugzilla.redhat.com/show_bug.cgi?id=1787156
https://bugzilla.redhat.com/show_bug.cgi?id=1816199
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_installation/graphical-installation_graphical-installation#manual-partitioning_graphical-installation

The scap-security-guide package is installed on your RHEL 8 system.

Procedure

1. Open the /usr/share/scap-security-guide/kickstarts/ssg-rhel8-ospp-ks.cfg Kickstart file in
an editor of your choice.

2. Update the partitioning scheme to fit your configuration requirements. For OSPP compliance,
the separate partitions for /boot, /home, /var, /var/log, /var/tmp, and /var/log/audit must be
preserved, and you can only change the size of the partitions.

WARNING

Because the OSCAP Anaconda Addon plugin does not support text-only
installation, do not use the text option in your Kickstart file. For more
information, see RHBZ#1674001.

3. Start a Kickstart installation as described in Performing an automated installation using
Kickstart.

IMPORTANT

Passwords in the hash form cannot be checked for OSPP requirements.

Verification

1. To check the current status of the system after installation is complete, reboot the system and
start a new scan:

oscap xccdf eval --profile ospp --report eval_postinstall_report.html
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

Additional resources

For more details, see the OSCAP Anaconda Addon project page.

9.10. SCANNING CONTAINER AND CONTAINER IMAGES FOR
VULNERABILITIES

Use this procedure to find security vulnerabilities in a container or a container image.

NOTE

The oscap-podman command is available from RHEL 8.2. For RHEL 8.1 and 8.0, use the
workaround described in the Using OpenSCAP for scanning containers in RHEL 8
Knowledgebase article.

Prerequisites



CHAPTER 9. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

63

https://bugzilla.redhat.com/show_bug.cgi?id=1674001
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_an_advanced_rhel_installation/starting-kickstart-installations_installing-rhel-as-an-experienced-user
https://www.open-scap.org/tools/oscap-anaconda-addon/
https://access.redhat.com/articles/4392051

The openscap-utils package is installed.

Procedure

1. Download the latest RHSA OVAL definitions for your system:

wget -O - https://www.redhat.com/security/data/oval/v2/RHEL8/rhel-8.oval.xml.bz2 | bzip2 -
-decompress > rhel-8.oval.xml

2. Get the ID of a container or a container image, for example:

podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi8/ubi latest 096cae65a207 7 weeks ago 239 MB

3. Scan the container or the container image for vulnerabilities and save results to the
vulnerability.html file:

oscap-podman 096cae65a207 oval eval --report vulnerability.html rhel-8.oval.xml

Note that the oscap-podman command requires root privileges, and the ID of a container is the
first argument.

Verification

1. Check the results in a browser of your choice, for example:

$ firefox vulnerability.html &

Additional resources

For more information, see the oscap-podman(8) and oscap(8) man pages.

9.11. ASSESSING SECURITY COMPLIANCE OF A CONTAINER OR A
CONTAINER IMAGE WITH A SPECIFIC BASELINE

Follow these steps to assess compliance of your container or a container image with a specific security
baseline, such as Operating System Protection Profile (OSPP), Payment Card Industry Data Security
Standard (PCI-DSS), and Health Insurance Portability and Accountability Act (HIPAA).

NOTE

The oscap-podman command is available from RHEL 8.2. For RHEL 8.1 and 8.0, use the
workaround described in the Using OpenSCAP for scanning containers in RHEL 8
Knowledgebase article.

Prerequisites

The openscap-utils and scap-security-guide packages are installed.

Procedure

Red Hat Enterprise Linux 8 Security hardening

64

https://access.redhat.com/articles/4392051

1. Get the ID of a container or a container image, for example:

podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi8/ubi latest 096cae65a207 7 weeks ago 239 MB

2. Evaluate the compliance of the container image with the HIPAA profile and save scan results
into the report.html HTML file

oscap-podman 096cae65a207 xccdf eval --report report.html --profile hipaa
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

Replace 096cae65a207 with the ID of your container image and the hipaa value with ospp or
pci-dss if you assess security compliance with the OSPP or PCI-DSS baseline. Note that the
oscap-podman command requires root privileges.

Verification

1. Check the results in a browser of your choice, for example:

$ firefox report.html &

NOTE

The rules marked as notapplicable are rules that do not apply to containerized systems.
These rules apply only to bare-metal and virtualized systems.

Additional resources

oscap-podman(8) and scap-security-guide(8) man pages.

file:///usr/share/doc/scap-security-guide/ directory.

9.12. SUPPORTED VERSIONS OF THE SCAP SECURITY GUIDE IN RHEL

Officially supported versions of the SCAP Security Guide are versions provided in the related minor
release of RHEL or in the related batch update of RHEL.

Table 9.2. Supported versions of the SCAP Security Guide in RHEL

Red Hat Enterprise Linux version SCAP Security Guide version

RHEL 6.6 scap-security-guide-0.1.18-3.el6

RHEL 6.9 scap-security-guide-0.1.28-3.el6

RHEL 6.10 scap-security-guide-0.1.28-4.el6

RHEL 7.2 AUS scap-security-guide-0.1.25-3.el7

RHEL 7.3 AUS scap-security-guide-0.1.30-5.el7_3

CHAPTER 9. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

65

file:///usr/share/doc/scap-security-guide/

RHEL 7.4 AUS, E4S scap-security-guide-0.1.33-6.el7_4

RHEL 7.5 (batch update) scap-security-guide-0.1.36-10.el7_5

RHEL 7.6 EUS scap-security-guide-0.1.40-13.el7_6

RHEL 7.7 EUS scap-security-guide-0.1.43-13.el7

RHEL 7.8 (batch update) scap-security-guide-0.1.46-11.el7

RHEL 7.9 (batch update) scap-security-guide-0.1.54-7.el7_9

RHEL 8.0 SAP scap-security-guide-0.1.42-11.el8

RHEL 8.1 EUS scap-security-guide-0.1.47-8.el8_1

RHEL 8.2 (batch update) scap-security-guide-0.1.48-10.el8_2

RHEL 8.3 scap-security-guide-0.1.50-16.el8_3

RHEL 8.4 scap-security-guide-0.1.54-5.el8

Red Hat Enterprise Linux version SCAP Security Guide version

9.13. SCAP SECURITY GUIDE PROFILES SUPPORTED IN RHEL 8

Use only the SCAP content provided in the particular minor release of RHEL. This is because
components that participate in hardening are sometimes updated with new capabilities. SCAP content
changes to reflect these updates, but it is not always backward compatible.

In the following tables, you can find the profiles provided in each minor version of RHEL, together with
the version of the policy with which the profile aligns.

Table 9.3. SCAP Security Guide profiles supported in RHEL 8.4

Profile name Profile ID Policy version

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

1.2

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

1.2

Red Hat Enterprise Linux 8 Security hardening

66

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

1.2

CIS Red Hat Enterprise Linux 8
Benchmark

xccdf_org.ssgproject.conten
t_profile_cis

1.0.0

Unclassified Information in Non-
federal Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r1

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

not versioned

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

not versioned

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_pci-dss

3.2.1

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 8

xccdf_org.ssgproject.conten
t_profile_stig

V1R1

Profile name Profile ID Policy version

Table 9.4. SCAP Security Guide profiles supported in RHEL 8.3

Profile name Profile ID Policy version

CIS Red Hat Enterprise Linux 8
Benchmark

xccdf_org.ssgproject.conten
t_profile_cis

1.0.0

Unclassified Information in Non-
federal Information Systems and
Organizations (NIST 800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r1

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

not versioned

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

not versioned

CHAPTER 9. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

67

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_pci-dss

3.2.1

[DRAFT] The Defense
Information Systems Agency
Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 8

xccdf_org.ssgproject.conten
t_profile_stig

draft

Profile name Profile ID Policy version

Table 9.5. SCAP Security Guide profiles supported in RHEL 8.2

Profile name Profile ID Policy version

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

not versioned

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_pci-dss

3.2.1

[DRAFT] DISA STIG for Red Hat
Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_stig

draft

Table 9.6. SCAP Security Guide profiles supported in RHEL 8.1

Profile name Profile ID Policy version

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_pci-dss

3.2.1

Table 9.7. SCAP Security Guide profiles supported in RHEL 8.0

Profile name Profile ID Policy version

OSPP - Protection Profile for
General Purpose Operating
Systems

xccdf_org.ssgproject.conten
t_profile_ospp

draft

Red Hat Enterprise Linux 8 Security hardening

68

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 8

xccdf_org.ssgproject.conten
t_profile_pci-dss

3.2.1

Profile name Profile ID Policy version

Additional Resources

For information about profiles in RHEL 7, see SCAP Security Guide profiles supported in RHEL 7

9.14. RELATED INFORMATION

The OpenSCAP project page - The home page of the OpenSCAP project provides detailed
information about the oscap utility and other components and projects related to SCAP.

The SCAP Workbench project page - The home page of the SCAP Workbench project provides
detailed information about the scap-workbench application.

The SCAP Security Guide (SSG) project page - The home page of the SSG project that
provides the latest security content for Red Hat Enterprise Linux.

Red Hat Security Demos: Creating Customized Security Policy Content to Automate Security
Compliance - A hands-on lab to get initial experience in automating security compliance using
the tools that are included in Red Hat Enterprise Linux to comply with both industry standard
security policies and custom security policies. If you want training or access to these lab
exercises for your team, contact your Red Hat account team for additional details.

Red Hat Security Demos: Defend Yourself with RHEL Security Technologies - A hands-on lab to
learn how to implement security at all levels of your RHEL system, using the key security
technologies available to you in Red Hat Enterprise Linux, including OpenSCAP. If you want
training or access to these lab exercises for your team, contact your Red Hat account team for
additional details.

National Institute of Standards and Technology (NIST) SCAP page - This page represents a
vast collection of SCAP-related materials, including SCAP publications, specifications, and the
SCAP Validation Program.

National Vulnerability Database (NVD) - This page represents the largest repository of SCAP
content and other SCAP standards-based vulnerability management data.

Red Hat OVAL content repository - This is a repository containing OVAL definitions for
vulnerabilities of Red Hat Enterprise Linux systems. This is the recommended source of
vulnerability content.

MITRE CVE - This is a database of publicly known security vulnerabilities provided by the MITRE
corporation. For RHEL, using OVAL CVE content provided by Red Hat is recommended.

MITRE OVAL - This is an OVAL-related project provided by the MITRE corporation. Among
other OVAL-related information, these pages contain the OVAL language and a repository of
OVAL content with thousands of OVAL definitions. Note that for scanning RHEL, using OVAL
CVE content provided by Red Hat is recommended.

Managing security compliance in Red Hat Satellite - This set of guides describes, among other
topics, how to maintain system security on multiple systems by using OpenSCAP.

CHAPTER 9. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

69

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/scap-security-guide-profiles-supported-in-rhel-7_scanning-the-system-for-configuration-compliance-and-vulnerabilities
http://www.open-scap.org
https://www.open-scap.org/tools/scap-workbench/
https://www.open-scap.org/security-policies/scap-security-guide/
https://2020-summit-labs.gitlab.io/rhel-custom-security-content/
https://github.com/RedHatDemos/SecurityDemos/blob/master/2020Labs/RHELSecurity/documentation/README.adoc
http://scap.nist.gov/
http://nvd.nist.gov/
http://www.redhat.com/security/data/oval/
http://cve.mitre.org/
http://oval.mitre.org/
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html/administering_red_hat_satellite/chap-red_hat_satellite-administering_red_hat_satellite-security_compliance_management

CHAPTER 10. CHECKING INTEGRITY WITH AIDE
Advanced Intrusion Detection Environment (AIDE) is a utility that creates a database of files on the
system, and then uses that database to ensure file integrity and detect system intrusions.

10.1. INSTALLING AIDE

The following steps are necessary to install AIDE and to initiate its database.

Prerequisites

The AppStream repository is enabled.

Procedure

1. To install the aide package:

yum install aide

2. To generate an initial database:

aide --init

NOTE

In the default configuration, the aide --init command checks just a set of
directories and files defined in the /etc/aide.conf file. To include additional
directories or files in the AIDE database, and to change their watched
parameters, edit /etc/aide.conf accordingly.

3. To start using the database, remove the .new substring from the initial database file name:

mv /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gz

4. To change the location of the AIDE database, edit the /etc/aide.conf file and modify the
DBDIR value. For additional security, store the database, configuration, and the /usr/sbin/aide
binary file in a secure location such as a read-only media.

10.2. PERFORMING INTEGRITY CHECKS WITH AIDE

Prerequisites

AIDE is properly installed and its database is initialized. See Installing AIDE

Procedure

1. To initiate a manual check:

aide --check
Start timestamp: 2018-07-11 12:41:20 +0200 (AIDE 0.16)
AIDE found differences between database and filesystem!!

Red Hat Enterprise Linux 8 Security hardening

70

...
[trimmed for clarity]

2. At a minimum, configure the system to run AIDE weekly. Optimally, run AIDE daily. For example,
to schedule a daily execution of AIDE at 04:05 a.m. using the cron command, add the following
line to the /etc/crontab file:

 05 4 * * * root /usr/sbin/aide --check

10.3. UPDATING AN AIDE DATABASE

After verifying the changes of your system such as, package updates or configuration files adjustments,
Red Hat recommends updating your baseline AIDE database.

Prerequisites

AIDE is properly installed and its database is initialized. See Installing AIDE

Procedure

1. Update your baseline AIDE database:

aide --update

The aide --update command creates the /var/lib/aide/aide.db.new.gz database file.

2. To start using the updated database for integrity checks, remove the .new substring from the
file name.

10.4. RELATED INFORMATION

aide(1) man page

CHAPTER 10. CHECKING INTEGRITY WITH AIDE

71

CHAPTER 11. ENCRYPTING BLOCK DEVICES USING LUKS
Disk encryption protects the data on a block device by encrypting it. To access the device’s decrypted
contents, a user must provide a passphrase or key as authentication. This is particularly important when
it comes to mobile computers and removable media: it helps to protect the device’s contents even if it
has been physically removed from the system. The LUKS format is a default implementation of block
device encryption in RHEL.

11.1. LUKS DISK ENCRYPTION

The Linux Unified Key Setup-on-disk-format (LUKS) enables you to encrypt block devices and it
provides a set of tools that simplifies managing the encrypted devices. LUKS allows multiple user keys
to decrypt a master key, which is used for the bulk encryption of the partition.

RHEL utilizes LUKS to perform block device encryption. By default, the option to encrypt the block
device is unchecked during the installation. If you select the option to encrypt your disk, the system
prompts you for a passphrase every time you boot the computer. This passphrase “unlocks” the bulk
encryption key that decrypts your partition. If you choose to modify the default partition table, you can
choose which partitions you want to encrypt. This is set in the partition table settings.

What LUKS does

LUKS encrypts entire block devices and is therefore well-suited for protecting contents of
mobile devices such as removable storage media or laptop disk drives.

The underlying contents of the encrypted block device are arbitrary, which makes it useful for
encrypting swap devices. This can also be useful with certain databases that use specially
formatted block devices for data storage.

LUKS uses the existing device mapper kernel subsystem.

LUKS provides passphrase strengthening, which protects against dictionary attacks.

LUKS devices contain multiple key slots, allowing users to add backup keys or passphrases.

What LUKS does not do

Disk-encryption solutions like LUKS protect the data only when your system is off. Once the
system is on and LUKS has decrypted the disk, the files on that disk are available to anyone who
would normally have access to them.

LUKS is not well-suited for scenarios that require many users to have distinct access keys to the
same device. The LUKS1 format provides eight key slots, LUKS2 up to 32 key slots.

LUKS is not well-suited for applications requiring file-level encryption.

Ciphers

The default cipher used for LUKS is aes-xts-plain64. The default key size for LUKS is 512 bits. The
default key size for LUKS with Anaconda (XTS mode) is 512 bits. Ciphers that are available are:

AES - Advanced Encryption Standard

Twofish (a 128-bit block cipher)

Serpent

Red Hat Enterprise Linux 8 Security hardening

72

Additional resources

LUKS Project Home Page

LUKS On-Disk Format Specification

FIPS PUB 197

11.2. LUKS VERSIONS IN RHEL 8

In RHEL 8, the default format for LUKS encryption is LUKS2. The legacy LUKS1 format remains fully
supported and it is provided as a format compatible with earlier RHEL releases.

The LUKS2 format is designed to enable future updates of various parts without a need to modify
binary structures. LUKS2 internally uses JSON text format for metadata, provides redundancy of
metadata, detects metadata corruption and allows automatic repairs from a metadata copy.

IMPORTANT

Do not use LUKS2 in systems that must be compatible with legacy systems that support
only LUKS1. Note that RHEL 7 supports the LUKS2 format since version 7.6.

WARNING

LUKS2 and LUKS1 use different commands to encrypt the disk. Using the wrong
command for a LUKS version might cause data loss.

LUKS version Encryption command

LUKS2 cryptsetup reencrypt

LUKS1 cryptsetup-reencrypt

Online re-encryption

The LUKS2 format supports re-encrypting encrypted devices while the devices are in use. For example,
you do not have to unmount the file system on the device to perform the following tasks:

Change the volume key

Change the encryption algorithm

When encrypting a non-encrypted device, you must still unmount the file system. You can remount the
file system after a short initialization of the encryption.

The LUKS1 format does not support online re-encryption.

Conversion

The LUKS2 format is inspired by LUKS1. In certain situations, you can convert LUKS1 to LUKS2. The



CHAPTER 11. ENCRYPTING BLOCK DEVICES USING LUKS

73

https://gitlab.com/cryptsetup/cryptsetup/blob/master/README.md
https://gitlab.com/cryptsetup/LUKS2-docs/blob/master/luks2_doc_wip.pdf
https://doi.org/10.6028/NIST.FIPS.197

The LUKS2 format is inspired by LUKS1. In certain situations, you can convert LUKS1 to LUKS2. The
conversion is not possible specifically in the following scenarios:

A LUKS1 device is marked as being used by a Policy-Based Decryption (PBD - Clevis) solution.
The cryptsetup tool refuses to convert the device when some luksmeta metadata are
detected.

A device is active. The device must be in the inactive state before any conversion is possible.

11.3. OPTIONS FOR DATA PROTECTION DURING LUKS2 RE-
ENCRYPTION

LUKS2 provides several options that prioritize performance or data protection during the re-encryption
process:

checksum

This is the default mode. It balances data protection and performance.
This mode stores individual checksums of the sectors in the re-encryption area, so the recovery
process can detect which sectors LUKS2 already re-encrypted. The mode requires that the block
device sector write is atomic.

journal

That is the safest mode but also the slowest. This mode journals the re-encryption area in the binary
area, so LUKS2 writes the data twice.

none

This mode prioritizes performance and provides no data protection. It protects the data only against
safe process termination, such as the SIGTERM signal or the user pressing Ctrl+C. Any unexpected
system crash or application crash might result in data corruption.

You can select the mode using the --resilience option of cryptsetup.

If a LUKS2 re-encryption process terminates unexpectedly by force, LUKS2 can perform the recovery in
one of the following ways:

Automatically, during the next LUKS2 device open action. This action is triggered either by the
cryptsetup open command or by attaching the device with systemd-cryptsetup.

Manually, by using the cryptsetup repair command on the LUKS2 device.

11.4. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING LUKS2

This procedure encrypts existing data on a not yet encrypted device using the LUKS2 format. A new
LUKS header is stored in the head of the device.

Prerequisites

The block device contains a file system.

You have backed up your data.

Red Hat Enterprise Linux 8 Security hardening

74

WARNING

You might lose your data during the encryption process: due to a hardware,
kernel, or human failure. Ensure that you have a reliable backup before you
start encrypting the data.

Procedure

1. Unmount all file systems on the device that you plan to encrypt. For example:

umount /dev/sdb1

2. Make free space for storing a LUKS header. Choose one of the following options that suits your
scenario:

In the case of encrypting a logical volume, you can extend the logical volume without
resizing the file system. For example:

lvextend -L+32M vg00/lv00

Extend the partition using partition management tools, such as parted.

Shrink the file system on the device. You can use the resize2fs utility for the ext2, ext3, or
ext4 file systems. Note that you cannot shrink the XFS file system.

3. Initialize the encryption. For example:

cryptsetup reencrypt \ --encrypt \ --init-only \ --reduce-device-size 32M \ /dev/sdb1
sdb1_encrypted

The command asks you for a passphrase and starts the encryption process.

4. Mount the device:

mount /dev/mapper/sdb1_encrypted /mnt/sdb1_encrypted

5. Start the online encryption:

cryptsetup reencrypt --resume-only /dev/sdb1

Additional resources

cryptsetup(8), lvextend(8), resize2fs(8), and parted(8) man pages

11.5. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING LUKS2
WITH A DETACHED HEADER

This procedure encrypts existing data on a block device without creating free space for storing a LUKS



CHAPTER 11. ENCRYPTING BLOCK DEVICES USING LUKS

75

This procedure encrypts existing data on a block device without creating free space for storing a LUKS
header. The header is stored in a detached location, which also serves as an additional layer of security.
The procedure uses the LUKS2 encryption format.

Prerequisites

The block device contains a file system.

You have backed up your data.

WARNING

You might lose your data during the encryption process: due to a hardware,
kernel, or human failure. Ensure that you have a reliable backup before you
start encrypting the data.

Procedure

1. Unmount all file systems on the device. For example:

umount /dev/sdb1

2. Initialize the encryption:

cryptsetup reencrypt \ --encrypt \ --init-only \ --header /path/to/header \ /dev/sdb1
sdb1_encrypted

Replace /path/to/header with a path to the file with a detached LUKS header. The detached
LUKS header has to be accessible so that the encrypted device can be unlocked later.

The command asks you for a passphrase and starts the encryption process.

3. Mount the device:

mount /dev/mapper/sdb1_encrypted /mnt/sdb1_encrypted

4. Start the online encryption:

cryptsetup reencrypt --resume-only --header /path/to/header /dev/sdb1

Additional resources

cryptsetup(8) man page

11.6. ENCRYPTING A BLANK BLOCK DEVICE USING LUKS2

This procedure provides information about encrypting a blank block device using the LUKS2 format.



Red Hat Enterprise Linux 8 Security hardening

76

Prerequisites

A blank block device.

Procedure

1. Setup a partition as an encrypted LUKS partition:

cryptsetup luksFormat /dev/sdb1

2. Open an encrypted LUKS partition:

cryptsetup open /dev/sdb1 sdb1_encrypted

This unlocks the partition and maps it to a new device using the device mapper. This alerts
kernel that device is an encrypted device and should be addressed through LUKS using the
/dev/mapper/device_mapped_name so as not to overwrite the encrypted data.

3. To write encrypted data to the partition, it must be accessed through the device mapped name.
To do this, you must create a file system. For example:

mkfs -t ext4 /dev/mapper/sdb1_encrypted

4. Mount the device:

mount /dev/mapper/sdb1_encrypted mount-point

Additional resources

cryptsetup(8) man page

11.7. CREATING A LUKS ENCRYPTED VOLUME USING THE STORAGE
ROLE

You can use the storage role to create and configure a volume encrypted with LUKS by running an
Ansible playbook.

Prerequisites

You have Red Hat Ansible Engine installed on the system from which you want to run the
playbook.

NOTE

You do not have to have Red Hat Ansible Automation Platform installed on the
systems on which you want to create the volume.

You have the rhel-system-roles package installed on the Ansible controller.

You have an inventory file detailing the systems on which you want to deploy a LUKS encrypted
volume using the storage System Role.

CHAPTER 11. ENCRYPTING BLOCK DEVICES USING LUKS

77

Procedure

1. Create a new playbook.yml file with the following content:

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 fs_label: label-name
 mount_point: /mnt/data
 encryption: true
 encryption_password: your-password
 roles:
 - rhel-system-roles.storage

2. Optional: Verify playbook syntax:

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory.file /path/to/file/playbook.yml

Additional resources

Encrypting block devices using LUKS

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

Red Hat Enterprise Linux 8 Security hardening

78

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/encrypting-block-devices-using-luks_managing-storage-devices

CHAPTER 12. CONFIGURING AUTOMATED UNLOCKING OF
ENCRYPTED VOLUMES USING POLICY-BASED DECRYPTION

The Policy-Based Decryption (PBD) is a collection of technologies that enable unlocking encrypted root
and secondary volumes of hard drives on physical and virtual machines. PBD uses a variety of unlocking
methods, such as user passwords, a Trusted Platform Module (TPM) device, a PKCS #11 device
connected to a system, for example, a smart card, or a special network server.

PBD allows combining different unlocking methods into a policy, which makes it possible to unlock the
same volume in different ways. The current implementation of the PBD in Red Hat Enterprise Linux
consists of the Clevis framework and plug-ins called pins. Each pin provides a separate unlocking
capability. Currently, the following pins are available:

tang - allows volumes to be unlocked using a network server

tpm2 - allows volumes to be unlocked using a TPM2 policy

The Network Bound Disc Encryption (NBDE) is a subcategory of PBD that allows binding encrypted
volumes to a special network server. The current implementation of the NBDE includes a Clevis pin for
the Tang server and the Tang server itself.

12.1. NETWORK-BOUND DISK ENCRYPTION

In Red Hat Enterprise Linux, NBDE is implemented through the following components and technologies:

Figure 12.1. NBDE scheme when using a LUKS1-encrypted volume. The luksmeta package is not
used for LUKS2 volumes.

Tang is a server for binding data to network presence. It makes a system containing your data available
when the system is bound to a certain secure network. Tang is stateless and does not require TLS or
authentication. Unlike escrow-based solutions, where the server stores all encryption keys and has
knowledge of every key ever used, Tang never interacts with any client keys, so it never gains any
identifying information from the client.

Clevis is a pluggable framework for automated decryption. In NBDE, Clevis provides automated
unlocking of LUKS volumes. The clevis package provides the client side of the feature.

A Clevis pin is a plug-in into the Clevis framework. One of such pins is a plug-in that implements

CHAPTER 12. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES USING POLICY-BASED DECRYPTION

79

A Clevis pin is a plug-in into the Clevis framework. One of such pins is a plug-in that implements
interactions with the NBDE server — Tang.

Clevis and Tang are generic client and server components that provide network-bound encryption. In
Red Hat Enterprise Linux, they are used in conjunction with LUKS to encrypt and decrypt root and non-
root storage volumes to accomplish Network-Bound Disk Encryption.

Both client- and server-side components use the José library to perform encryption and decryption
operations.

When you begin provisioning NBDE, the Clevis pin for Tang server gets a list of the Tang server’s
advertised asymmetric keys. Alternatively, since the keys are asymmetric, a list of Tang’s public keys can
be distributed out of band so that clients can operate without access to the Tang server. This mode is
called offline provisioning.

The Clevis pin for Tang uses one of the public keys to generate a unique, cryptographically-strong
encryption key. Once the data is encrypted using this key, the key is discarded. The Clevis client should
store the state produced by this provisioning operation in a convenient location. This process of
encrypting data is the provisioning step.

The LUKS version 2 (LUKS2) is the default format in Red Hat Enterprise Linux 8, hence, the provisioning
state for NBDE is stored as a token in a LUKS2 header. The leveraging of provisioning state for NBDE by
the luksmeta package is used only for volumes encrypted with LUKS1. The Clevis pin for Tang supports
both LUKS1 and LUKS2 without specification need.

When the client is ready to access its data, it loads the metadata produced in the provisioning step and it
responds to recover the encryption key. This process is the recovery step.

In NBDE, Clevis binds a LUKS volume using a pin so that it can be automatically unlocked. After
successful completion of the binding process, the disk can be unlocked using the provided Dracut
unlocker.

NOTE

If the kdump kernel crash dumping mechanism is set to save the content of the system
memory to a LUKS-encrypted device, you are prompted for entering a password during
the second kernel boot.

12.2. INSTALLING AN ENCRYPTION CLIENT - CLEVIS

Use this procedure to deploy and start using the Clevis pluggable framework on your system.

Procedure

1. To install Clevis and its pins on a system with an encrypted volume:

yum install clevis

2. To decrypt data, use a clevis decrypt command and provide a cipher text in the JSON Web
Encryption (JWE) format, for example:

$ clevis decrypt < secret.jwe

Additional resources

Red Hat Enterprise Linux 8 Security hardening

80

clevis(1) man page

Built-in CLI help after entering the clevis command without any argument:

$ clevis
Usage: clevis COMMAND [OPTIONS]

clevis decrypt Decrypts using the policy defined at encryption time
clevis encrypt sss Encrypts using a Shamir's Secret Sharing policy
clevis encrypt tang Encrypts using a Tang binding server policy
clevis encrypt tpm2 Encrypts using a TPM2.0 chip binding policy
clevis luks bind Binds a LUKS device using the specified policy
clevis luks list Lists pins bound to a LUKSv1 or LUKSv2 device
clevis luks pass Returns the LUKS passphrase used for binding a particular slot.
clevis luks regen Regenerate LUKS metadata
clevis luks report Report any key rotation on the server side
clevis luks unbind Unbinds a pin bound to a LUKS volume
clevis luks unlock Unlocks a LUKS volume

12.3. DEPLOYING A TANG SERVER WITH SELINUX IN ENFORCING
MODE

Use this procedure to deploy a Tang server running on a custom port as a confined service in SELinux
enforcing mode.

Prerequisites

The policycoreutils-python-utils package and its dependencies are installed.

Procedure

1. To install the tang package and its dependencies, enter the following command as root:

yum install tang

2. Pick an unoccupied port, for example, 7500/tcp, and allow the tangd service to bind to that
port:

semanage port -a -t tangd_port_t -p tcp 7500

Note that a port can be used only by one service at a time, and thus an attempt to use an
already occupied port implies the ValueError: Port already defined error message.

3. Open the port in the firewall:

firewall-cmd --add-port=7500/tcp
firewall-cmd --runtime-to-permanent

4. Enable the tangd service:

systemctl enable tangd.socket

5. Create an override file:

CHAPTER 12. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES USING POLICY-BASED DECRYPTION

81

systemctl edit tangd.socket

6. In the following editor screen, which opens an empty override.conf file located in the
/etc/systemd/system/tangd.socket.d/ directory, change the default port for the Tang server
from 80 to the previously picked number by adding the following lines:

[Socket]
ListenStream=
ListenStream=7500

Save the file and exit the editor.

7. Reload the changed configuration:

systemctl daemon-reload

8. Check that your configuration is working:

systemctl show tangd.socket -p Listen
Listen=[::]:7500 (Stream)

9. Start the tangd service:

systemctl start tangd.socket

Because tangd uses the systemd socket activation mechanism, the server starts as soon as the
first connection comes in. A new set of cryptographic keys is automatically generated at the first
start. To perform cryptographic operations such as manual key generation, use the jose utility.

Additional resources

tang(8), semanage(8), firewall-cmd(1), jose(1), systemd.unit(5), and systemd.socket(5) man
pages

12.4. ROTATING TANG SERVER KEYS AND UPDATING BINDINGS ON
CLIENTS

Use the following steps to rotate your Tang server keys and update existing bindings on clients. The
precise interval at which you should rotate them depends on your application, key sizes, and institutional
policy.

Alternatively, you can rotate Tang keys by using the nbde_server RHEL system role. See Using the
nbde_server system role for setting up multiple Tang servers for more information.

Prerequisites

A Tang server is running.

The clevis and clevis-luks packages are installed on your clients.

Note that clevis luks list, clevis luks report, and clevis luks regen have been introduced in
RHEL 8.2.

Procedure

Red Hat Enterprise Linux 8 Security hardening

82

Procedure

1. Rename all keys in the /var/db/tang key database directory to have a leading . to hide them
from advertisement. Note that the file names in the following example differs from unique file
names in the key database directory of your Tang server:

cd /var/db/tang
ls -l
-rw-r--r--. 1 root root 349 Feb 7 14:55 UV6dqXSwe1bRKG3KbJmdiR020hY.jwk
-rw-r--r--. 1 root root 354 Feb 7 14:55 y9hxLTQSiSB5jSEGWnjhY8fDTJU.jwk
mv UV6dqXSwe1bRKG3KbJmdiR020hY.jwk .UV6dqXSwe1bRKG3KbJmdiR020hY.jwk
mv y9hxLTQSiSB5jSEGWnjhY8fDTJU.jwk .y9hxLTQSiSB5jSEGWnjhY8fDTJU.jwk

2. Check that you renamed and therefore hid all keys from the Tang server advertisement:

ls -l
total 0

3. Generate new keys using the /usr/libexec/tangd-keygen command in /var/db/tang on the Tang
server:

/usr/libexec/tangd-keygen /var/db/tang
ls /var/db/tang
3ZWS6-cDrCG61UPJS2BMmPU4I54.jwk zyLuX6hijUy_PSeUEFDi7hi38.jwk

4. Check that your Tang server advertises the signing key from the new key pair, for example:

tang-show-keys 7500
3ZWS6-cDrCG61UPJS2BMmPU4I54

5. On your NBDE clients, use the clevis luks report command to check if the keys advertised by
the Tang server remains the same. You can identify slots with the relevant binding using the
clevis luks list command, for example:

clevis luks list -d /dev/sda2
1: tang '{"url":"http://tang.srv"}'
clevis luks report -d /dev/sda2 -s 1
...
Report detected that some keys were rotated.
Do you want to regenerate luks metadata with "clevis luks regen -d /dev/sda2 -s 1"? [ynYN]

6. To regenerate LUKS metadata for the new keys either press y to the prompt of the previous
command, or use the clevis luks regen command:

clevis luks regen -d /dev/sda2 -s 1

7. When you are sure that all old clients use the new keys, you can remove the old keys from the
Tang server, for example:

cd /var/db/tang
rm .*.jwk

CHAPTER 12. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES USING POLICY-BASED DECRYPTION

83

WARNING

Removing the old keys while clients are still using them can result in data loss. If you
accidentally remove such keys, use the clevis luks regen command on the clients,
and provide your LUKS password manually.

Additional resources

tang-show-keys(1), clevis-luks-list(1), clevis-luks-report(1), and clevis-luks-regen(1) man
pages

12.5. CONFIGURING AUTOMATED UNLOCKING USING A TANG KEY IN
THE WEB CONSOLE

Configure automated unlocking of a LUKS-encrypted storage device using a key provided by a Tang
server.

Prerequisites

The RHEL 8 web console has been installed.
For details, see Installing the web console .

The cockpit-storaged package is installed on your system.

The cockpit.socket service is running at port 9090.

The clevis, tang, and clevis-dracut packages are installed.

A Tang server is running.

Procedure

1. Open the RHEL web console by entering the following address in a web browser:

https://localhost:9090

Replace the localhost part by the remote server’s host name or IP address when you connect to
a remote system.

2. Provide your credentials and click Storage. Select an encrypted device and click Encryption in
the Content part:

3. Click + in the Keys section to add a Tang key:



Red Hat Enterprise Linux 8 Security hardening

84

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_systems_using_the_rhel_8_web_console/index#installing-the-web-console_getting-started-with-the-rhel-8-web-console

4. Provide the address of your Tang server and a password that unlocks the LUKS-encrypted
device. Click Add to confirm:

5. The following dialog window provides a command to verify that the key hash matches. RHEL
8.2 introduced the tang-show-keys script, and you can obtain the key hash using the following
command on the Tang server running on the port 7500:

tang-show-keys 7500
3ZWS6-cDrCG61UPJS2BMmPU4I54

On RHEL 8.1 and earlier, obtain the key hash using the following command:

CHAPTER 12. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES USING POLICY-BASED DECRYPTION

85

curl -s localhost:7500/adv | jose fmt -j- -g payload -y -o- | jose jwk use -i- -r -u verify -o- |
jose jwk thp -i-
3ZWS6-cDrCG61UPJS2BMmPU4I54

6. Click Trust key when the key hashes in the web console and in the output of previously listed
commands are the same:

7. To enable the early boot system to process the disk binding, click Terminal at the bottom of
the left navigation bar and enter the following commands:

yum install clevis-dracut
dracut -fv --regenerate-all

Verification

1. Check that the newly added Tang key is now listed in the Keys section with the Keyserver type:

Red Hat Enterprise Linux 8 Security hardening

86

2. Verify that the bindings are available for the early boot, for example:

lsinitrd | grep clevis
clevis
clevis-pin-sss
clevis-pin-tang
clevis-pin-tpm2
-rwxr-xr-x 1 root root 1600 Feb 11 16:30 usr/bin/clevis
-rwxr-xr-x 1 root root 1654 Feb 11 16:30 usr/bin/clevis-decrypt
...
-rwxr-xr-x 2 root root 45 Feb 11 16:30 usr/lib/dracut/hooks/initqueue/settled/60-
clevis-hook.sh
-rwxr-xr-x 1 root root 2257 Feb 11 16:30 usr/libexec/clevis-luks-askpass

Additional resources

Getting started using the RHEL web console

12.6. BASIC NBDE AND TPM2 ENCRYPTION-CLIENT OPERATIONS

You can configure Clevis for automated unlocking of an encrypted volume using a Tang network server
and a Trusted Platform Module 2.0 (TPM 2.0) policy.

Encryption client bound to a Tang server

To deploy a Clevis encryption client bound to a Tang server, use the clevis encrypt tang sub-
command:

$ clevis encrypt tang '{"url":"http://tang.srv:port"}' < input-plain.txt > secret.jwe
The advertisement contains the following signing keys:

_OsIk0T-E2l6qjfdDiwVmidoZjA

Do you wish to trust these keys? [ynYN] y

Change the http://tang.srv:port URL in the previous example to match the URL of the server
where tang is installed. The secret.jwe output file contains your encrypted cipher text in the
JSON Web Encryption format. This cipher text is read from the input-plain.txt input file.

Alternatively, if your configuration requires a non-interactive communication with a Tang server
without SSH access, you can download an advertisement and save it to a file:

$ curl -sfg http://tang.srv:port/adv -o adv.jws

Use the advertisement in the adv.jws file for any following tasks, such as encryption of files or
messages:

$ echo 'hello' | clevis encrypt tang '{"url":"http://tang.srv:port","adv":"adv.jws"}'

To decrypt data, use the clevis decrypt command and provide the cipher text (JWE):

$ clevis decrypt < secret.jwe > output-plain.txt

CHAPTER 12. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES USING POLICY-BASED DECRYPTION

87

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console

Encryption client using TPM 2.0

To deploy a client that encrypts using a TPM 2.0 chip, use the clevis encrypt tpm2 sub-
command with the only argument in form of the JSON configuration object:

$ clevis encrypt tpm2 '{}' < input-plain.txt > secret.jwe

To choose a different hierarchy, hash, and key algorithms, specify configuration properties, for
example:

$ clevis encrypt tpm2 '{"hash":"sha1","key":"rsa"}' < input-plain.txt > secret.jwe

To decrypt the data, provide the ciphertext in the JSON Web Encryption (JWE) format:

$ clevis decrypt < secret.jwe > output-plain.txt

The pin also supports sealing data to a Platform Configuration Registers (PCR) state. That way, the
data can only be unsealed if the PCRs hashes values match the policy used when sealing.

For example, to seal the data to the PCR with index 0 and 1 for the SHA-1 bank:

$ clevis encrypt tpm2 '{"pcr_bank":"sha1","pcr_ids":"0,1"}' < input-plain.txt > secret.jwe

Additional resources

clevis-encrypt-tang(1), clevis-luks-unlockers(7), clevis(1), and clevis-encrypt-tpm2(1) man
pages

clevis, clevis decrypt, and clevis encrypt tang commands without any arguments show the
built-in CLI help, for example:

$ clevis encrypt tang
Usage: clevis encrypt tang CONFIG < PLAINTEXT > JWE
...

12.7. REMOVING A CLEVIS PIN FROM A LUKS-ENCRYPTED VOLUME
MANUALLY

Use the following procedure for manual removing the metadata created by the clevis luks bind
command and also for wiping a key slot that contains passphrase added by Clevis.

IMPORTANT

The recommended way to remove a Clevis pin from a LUKS-encrypted volume is through
the clevis luks unbind command. The removal procedure using clevis luks unbind
consists of only one step and works for both LUKS1 and LUKS2 volumes. The following
example command removes the metadata created by the binding step and wipe the key
slot 1 on the /dev/sda2 device:

clevis luks unbind -d /dev/sda2 -s 1

Red Hat Enterprise Linux 8 Security hardening

88

Prerequisites

A LUKS-encrypted volume with a Clevis binding.

Procedure

1. Check which LUKS version the volume, for example /dev/sda2, is encrypted by and identify a
slot and a token that is bound to Clevis:

cryptsetup luksDump /dev/sda2
LUKS header information
Version: 2
...
Keyslots:
 0: luks2
...
1: luks2
 Key: 512 bits
 Priority: normal
 Cipher: aes-xts-plain64
...
 Tokens:
 0: clevis
 Keyslot: 1
...

In the previous example, the Clevis token is identified by 0 and the associated key slot is 1.

2. In case of LUKS2 encryption, remove the token:

cryptsetup token remove --token-id 0 /dev/sda2

3. If your device is encrypted by LUKS1, which is indicated by the Version: 1 string in the output of
the cryptsetup luksDump command, perform this additional step with the luksmeta wipe
command:

luksmeta wipe -d /dev/sda2 -s 1

4. Wipe the key slot containing the Clevis passphrase:

cryptsetup luksKillSlot /dev/sda2 1

Additional resources

clevis-luks-unbind(1), cryptsetup(8), and luksmeta(8) man pages

12.8. CONFIGURING MANUAL ENROLLMENT OF LUKS-ENCRYPTED
VOLUMES

Use the following steps to configure unlocking of LUKS-encrypted volumes with NBDE.

Prerequisites

CHAPTER 12. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES USING POLICY-BASED DECRYPTION

89

A Tang server is running and available.

Procedure

1. To automatically unlock an existing LUKS-encrypted volume, install the clevis-luks subpackage:

yum install clevis-luks

2. Identify the LUKS-encrypted volume for PBD. In the following example, the block device is
referred as /dev/sda2:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 12G 0 disk
├─sda1 8:1 0 1G 0 part /boot
└─sda2 8:2 0 11G 0 part
 └─luks-40e20552-2ade-4954-9d56-565aa7994fb6 253:0 0 11G 0 crypt
 ├─rhel-root 253:0 0 9.8G 0 lvm /
 └─rhel-swap 253:1 0 1.2G 0 lvm [SWAP]

3. Bind the volume to a Tang server using the clevis luks bind command:

clevis luks bind -d /dev/sda2 tang '{"url":"http://tang.srv"}'
The advertisement contains the following signing keys:

_OsIk0T-E2l6qjfdDiwVmidoZjA

Do you wish to trust these keys? [ynYN] y
You are about to initialize a LUKS device for metadata storage.
Attempting to initialize it may result in data loss if data was
already written into the LUKS header gap in a different format.
A backup is advised before initialization is performed.

Do you wish to initialize /dev/sda2? [yn] y
Enter existing LUKS password:

This command performs four steps:

a. Creates a new key with the same entropy as the LUKS master key.

b. Encrypts the new key with Clevis.

c. Stores the Clevis JWE object in the LUKS2 header token or uses LUKSMeta if the non-
default LUKS1 header is used.

d. Enables the new key for use with LUKS.

NOTE

The binding procedure assumes that there is at least one free LUKS
password slot. The clevis luks bind command takes one of the slots.

4. The volume can now be unlocked with your existing password as well as with the Clevis policy.

Red Hat Enterprise Linux 8 Security hardening

90

5. To enable the early boot system to process the disk binding, use the dracut tool on an already
installed system:

yum install clevis-dracut

In Red Hat Enterprise Linux 8, Clevis produces a generic initrd (initial ramdisk) without host-
specific configuration options and does not automatically add parameters such as rd.neednet=1
to the kernel command line. If your configuration relies on a Tang pin that requires network
during early boot, use the --hostonly-cmdline argument and dracut adds rd.neednet=1 when it
detects a Tang binding:

dracut -fv --regenerate-all --hostonly-cmdline

Alternatively, create a .conf file in the /etc/dracut.conf.d/, and add the hostonly_cmdline=yes
option to the file, for example:

echo "hostonly_cmdline=yes" > /etc/dracut.conf.d/clevis.conf

Then you can use dracut without --hostonly-cmdline:

dracut -fv --regenerate-all

Verification

1. To verify that the Clevis JWE object is successfully placed in a LUKS header, use the clevis
luks list command:

clevis luks list -d /dev/sda2
1: tang '{"url":"http://tang.srv:port"}'

IMPORTANT

To use NBDE for clients with static IP configuration (without DHCP), pass your network
configuration to the dracut tool manually, for example:

dracut -fv --regenerate-all --kernel-cmdline
"ip=192.0.2.10::192.0.2.1:255.255.255.0::ens3:none"

Alternatively, create a .conf file in the /etc/dracut.conf.d/ directory with the static
network information. For example:

cat /etc/dracut.conf.d/static_ip.conf
kernel_cmdline="ip=192.0.2.10::192.0.2.1:255.255.255.0::ens3:none"

Regenerate the initial RAM disk image:

dracut -fv --regenerate-all

Additional resources

clevis-luks-bind(1) and dracut.cmdline(7) man pages.

CHAPTER 12. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES USING POLICY-BASED DECRYPTION

91

RHEL Network boot options

12.9. CONFIGURING MANUAL ENROLLMENT OF LUKS-ENCRYPTED
VOLUMES USING A TPM 2.0 POLICY

Use the following steps to configure unlocking of LUKS-encrypted volumes by using a Trusted Platform
Module 2.0 (TPM 2.0) policy.

Prerequisites

An accessible TPM 2.0-compatible device.

A system with the 64-bit Intel or 64-bit AMD architecture.

Procedure

1. To automatically unlock an existing LUKS-encrypted volume, install the clevis-luks subpackage:

yum install clevis-luks

2. Identify the LUKS-encrypted volume for PBD. In the following example, the block device is
referred as /dev/sda2:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 12G 0 disk
├─sda1 8:1 0 1G 0 part /boot
└─sda2 8:2 0 11G 0 part
 └─luks-40e20552-2ade-4954-9d56-565aa7994fb6 253:0 0 11G 0 crypt
 ├─rhel-root 253:0 0 9.8G 0 lvm /
 └─rhel-swap 253:1 0 1.2G 0 lvm [SWAP]

3. Bind the volume to a TPM 2.0 device using the clevis luks bind command, for example:

clevis luks bind -d /dev/sda2 tpm2 '{"hash":"sha1","key":"rsa"}'
...
Do you wish to initialize /dev/sda2? [yn] y
Enter existing LUKS password:

This command performs four steps:

a. Creates a new key with the same entropy as the LUKS master key.

b. Encrypts the new key with Clevis.

c. Stores the Clevis JWE object in the LUKS2 header token or uses LUKSMeta if the non-
default LUKS1 header is used.

d. Enables the new key for use with LUKS.

NOTE

The binding procedure assumes that there is at least one free LUKS
password slot. The clevis luks bind command takes one of the slots.

Red Hat Enterprise Linux 8 Security hardening

92

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_an_advanced_rhel_installation/kickstart-and-advanced-boot-options_installing-rhel-as-an-experienced-user#network-boot-options_kickstart-and-advanced-boot-options

4. The volume can now be unlocked with your existing password as well as with the Clevis policy.

5. To enable the early boot system to process the disk binding, use the dracut tool on an already
installed system:

yum install clevis-dracut
dracut -fv --regenerate-all

Verification

1. To verify that the Clevis JWE object is successfully placed in a LUKS header, use the clevis
luks list command:

clevis luks list -d /dev/sda2
1: tpm2 '{"hash":"sha1","key":"rsa"}'

Additional resources

clevis-luks-bind(1), clevis-encrypt-tpm2(1), and dracut.cmdline(7) man pages

12.10. CONFIGURING AUTOMATED ENROLLMENT OF LUKS-
ENCRYPTED VOLUMES USING KICKSTART

Follow the steps in this procedure to configure an automated installation process that uses Clevis for
enrollment of LUKS-encrypted volumes.

Procedure

1. Instruct Kickstart to partition the disk such that LUKS encryption has enabled for all mount
points, other than /boot, with a temporary password. The password is temporary for this step of
the enrollment process.

part /boot --fstype="xfs" --ondisk=vda --size=256
part / --fstype="xfs" --ondisk=vda --grow --encrypted --passphrase=temppass

Note that OSPP-complaint systems require a more complex configuration, for example:

part /boot --fstype="xfs" --ondisk=vda --size=256
part / --fstype="xfs" --ondisk=vda --size=2048 --encrypted --passphrase=temppass
part /var --fstype="xfs" --ondisk=vda --size=1024 --encrypted --passphrase=temppass
part /tmp --fstype="xfs" --ondisk=vda --size=1024 --encrypted --passphrase=temppass
part /home --fstype="xfs" --ondisk=vda --size=2048 --grow --encrypted --
passphrase=temppass
part /var/log --fstype="xfs" --ondisk=vda --size=1024 --encrypted --passphrase=temppass
part /var/log/audit --fstype="xfs" --ondisk=vda --size=1024 --encrypted --
passphrase=temppass

2. Install the related Clevis packages by listing them in the %packages section:

%packages
clevis-dracut
%end

CHAPTER 12. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES USING POLICY-BASED DECRYPTION

93

3. Call clevis luks bind to perform binding in the %post section. Afterward, remove the
temporary password:

%post
curl -sfg http://tang.srv/adv -o adv.jws
clevis luks bind -f -k- -d /dev/vda2 \
tang '{"url":"http://tang.srv","adv":"adv.jws"}' <<< "temppass"
cryptsetup luksRemoveKey /dev/vda2 <<< "temppass"
%end

In the previous example, note that we download the advertisement from the Tang server as part
of our binding configuration, enabling binding to be completely non-interactive.

WARNING

The cryptsetup luksRemoveKey command prevents any further
administration of a LUKS2 device on which you apply it. You can recover a
removed master key using the dmsetup command only for LUKS1 devices.

You can use an analogous procedure when using a TPM 2.0 policy instead of a Tang server.

Additional resources

clevis(1), clevis-luks-bind(1), cryptsetup(8), and dmsetup(8) man pages

Installing Red Hat Enterprise Linux 8 using Kickstart

12.11. CONFIGURING AUTOMATED UNLOCKING OF A LUKS-
ENCRYPTED REMOVABLE STORAGE DEVICE

Use this procedure to set up an automated unlocking process of a LUKS-encrypted USB storage device.

Procedure

1. To automatically unlock a LUKS-encrypted removable storage device, such as a USB drive,
install the clevis-udisks2 package:

yum install clevis-udisks2

2. Reboot the system, and then perform the binding step using the clevis luks bind command as
described in Configuring manual enrollment of LUKS-encrypted volumes , for example:

clevis luks bind -d /dev/sdb1 tang '{"url":"http://tang.srv"}'

3. The LUKS-encrypted removable device can be now unlocked automatically in your GNOME
desktop session. The device bound to a Clevis policy can be also unlocked by the clevis luks
unlock command:



Red Hat Enterprise Linux 8 Security hardening

94

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_an_advanced_rhel_installation/index

clevis luks unlock -d /dev/sdb1

You can use an analogous procedure when using a TPM 2.0 policy instead of a Tang server.

Additional resources

clevis-luks-unlockers(7) man page

12.12. DEPLOYING HIGH-AVAILABILITY NBDE SYSTEMS

Tang provides two methods for building a high-availability deployment:

Client redundancy (recommended)

Clients should be configured with the ability to bind to multiple Tang servers. In this setup, each Tang
server has its own keys and clients can decrypt by contacting a subset of these servers. Clevis already
supports this workflow through its sss plug-in. Red Hat recommends this method for a high-
availability deployment.

Key sharing

For redundancy purposes, more than one instance of Tang can be deployed. To set up a second or
any subsequent instance, install the tang packages and copy the key directory to the new host using
rsync over SSH. Note that Red Hat does not recommend this method because sharing keys
increases the risk of key compromise and requires additional automation infrastructure.

12.12.1. High-available NBDE using Shamir’s Secret Sharing

Shamir’s Secret Sharing (SSS) is a cryptographic scheme that divides a secret into several unique parts.
To reconstruct the secret, a number of parts is required. The number is called threshold and SSS is also
referred to as a thresholding scheme.

Clevis provides an implementation of SSS. It creates a key and divides it into a number of pieces. Each
piece is encrypted using another pin including even SSS recursively. Additionally, you define the
threshold t. If an NBDE deployment decrypts at least t pieces, then it recovers the encryption key and
the decryption process succeeds. When Clevis detects a smaller number of parts than specified in the
threshold, it prints an error message.

12.12.1.1. Example 1: Redundancy with two Tang servers

The following command decrypts a LUKS-encrypted device when at least one of two Tang servers is
available:

clevis luks bind -d /dev/sda1 sss '{"t":1,"pins":{"tang":[{"url":"http://tang1.srv"},
{"url":"http://tang2.srv"}]}}'

The previous command used the following configuration scheme:

{
 "t":1,
 "pins":{
 "tang":[
 {
 "url":"http://tang1.srv"
 },

CHAPTER 12. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES USING POLICY-BASED DECRYPTION

95

 {
 "url":"http://tang2.srv"
 }
]
 }
}

In this configuration, the SSS threshold t is set to 1 and the clevis luks bind command successfully
reconstructs the secret if at least one from two listed tang servers is available.

12.12.1.2. Example 2: Shared secret on a Tang server and a TPM device

The following command successfully decrypts a LUKS-encrypted device when both the tang server and
the tpm2 device are available:

clevis luks bind -d /dev/sda1 sss '{"t":2,"pins":{"tang":[{"url":"http://tang1.srv"}], "tpm2":
{"pcr_ids":"0,1"}}}'

The configuration scheme with the SSS threshold 't' set to '2' is now:

{
 "t":2,
 "pins":{
 "tang":[
 {
 "url":"http://tang1.srv"
 }
],
 "tpm2":{
 "pcr_ids":"0,1"
 }
 }
}

Additional resources

tang(8) (section High Availability), clevis(1) (section Shamir’s Secret Sharing), and clevis-
encrypt-sss(1) man pages

12.13. DEPLOYMENT OF VIRTUAL MACHINES IN A NBDE NETWORK

The clevis luks bind command does not change the LUKS master key. This implies that if you create a
LUKS-encrypted image for use in a virtual machine or cloud environment, all the instances that run this
image will share a master key. This is extremely insecure and should be avoided at all times.

This is not a limitation of Clevis but a design principle of LUKS. If you wish to have encrypted root
volumes in a cloud, you need to make sure that you perform the installation process (usually using
Kickstart) for each instance of Red Hat Enterprise Linux in a cloud as well. The images cannot be shared
without also sharing a LUKS master key.

If you intend to deploy automated unlocking in a virtualized environment, Red Hat strongly recommends
that you use systems such as lorax or virt-install together with a Kickstart file (see Configuring
automated enrollment of LUKS-encrypted volumes using Kickstart) or another automated provisioning
tool to ensure that each encrypted VM has a unique master key.

Red Hat Enterprise Linux 8 Security hardening

96

NOTE

Automated unlocking with a TPM 2.0 policy is not supported in a virtual machine.

Additional resources

clevis-luks-bind(1) man page

12.14. BUILDING AUTOMATICALLY-ENROLLABLE VM IMAGES FOR
CLOUD ENVIRONMENTS USING NBDE

Deploying automatically-enrollable encrypted images in a cloud environment can provide a unique set
of challenges. Like other virtualization environments, it is recommended to reduce the number of
instances started from a single image to avoid sharing the LUKS master key.

Therefore, the best practice is to create customized images that are not shared in any public repository
and that provide a base for the deployment of a limited amount of instances. The exact number of
instances to create should be defined by deployment’s security policies and based on the risk tolerance
associated with the LUKS master key attack vector.

To build LUKS-enabled automated deployments, systems such as Lorax or virt-install together with a
Kickstart file should be used to ensure master key uniqueness during the image building process.

Cloud environments enable two Tang server deployment options which we consider here. First, the Tang
server can be deployed within the cloud environment itself. Second, the Tang server can be deployed
outside of the cloud on independent infrastructure with a VPN link between the two infrastructures.

Deploying Tang natively in the cloud does allow for easy deployment. However, given that it shares
infrastructure with the data persistence layer of ciphertext of other systems, it may be possible for both
the Tang server’s private key and the Clevis metadata to be stored on the same physical disk. Access to
this physical disk permits a full compromise of the ciphertext data.

IMPORTANT

For this reason, Red Hat strongly recommends maintaining a physical separation between
the location where the data is stored and the system where Tang is running. This
separation between the cloud and the Tang server ensures that the Tang server’s private
key cannot be accidentally combined with the Clevis metadata. It also provides local
control of the Tang server if the cloud infrastructure is at risk.

12.15. DEPLOYING TANG AS A CONTAINER

The rhel8-tang container image provides Tang-server decryption capabilities for Clevis clients that run
either in OpenShift Container Platform (OCP) clusters or in separate virtual machines.

Prerequisites

The podman package and its dependencies are installed on the system.

You have logged in on the registry.redhat.io container catalog using the podman login
registry.redhat.io command. See Red Hat Container Registry Authentication for more
information.

The Clevis client is installed on systems containing LUKS-encrypted volumes that you want to

CHAPTER 12. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES USING POLICY-BASED DECRYPTION

97

https://access.redhat.com/RegistryAuthentication

The Clevis client is installed on systems containing LUKS-encrypted volumes that you want to
automatically unlock by using a Tang server.

Procedure

1. Pull the rhel8-tang container image from the registry.redhat.io registry:

podman pull registry.redhat.io/rhel8/rhel8-tang

2. Run the container, specify its port, and specify the path to the Tang keys. The previous example
runs the rhel8-tang container, specifies the port 7500, and indicates a path to the Tang keys of
the /var/db/tang directory:

podman run -d -p 7500:_7500_ -v tang-keys:/var/db/tang --name tang
registry.redhat.io/rhel8/rhel8-tang

Note that Tang uses port 80 by default but this may collide with other services such as the
Apache HTTP server.

3. [Optional] For increased security, rotate the Tang keys periodically. You can use the tangd-
rotate-keys script, for example:

podman run --rm -v tang-keys:/var/db/tang registry.redhat.io/rhel8/rhel8-tang tangd-rotate-
keys -v -d /var/db/tang
Rotated key 'rZAMKAseaXBe0rcKXL1hCCIq-DY.jwk' -> .'rZAMKAseaXBe0rcKXL1hCCIq-
DY.jwk'
Rotated key 'x1AIpc6WmnCU-CabD8_4q18vDuw.jwk' -> .'x1AIpc6WmnCU-
CabD8_4q18vDuw.jwk'
Created new key GrMMX_WfdqomIU_4RyjpcdlXb0E.jwk
Created new key _dTTfn17sZZqVAp80u3ygFDHtjk.jwk
Keys rotated successfully.

Verification

On a system that contains LUKS-encrypted volumes for automated unlocking by the presence
of the Tang server, check that the Clevis client can encrypt and decrypt a plain-text message
using Tang:

echo test | clevis encrypt tang '{"url":"http://localhost:_7500_"}' | clevis decrypt
The advertisement contains the following signing keys:

x1AIpc6WmnCU-CabD8_4q18vDuw

Do you wish to trust these keys? [ynYN] y
test

The previous example command shows the test string at the end of its output when a Tang
server is available on the localhost URL and communicates through port 7500.

Additional resources

podman(1), clevis(1), and tang(8) man pages

Red Hat Enterprise Linux 8 Security hardening

98

12.16. INTRODUCTION TO THE CLEVIS AND TANG SYSTEM ROLES

RHEL System Roles is a collection of Ansible roles and modules that provide a consistent configuration
interface to remotely manage multiple RHEL systems.

RHEL 8.3 introduced Ansible roles for automated deployments of Policy-Based Decryption (PBD)
solutions using Clevis and Tang. The rhel-system-roles package contains these system roles, the
related examples, and also the reference documentation.

The nbde_client system role enables you to deploy multiple Clevis clients in an automated way. Note
that the nbde_client role supports only Tang bindings, and you cannot use it for TPM2 bindings at the
moment.

The nbde_client role requires volumes that are already encrypted using LUKS. This role supports to bind
a LUKS-encrypted volume to one or more Network-Bound (NBDE) servers - Tang servers. You can
either preserve the existing volume encryption with a passphrase or remove it. After removing the
passphrase, you can unlock the volume only using NBDE. This is useful when a volume is initially
encrypted using a temporary key or password that you should remove after the system you provision
the system.

If you provide both a passphrase and a key file, the role uses what you have provided first. If it does not
find any of these valid, it attempts to retrieve a passphrase from an existing binding.

PBD defines a binding as a mapping of a device to a slot. This means that you can have multiple bindings
for the same device. The default slot is slot 1.

The nbde_client role provides also the state variable. Use the present value for either creating a new
binding or updating an existing one. Contrary to a clevis luks bind command, you can use state:
present also for overwriting an existing binding in its device slot. The absent value removes a specified
binding.

Using the nbde_server role, you can deploy and manage a Tang server as part of an automated disk
encryption solution. This role supports the following features:

Rotating Tang keys

Deploying and backing up Tang keys

Additional resources

For a detailed reference on Network-Bound Disk Encryption (NBDE) role variables, install the
rhel-system-roles package, and see the README.md and README.html files in the
/usr/share/doc/rhel-system-roles/nbde_client/ and /usr/share/doc/rhel-system-
roles/nbde_server/ directories.

For example system-roles playbooks, install the rhel-system-roles package, and see the
/usr/share/ansible/roles/rhel-system-roles.nbde_server/examples/ directories.

For more information on RHEL System Roles, see Introduction to RHEL System Roles

12.17. USING THE NBDE_SERVER SYSTEM ROLE FOR SETTING UP
MULTIPLE TANG SERVERS

Follow the steps to prepare and apply an Ansible playbook containing your Tang-server settings.

CHAPTER 12. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES USING POLICY-BASED DECRYPTION

99

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/administration_and_configuration_tasks_using_system_roles_in_rhel/getting-started-with-rhel-system-roles_administration-and-configuration-tasks-using-system-roles-in-rhel#intro-to-rhel-system-roles_getting-started-with-rhel-system-roles

Prerequisites

Your Red Hat Ansible Engine subscription is attached to the system. See the How do I download
and install Red Hat Ansible Engine article for more information.

Procedure

1. Enable the RHEL Ansible repository, for example:

subscription-manager repos --enable ansible-2-for-rhel-8-x86_64-rpms

2. Install Ansible Engine:

yum install ansible

3. Install RHEL system roles:

yum install rhel-system-roles

4. Prepare your playbook containing settings for Tang servers. You can either start from the
scratch, or use one of the example playbooks from the /usr/share/ansible/roles/rhel-system-
roles.nbde_server/examples/ directory.

cp /usr/share/ansible/roles/rhel-system-roles.nbde_server/examples/simple_deploy.yml
./my-tang-playbook.yml

5. Edit the playbook in a text editor of your choice, for example:

vi my-tang-playbook.yml

6. Add the required parameters. The following example playbook ensures deploying of your Tang
server and a key rotation:

- hosts: all

 vars:
 nbde_server_rotate_keys: yes

 roles:
 - linux-system-roles.nbde_server

7. Apply the finished playbook:

ansible-playbook -i host1,host2,host3 my-tang-playbook.yml

Additional resources

For more information, install the rhel-system-roles package, and see the /usr/share/doc/rhel-
system-roles/nbde_server/ and usr/share/ansible/roles/rhel-system-roles.nbde_server/
directories.

12.18. USING THE NBDE_CLIENT SYSTEM ROLE FOR SETTING UP

Red Hat Enterprise Linux 8 Security hardening

100

https://access.redhat.com/articles/3174981

12.18. USING THE NBDE_CLIENT SYSTEM ROLE FOR SETTING UP
MULTIPLE CLEVIS CLIENTS

Follow the steps to prepare and apply an Ansible playbook containing your Clevis-client settings.

NOTE

The nbde_client system role supports only Tang bindings. This means that you cannot
use it for TPM2 bindings at the moment.

Prerequisites

Your Red Hat Ansible Engine subscription is attached to the system. See the How do I download
and install Red Hat Ansible Engine article for more information.

Your volumes are already encrypted by LUKS.

Procedure

1. Enable the RHEL Ansible repository, for example:

subscription-manager repos --enable ansible-2-for-rhel-8-x86_64-rpms

2. Install Ansible Engine:

yum install ansible

3. Install RHEL system roles:

yum install rhel-system-roles

4. Prepare your playbook containing settings for Clevis clients. You can either start from the
scratch, or use one of the example playbooks from the /usr/share/ansible/roles/rhel-system-
roles.nbde_client/examples/ directory.

cp /usr/share/ansible/roles/rhel-system-roles.nbde_client/examples/high_availability.yml
./my-clevis-playbook.yml

5. Edit the playbook in a text editor of your choice, for example:

vi my-clevis-playbook.yml

6. Add the required parameters. The following example playbook configures Clevis clients for
automated unlocking of two LUKS-encrypted volumes by when at least one of two Tang servers
is available:

- hosts: all

 vars:
 nbde_client_bindings:
 - device: /dev/rhel/root
 encryption_key_src: /etc/luks/keyfile

CHAPTER 12. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES USING POLICY-BASED DECRYPTION

101

https://access.redhat.com/articles/3174981

 servers:
 - http://server1.example.com
 - http://server2.example.com
 - device: /dev/rhel/swap
 encryption_key_src: /etc/luks/keyfile
 servers:
 - http://server1.example.com
 - http://server2.example.com

 roles:
 - linux-system-roles.nbde_client

7. Apply the finished playbook:

ansible-playbook -i host1,host2,host3 my-clevis-playbook.yml

Additional resources

For details about the parameters and additional information about the nbde_client role, install
the rhel-system-roles package, and see the /usr/share/doc/rhel-system-roles/nbde_client/
and /usr/share/ansible/roles/rhel-system-roles.nbde_client/ directories.

12.19. ADDITIONAL RESOURCES

tang(8), clevis(1), jose(1), and clevis-luks-unlockers(7) man pages

How to set up Network-Bound Disk Encryption with multiple LUKS devices (Clevis + Tang
unlocking) Knowledgebase article

Red Hat Enterprise Linux 8 Security hardening

102

https://access.redhat.com/articles/4500491

CHAPTER 13. AUDITING THE SYSTEM
Audit does not provide additional security to your system; rather, it can be used to discover violations of
security policies used on your system. These violations can further be prevented by additional security
measures such as SELinux.

13.1. LINUX AUDIT

The Linux Audit system provides a way to track security-relevant information on your system. Based on
pre-configured rules, Audit generates log entries to record as much information about the events that
are happening on your system as possible. This information is crucial for mission-critical environments to
determine the violator of the security policy and the actions they performed.

The following list summarizes some of the information that Audit is capable of recording in its log files:

Date and time, type, and outcome of an event.

Sensitivity labels of subjects and objects.

Association of an event with the identity of the user who triggered the event.

All modifications to Audit configuration and attempts to access Audit log files.

All uses of authentication mechanisms, such as SSH, Kerberos, and others.

Changes to any trusted database, such as /etc/passwd.

Attempts to import or export information into or from the system.

Include or exclude events based on user identity, subject and object labels, and other attributes.

The use of the Audit system is also a requirement for a number of security-related certifications. Audit is
designed to meet or exceed the requirements of the following certifications or compliance guides:

Controlled Access Protection Profile (CAPP)

Labeled Security Protection Profile (LSPP)

Rule Set Base Access Control (RSBAC)

National Industrial Security Program Operating Manual (NISPOM)

Federal Information Security Management Act (FISMA)

Payment Card Industry — Data Security Standard (PCI-DSS)

Security Technical Implementation Guides (STIG)

Audit has also been:

Evaluated by National Information Assurance Partnership (NIAP) and Best Security Industries
(BSI).

Certified to LSPP/CAPP/RSBAC/EAL4+ on Red Hat Enterprise Linux 5.

Certified to Operating System Protection Profile / Evaluation Assurance Level 4+
(OSPP/EAL4+) on Red Hat Enterprise Linux 6.

CHAPTER 13. AUDITING THE SYSTEM

103

Use Cases

Watching file access

Audit can track whether a file or a directory has been accessed, modified, executed, or the file’s
attributes have been changed. This is useful, for example, to detect access to important files and
have an Audit trail available in case one of these files is corrupted.

Monitoring system calls

Audit can be configured to generate a log entry every time a particular system call is used. This can
be used, for example, to track changes to the system time by monitoring the settimeofday,
clock_adjtime, and other time-related system calls.

Recording commands run by a user

Audit can track whether a file has been executed, so rules can be defined to record every execution
of a particular command. For example, a rule can be defined for every executable in the /bin
directory. The resulting log entries can then be searched by user ID to generate an audit trail of
executed commands per user.

Recording execution of system pathnames

Aside from watching file access which translates a path to an inode at rule invocation, Audit can now
watch the execution of a path even if it does not exist at rule invocation, or if the file is replaced after
rule invocation. This allows rules to continue to work after upgrading a program executable or before
it is even installed.

Recording security events

The pam_faillock authentication module is capable of recording failed login attempts. Audit can be
set up to record failed login attempts as well and provides additional information about the user who
attempted to log in.

Searching for events

Audit provides the ausearch utility, which can be used to filter the log entries and provide a
complete audit trail based on several conditions.

Running summary reports

The aureport utility can be used to generate, among other things, daily reports of recorded events. A
system administrator can then analyze these reports and investigate suspicious activity further.

Monitoring network access

The iptables and ebtables utilities can be configured to trigger Audit events, allowing system
administrators to monitor network access.

NOTE

System performance may be affected depending on the amount of information that is
collected by Audit.

13.2. AUDIT SYSTEM ARCHITECTURE

The Audit system consists of two main parts: the user-space applications and utilities, and the kernel-
side system call processing. The kernel component receives system calls from user-space applications
and filters them through one of the following filters: user, task, fstype, or exit.

Once a system call passes the exclude filter, it is sent through one of the aforementioned filters, which,
based on the Audit rule configuration, sends it to the Audit daemon for further processing.

The user-space Audit daemon collects the information from the kernel and creates entries in a log file.

Red Hat Enterprise Linux 8 Security hardening

104

The user-space Audit daemon collects the information from the kernel and creates entries in a log file.
Other Audit user-space utilities interact with the Audit daemon, the kernel Audit component, or the
Audit log files:

auditctl — the Audit control utility interacts with the kernel Audit component to manage rules
and to control many settings and parameters of the event generation process.

The remaining Audit utilities take the contents of the Audit log files as input and generate
output based on user’s requirements. For example, the aureport utility generates a report of all
recorded events.

In RHEL 8, the Audit dispatcher daemon (audisp) functionality is integrated in the Audit daemon
(auditd). Configuration files of plugins for the interaction of real-time analytical programs with Audit
events are located in the /etc/audit/plugins.d/ directory by default.

13.3. CONFIGURING AUDITD FOR A SECURE ENVIRONMENT

The default auditd configuration should be suitable for most environments. However, if your
environment has to meet strict security policies, the following settings are suggested for the Audit
daemon configuration in the /etc/audit/auditd.conf file:

log_file

The directory that holds the Audit log files (usually /var/log/audit/) should reside on a separate
mount point. This prevents other processes from consuming space in this directory and provides
accurate detection of the remaining space for the Audit daemon.

max_log_file

Specifies the maximum size of a single Audit log file, must be set to make full use of the available
space on the partition that holds the Audit log files.

max_log_file_action

Decides what action is taken once the limit set in max_log_file is reached, should be set to
keep_logs to prevent Audit log files from being overwritten.

space_left

Specifies the amount of free space left on the disk for which an action that is set in the
space_left_action parameter is triggered. Must be set to a number that gives the administrator
enough time to respond and free up disk space. The space_left value depends on the rate at which
the Audit log files are generated.

space_left_action

It is recommended to set the space_left_action parameter to email or exec with an appropriate
notification method.

admin_space_left

Specifies the absolute minimum amount of free space for which an action that is set in the
admin_space_left_action parameter is triggered, must be set to a value that leaves enough space
to log actions performed by the administrator.

admin_space_left_action

Should be set to single to put the system into single-user mode and allow the administrator to free
up some disk space.

disk_full_action

Specifies an action that is triggered when no free space is available on the partition that holds the
Audit log files, must be set to halt or single. This ensures that the system is either shut down or
operating in single-user mode when Audit can no longer log events.

CHAPTER 13. AUDITING THE SYSTEM

105

disk_error_action

Specifies an action that is triggered in case an error is detected on the partition that holds the Audit
log files, must be set to syslog, single, or halt, depending on your local security policies regarding
the handling of hardware malfunctions.

flush

Should be set to incremental_async. It works in combination with the freq parameter, which
determines how many records can be sent to the disk before forcing a hard synchronization with the
hard drive. The freq parameter should be set to 100. These parameters assure that Audit event data
is synchronized with the log files on the disk while keeping good performance for bursts of activity.

The remaining configuration options should be set according to your local security policy.

13.4. STARTING AND CONTROLLING AUDITD

Once auditd is configured, start the service to collect Audit information and store it in the log files. Use
the following command as the root user to start auditd:

service auditd start

To configure auditd to start at boot time:

systemctl enable auditd

A number of other actions can be performed on auditd using the service auditd action command,
where action can be one of the following:

stop

Stops auditd.

restart

Restarts auditd.

reload or force-reload

Reloads the configuration of auditd from the /etc/audit/auditd.conf file.

rotate

Rotates the log files in the /var/log/audit/ directory.

resume

Resumes logging of Audit events after it has been previously suspended, for example, when there is
not enough free space on the disk partition that holds the Audit log files.

condrestart or try-restart

Restarts auditd only if it is already running.

status

Displays the running status of auditd.

NOTE

The service command is the only way to correctly interact with the auditd daemon. You
need to use the service command so that the auid value is properly recorded. You can
use the systemctl command only for two actions: enable and status.

Red Hat Enterprise Linux 8 Security hardening

106

13.5. UNDERSTANDING AUDIT LOG FILES

By default, the Audit system stores log entries in the /var/log/audit/audit.log file; if log rotation is
enabled, rotated audit.log files are stored in the same directory.

Add the following Audit rule to log every attempt to read or modify the /etc/ssh/sshd_config file:

auditctl -w /etc/ssh/sshd_config -p warx -k sshd_config

If the auditd daemon is running, for example, using the following command creates a new event in the
Audit log file:

$ cat /etc/ssh/sshd_config

This event in the audit.log file looks as follows:

type=SYSCALL msg=audit(1364481363.243:24287): arch=c000003e syscall=2 success=no exit=-13
a0=7fffd19c5592 a1=0 a2=7fffd19c4b50 a3=a items=1 ppid=2686 pid=3538 auid=1000 uid=1000
gid=1000 euid=1000 suid=1000 fsuid=1000 egid=1000 sgid=1000 fsgid=1000 tty=pts0 ses=1
comm="cat" exe="/bin/cat" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
key="sshd_config"
type=CWD msg=audit(1364481363.243:24287): cwd="/home/shadowman"
type=PATH msg=audit(1364481363.243:24287): item=0 name="/etc/ssh/sshd_config" inode=409248
dev=fd:00 mode=0100600 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:etc_t:s0
nametype=NORMAL cap_fp=none cap_fi=none cap_fe=0 cap_fver=0
type=PROCTITLE msg=audit(1364481363.243:24287) :
proctitle=636174002F6574632F7373682F737368645F636F6E666967

The above event consists of four records, which share the same time stamp and serial number. Records
always start with the type= keyword. Each record consists of several name=value pairs separated by a
white space or a comma. A detailed analysis of the above event follows:

First Record

type=SYSCALL

The type field contains the type of the record. In this example, the SYSCALL value specifies that this
record was triggered by a system call to the kernel.

msg=audit(1364481363.243:24287):

The msg field records:

a time stamp and a unique ID of the record in the form audit(time_stamp:ID). Multiple
records can share the same time stamp and ID if they were generated as part of the same
Audit event. The time stamp is using the Unix time format - seconds since 00:00:00 UTC on
1 January 1970.

various event-specific name=value pairs provided by the kernel or user-space applications.

arch=c000003e

The arch field contains information about the CPU architecture of the system. The value, c000003e,
is encoded in hexadecimal notation. When searching Audit records with the ausearch command, use
the -i or --interpret option to automatically convert hexadecimal values into their human-readable
equivalents. The c000003e value is interpreted as x86_64.

CHAPTER 13. AUDITING THE SYSTEM

107

syscall=2

The syscall field records the type of the system call that was sent to the kernel. The value, 2, can be
matched with its human-readable equivalent in the /usr/include/asm/unistd_64.h file. In this case, 2
is the open system call. Note that the ausyscall utility allows you to convert system call numbers to
their human-readable equivalents. Use the ausyscall --dump command to display a listing of all
system calls along with their numbers. For more information, see the ausyscall(8) man page.

success=no

The success field records whether the system call recorded in that particular event succeeded or
failed. In this case, the call did not succeed.

exit=-13

The exit field contains a value that specifies the exit code returned by the system call. This value
varies for a different system call. You can interpret the value to its human-readable equivalent with
the following command:

ausearch --interpret --exit -13

Note that the previous example assumes that your Audit log contains an event that failed with exit
code -13.

a0=7fffd19c5592, a1=0, a2=7fffd19c5592, a3=a

The a0 to a3 fields record the first four arguments, encoded in hexadecimal notation, of the system
call in this event. These arguments depend on the system call that is used; they can be interpreted by
the ausearch utility.

items=1

The items field contains the number of PATH auxiliary records that follow the syscall record.

ppid=2686

The ppid field records the Parent Process ID (PPID). In this case, 2686 was the PPID of the parent
process such as bash.

pid=3538

The pid field records the Process ID (PID). In this case, 3538 was the PID of the cat process.

auid=1000

The auid field records the Audit user ID, that is the loginuid. This ID is assigned to a user upon login
and is inherited by every process even when the user’s identity changes, for example, by switching
user accounts with the su - john command.

uid=1000

The uid field records the user ID of the user who started the analyzed process. The user ID can be
interpreted into user names with the following command: ausearch -i --uid UID.

gid=1000

The gid field records the group ID of the user who started the analyzed process.

euid=1000

The euid field records the effective user ID of the user who started the analyzed process.

suid=1000

The suid field records the set user ID of the user who started the analyzed process.

fsuid=1000

The fsuid field records the file system user ID of the user who started the analyzed process.

egid=1000

Red Hat Enterprise Linux 8 Security hardening

108

The egid field records the effective group ID of the user who started the analyzed process.

sgid=1000

The sgid field records the set group ID of the user who started the analyzed process.

fsgid=1000

The fsgid field records the file system group ID of the user who started the analyzed process.

tty=pts0

The tty field records the terminal from which the analyzed process was invoked.

ses=1

The ses field records the session ID of the session from which the analyzed process was invoked.

comm="cat"

The comm field records the command-line name of the command that was used to invoke the
analyzed process. In this case, the cat command was used to trigger this Audit event.

exe="/bin/cat"

The exe field records the path to the executable that was used to invoke the analyzed process.

subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

The subj field records the SELinux context with which the analyzed process was labeled at the time
of execution.

key="sshd_config"

The key field records the administrator-defined string associated with the rule that generated this
event in the Audit log.

Second Record

type=CWD

In the second record, the type field value is CWD — current working directory. This type is used to
record the working directory from which the process that invoked the system call specified in the
first record was executed.
The purpose of this record is to record the current process’s location in case a relative path winds up
being captured in the associated PATH record. This way the absolute path can be reconstructed.

msg=audit(1364481363.243:24287)

The msg field holds the same time stamp and ID value as the value in the first record. The time
stamp is using the Unix time format - seconds since 00:00:00 UTC on 1 January 1970.

cwd="/home/user_name"

The cwd field contains the path to the directory in which the system call was invoked.

Third Record

type=PATH

In the third record, the type field value is PATH. An Audit event contains a PATH-type record for
every path that is passed to the system call as an argument. In this Audit event, only one path
(/etc/ssh/sshd_config) was used as an argument.

msg=audit(1364481363.243:24287):

The msg field holds the same time stamp and ID value as the value in the first and second record.

item=0

The item field indicates which item, of the total number of items referenced in the SYSCALL type

CHAPTER 13. AUDITING THE SYSTEM

109

The item field indicates which item, of the total number of items referenced in the SYSCALL type
record, the current record is. This number is zero-based; a value of 0 means it is the first item.

name="/etc/ssh/sshd_config"

The name field records the path of the file or directory that was passed to the system call as an
argument. In this case, it was the /etc/ssh/sshd_config file.

inode=409248

The inode field contains the inode number associated with the file or directory recorded in this
event. The following command displays the file or directory that is associated with the 409248 inode
number:

find / -inum 409248 -print
/etc/ssh/sshd_config

dev=fd:00

The dev field specifies the minor and major ID of the device that contains the file or directory
recorded in this event. In this case, the value represents the /dev/fd/0 device.

mode=0100600

The mode field records the file or directory permissions, encoded in numerical notation as returned
by the stat command in the st_mode field. See the stat(2) man page for more information. In this
case, 0100600 can be interpreted as -rw-------, meaning that only the root user has read and write
permissions to the /etc/ssh/sshd_config file.

ouid=0

The ouid field records the object owner’s user ID.

ogid=0

The ogid field records the object owner’s group ID.

rdev=00:00

The rdev field contains a recorded device identifier for special files only. In this case, it is not used as
the recorded file is a regular file.

obj=system_u:object_r:etc_t:s0

The obj field records the SELinux context with which the recorded file or directory was labeled at the
time of execution.

nametype=NORMAL

The nametype field records the intent of each path record’s operation in the context of a given
syscall.

cap_fp=none

The cap_fp field records data related to the setting of a permitted file system-based capability of
the file or directory object.

cap_fi=none

The cap_fi field records data related to the setting of an inherited file system-based capability of
the file or directory object.

cap_fe=0

The cap_fe field records the setting of the effective bit of the file system-based capability of the
file or directory object.

cap_fver=0

The cap_fver field records the version of the file system-based capability of the file or directory
object.

Red Hat Enterprise Linux 8 Security hardening

110

Fourth Record

type=PROCTITLE

The type field contains the type of the record. In this example, the PROCTITLE value specifies that
this record gives the full command-line that triggered this Audit event, triggered by a system call to
the kernel.

proctitle=636174002F6574632F7373682F737368645F636F6E666967

The proctitle field records the full command-line of the command that was used to invoke the
analyzed process. The field is encoded in hexadecimal notation to not allow the user to influence the
Audit log parser. The text decodes to the command that triggered this Audit event. When searching
Audit records with the ausearch command, use the -i or --interpret option to automatically convert
hexadecimal values into their human-readable equivalents. The
636174002F6574632F7373682F737368645F636F6E666967 value is interpreted as cat
/etc/ssh/sshd_config.

13.6. USING AUDITCTL FOR DEFINING AND EXECUTING AUDIT RULES

The Audit system operates on a set of rules that define what is captured in the log files. Audit rules can
be set either on the command line using the auditctl utility or in the /etc/audit/rules.d/ directory.

The auditctl command enables you to control the basic functionality of the Audit system and to define
rules that decide which Audit events are logged.

File-system rules examples

1. To define a rule that logs all write access to, and every attribute change of, the /etc/passwd file:

auditctl -w /etc/passwd -p wa -k passwd_changes

2. To define a rule that logs all write access to, and every attribute change of, all the files in the
/etc/selinux/ directory:

auditctl -w /etc/selinux/ -p wa -k selinux_changes

System-call rules examples

1. To define a rule that creates a log entry every time the adjtimex or settimeofday system calls
are used by a program, and the system uses the 64-bit architecture:

auditctl -a always,exit -F arch=b64 -S adjtimex -S settimeofday -k time_change

2. To define a rule that creates a log entry every time a file is deleted or renamed by a system user
whose ID is 1000 or larger:

auditctl -a always,exit -S unlink -S unlinkat -S rename -S renameat -F auid>=1000 -F
auid!=4294967295 -k delete

Note that the -F auid!=4294967295 option is used to exclude users whose login UID is not set.

Executable-file rules

To define a rule that logs all execution of the /bin/id program, execute the following command:

CHAPTER 13. AUDITING THE SYSTEM

111

auditctl -a always,exit -F exe=/bin/id -F arch=b64 -S execve -k execution_bin_id

Additional resources

audictl(8) man page.

13.7. DEFINING PERSISTENT AUDIT RULES

To define Audit rules that are persistent across reboots, you must either directly include them in the
/etc/audit/rules.d/audit.rules file or use the augenrules program that reads rules located in the
/etc/audit/rules.d/ directory.

Note that the /etc/audit/audit.rules file is generated whenever the auditd service starts. Files in
/etc/audit/rules.d/ use the same auditctl command-line syntax to specify the rules. Empty lines and text
following a hash sign (#) are ignored.

Furthermore, you can use the auditctl command to read rules from a specified file using the -R option,
for example:

auditctl -R /usr/share/audit/sample-rules/30-stig.rules

13.8. USING PRE-CONFIGURED RULES FILES

In the /usr/share/audit/sample-rules directory, the audit package provides a set of pre-configured
rules files according to various certification standards:

30-nispom.rules

Audit rule configuration that meets the requirements specified in the Information System Security
chapter of the National Industrial Security Program Operating Manual.

30-ospp-v42*.rules

Audit rule configuration that meets the requirements defined in the OSPP (Protection Profile for
General Purpose Operating Systems) profile version 4.2.

30-pci-dss-v31.rules

Audit rule configuration that meets the requirements set by Payment Card Industry Data Security
Standard (PCI DSS) v3.1.

30-stig.rules

Audit rule configuration that meets the requirements set by Security Technical Implementation
Guides (STIG).

To use these configuration files, copy them to the /etc/audit/rules.d/ directory and use the augenrules
--load command, for example:

cd /usr/share/audit/sample-rules/
cp 10-base-config.rules 30-stig.rules 31-privileged.rules 99-finalize.rules /etc/audit/rules.d/
augenrules --load

You can order Audit rules using a numbering scheme. See the /usr/share/audit/sample-rules/README-
rules file for more information.

Additional resources

Red Hat Enterprise Linux 8 Security hardening

112

audit.rules(7) man page.

13.9. USING AUGENRULES TO DEFINE PERSISTENT RULES

The augenrules script reads rules located in the /etc/audit/rules.d/ directory and compiles them into an
audit.rules file. This script processes all files that end with .rules in a specific order based on their
natural sort order. The files in this directory are organized into groups with the following meanings:

10 - Kernel and auditctl configuration

20 - Rules that could match general rules but you want a different match

30 - Main rules

40 - Optional rules

50 - Server-specific rules

70 - System local rules

90 - Finalize (immutable)

The rules are not meant to be used all at once. They are pieces of a policy that should be thought out
and individual files copied to /etc/audit/rules.d/. For example, to set a system up in the STIG
configuration, copy rules 10-base-config, 30-stig, 31-privileged, and 99-finalize.

Once you have the rules in the /etc/audit/rules.d/ directory, load them by running the augenrules script
with the --load directive:

augenrules --load
/sbin/augenrules: No change
No rules
enabled 1
failure 1
pid 742
rate_limit 0
...

Additional resources

audit.rules(8) and augenrules(8) man pages.

13.10. DISABLING AUGENRULES

Use the following steps to disable the augenrules utility. This switches Audit to use rules defined in the
/etc/audit/audit.rules file.

Procedure

1. Copy the /usr/lib/systemd/system/auditd.service file to the /etc/systemd/system/ directory:

cp -f /usr/lib/systemd/system/auditd.service /etc/systemd/system/

2. Edit the /etc/systemd/system/auditd.service file in a text editor of your choice, for example:

CHAPTER 13. AUDITING THE SYSTEM

113

vi /etc/systemd/system/auditd.service

3. Comment out the line containing augenrules, and uncomment the line containing the auditctl -
R command:

#ExecStartPost=-/sbin/augenrules --load
ExecStartPost=-/sbin/auditctl -R /etc/audit/audit.rules

4. Reload the systemd daemon to fetch changes in the auditd.service file:

systemctl daemon-reload

5. Restart the auditd service:

service auditd restart

Additional resources

augenrules(8) and audit.rules(8) man pages.

Auditd service restart overrides changes made to /etc/audit/audit.rules .

13.11. RELATED INFORMATION

The RHEL Audit System Reference Knowledgebase article.

The Auditd execution options in a container Knowledgebase article.

The Linux Audit Documentation Project page .

The audit package provides documentation in the /usr/share/doc/audit/ directory.

auditd(8), auditctl(8), ausearch(8), audit.rules(7), audispd.conf(5), audispd(8),
auditd.conf(5), ausearch-expression(5), aulast(8), aulastlog(8), aureport(8), ausyscall(8),
autrace(8), and auvirt(8) man pages.

Red Hat Enterprise Linux 8 Security hardening

114

https://access.redhat.com/solutions/1505033
https://access.redhat.com/articles/4409591
https://access.redhat.com/articles/4494341
https://github.com/linux-audit/audit-documentation/wiki

CHAPTER 14. BLOCKING AND ALLOWING APPLICATIONS
USING FAPOLICYD

Setting and enforcing a policy that either allows or denies application execution based on a rule set
efficiently prevents the execution of unknown and potentially malicious software.

14.1. INTRODUCTION TO FAPOLICYD

The fapolicyd software framework controls the execution of applications based on a user-defined
policy. This is one of the most efficient ways to prevent running untrusted and possibly malicious
applications on the system.

The fapolicyd framework provides the following components:

fapolicyd service

fapolicyd command-line utilities

fapolicyd RPM plugin

fapolicyd rule language

The administrator can define the allow and deny execution rules for any application with the possibility
of auditing based on a path, hash, MIME type, or trust.

The fapolicyd framework introduces the concept of trust. An application is trusted when it is properly
installed by the system package manager, and therefore it is registered in the system RPM database.
The fapolicyd daemon uses the RPM database as a list of trusted binaries and scripts. The fapolicyd
RPM plugin registers any system update that is handled by either the YUM package manager or the
RPM Package Manager. The plugin notifies the fapolicyd daemon about changes in this database.
Other ways of adding applications require the creation of custom rules and restarting the fapolicyd
service.

The fapolicyd service configuration is located in the /etc/fapolicyd/ directory with the following
structure:

The fapolicyd.rules file contains allow and deny execution rules.

The fapolicyd.conf file contains daemon’s configuration options. This file is useful primarily for
performance-tuning purposes.

You can use one of the ways for fapolicyd integrity checking:

file-size checking

comparing SHA-256 hashes

Integrity Measurement Architecture (IMA) subsystem

By default, fapolicyd does no integrity checking. Integrity checking based on the file size is fast, but an
attacker can replace the content of the file and preserve its byte size. Computing and checking SHA-
256 checksums is more secure, but it affects the performance of the system. The integrity = ima option
in fapolicyd.conf requires support for files extended attributes (also known as xattr) on all file systems
containing executable files.

CHAPTER 14. BLOCKING AND ALLOWING APPLICATIONS USING FAPOLICYD

115

Additional resources

fapolicyd(8), fapolicyd.rules(5), and fapolicyd.conf(5) man pages.

The Enhancing security with the kernel integrity subsystem chapter in the RHEL 8 Managing,
monitoring, and updating the kernel document.

14.2. DEPLOYING FAPOLICYD

To deploy the fapolicyd framework in RHEL:

Procedure

1. Install the fapolicyd package:

yum install fapolicyd

2. Enable and start the fapolicyd service:

systemctl enable --now fapolicyd

Verification

1. Verify that the fapolicyd service is running correctly:

systemctl status fapolicyd
● fapolicyd.service - File Access Policy Daemon
 Loaded: loaded (/usr/lib/systemd/system/fapolicyd.service; enabled; vendor p>
 Active: active (running) since Tue 2019-10-15 18:02:35 CEST; 55s ago
 Process: 8818 ExecStart=/usr/sbin/fapolicyd (code=exited, status=0/SUCCESS)
 Main PID: 8819 (fapolicyd)
 Tasks: 4 (limit: 11500)
 Memory: 78.2M
 CGroup: /system.slice/fapolicyd.service
 └─8819 /usr/sbin/fapolicyd

Oct 15 18:02:35 localhost.localdomain systemd[1]: Starting File Access Policy D>
Oct 15 18:02:35 localhost.localdomain fapolicyd[8819]: Initialization of the da>
Oct 15 18:02:35 localhost.localdomain fapolicyd[8819]: Reading RPMDB into memory
Oct 15 18:02:35 localhost.localdomain systemd[1]: Started File Access Policy Da>
Oct 15 18:02:36 localhost.localdomain fapolicyd[8819]: Creating database

2. Log in as a user without root privileges, and check that fapolicyd is working, for example:

$ cp /bin/ls /tmp
$ /tmp/ls
bash: /tmp/ls: Operation not permitted

14.3. MARKING FILES AS TRUSTED USING AN ADDITIONAL SOURCE
OF TRUST

You can use this procedure for using an additional source of trust for fapolicyd. Before RHEL 8.3,
fapolicyd trusted only files contained in the RPM database. The fapolicyd framework now supports also

Red Hat Enterprise Linux 8 Security hardening

116

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/enhancing-security-with-the-kernel-integrity-subsystem_managing-monitoring-and-updating-the-kernel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/

use of the /etc/fapolicyd/fapolicyd.trust plain-text file as a source of trust. You can either modify
fapolicyd.trust directly with a text editor or through fapolicyd CLI commands.

NOTE

Prefer marking files as trusted using fapolicyd.trust instead of writing custom fapolicyd
rules.

Prerequisites

The fapolicyd framework is deployed on your system.

Procedure

1. Copy your custom binary to the required directory, for example:

$ cp /bin/ls /tmp
$ /tmp/ls
bash: /tmp/ls: Operation not permitted

2. Mark your custom binary as trusted:

fapolicyd-cli --file add /tmp/ls

Note that previous command add the corresponding line to /etc/fapolicyd/fapolicyd.trust.

3. Update the fapolicyd database:

fapolicyd-cli --update

4. Restart fapolicyd:

systemctl restart fapolicyd

Verification

1. Check that your custom binary can be now executed, for example:

$ /tmp/ls
ls

Additional resources

fapolicyd.trust(5) man page.

14.4. ADDING CUSTOM ALLOW AND DENY RULES FOR FAPOLICYD

The default set of rules in the fapolicyd package does not affect system functions. For custom
scenarios, such as storing binaries and scripts in a non-standard directory or adding applications without
the yum or rpm installers, you must modify existing or add new rules. The following steps demonstrate
adding a new rule to allow a custom binary.

Prerequisites

CHAPTER 14. BLOCKING AND ALLOWING APPLICATIONS USING FAPOLICYD

117

Prerequisites

The fapolicyd framework is deployed on your system.

Procedure

1. Copy your custom binary to the required directory, for example:

$ cp /bin/ls /tmp
$ /tmp/ls
bash: /tmp/ls: Operation not permitted

2. Stop the fapolicyd service:

systemctl stop fapolicyd

3. Use debug mode to identify a corresponding rule. Because the output of the fapolicyd --debug
command is verbose and you can stop it only by pressing Ctrl+C or killing the corresponding
process, redirect the error output to a file:

fapolicyd --debug 2> fapolicy.output &
[1] 51341

Alternatively, you can run fapolicyd debug mode in another terminal.

4. Repeat the command that was not permitted:

$ /tmp/ls
bash: /tmp/ls: Operation not permitted

5. Stop debug mode by resuming it in the foreground and pressing Ctrl+C:

fg
fapolicyd --debug
^Cshutting down...
Inter-thread max queue depth 1
Allowed accesses: 2
Denied accesses: 1
[...]

Alternatively, kill the process of fapolicyd debug mode:

kill 51341

6. Find a rule that denies the execution of your application:

cat fapolicy.output
[...]
rule:9 dec=deny_audit perm=execute auid=1000 pid=51362 exe=/usr/bin/bash : file=/tmp/ls
ftype=application/x-executable
[...]

7. Add a new allow rule before the rule that denied the execution of your custom binary in the

Red Hat Enterprise Linux 8 Security hardening

118

7. Add a new allow rule before the rule that denied the execution of your custom binary in the
/etc/fapolicyd/fapolicyd.rules file. The output of the previous command indicated that the rule
is the rule number 9 in this example:

allow perm=execute exe=/usr/bin/bash trust=1 : path=/tmp/ls ftype=application/x-executable
trust=0

Alternatively, you can allow executions of all binaries in the /tmp directory by adding the
following rule in the /etc/fapolicyd/fapolicyd.rules file:

allow perm=execute exe=/usr/bin/bash trust=1 : dir=/tmp/ all trust=0

8. To prevent changes in the content of your custom binary, define the required rule using an
SHA-256 checksum:

$ sha256sum /tmp/ls
780b75c90b2d41ea41679fcb358c892b1251b68d1927c80fbc0d9d148b25e836 ls

Change the rule to the following definition:

allow perm=execute exe=/usr/bin/bash trust=1 :
sha256hash=780b75c90b2d41ea41679fcb358c892b1251b68d1927c80fbc0d9d148b25e836

9. Start the fapolicyd service:

systemctl start fapolicyd

Verification

1. Check that your custom binary can be now executed, for example:

$ /tmp/ls
ls

Additional resources

fapolicyd.trust(5) man page.

14.5. ENABLING FAPOLICYD INTEGRITY CHECKS

By default, fapolicyd does not perform integrity checking. You can configure fapolicyd to perform
integrity checks by comparing either file sizes or SHA-256 hashes. You can also set integrity checks by
using the Integrity Measurement Architecture (IMA) subsystem.

Prerequisites

The fapolicyd framework is deployed on your system.

Procedure

1. Open the /etc/fapolicyd/fapolicyd.conf file in a text editor of your choice, for example:

CHAPTER 14. BLOCKING AND ALLOWING APPLICATIONS USING FAPOLICYD

119

vi /etc/fapolicyd/fapolicyd.conf

2. Change the value of the integrity option from none to sha256, save the file, and exit the editor:

integrity = sha256

3. Restart the fapolicyd service:

systemctl restart fapolicyd

Verification

1. Back up the file used for the verification:

cp /bin/more /bin/more.bak

2. Change the content of the /bin/more binary:

cat /bin/less > /bin/more

3. Use the changed binary as a regular user:

su example.user
$ /bin/more /etc/redhat-release
bash: /bin/more: Operation not permitted

4. Revert the changes:

mv -f /bin/more.bak /bin/more

14.6. TROUBLESHOOTING PROBLEMS RELATED TO FAPOLICYD

The following section provides tips for basic troubleshooting of the fapolicyd application framework
and guidance for adding applications using the rpm command.

Installing applications using rpm

If you install an application using the rpm command, you have to perform a manual refresh of
the fapolicyd RPM database:

1. Install your application:

rpm -i application.rpm

2. Refresh the database:

fapolicyd-cli --update

If you skip this step, the system can freeze and must be restarted.

Service status

Red Hat Enterprise Linux 8 Security hardening

120

If fapolicyd does not work correctly, check the service status:

systemctl status fapolicyd

Debug mode

Debug mode provides detailed information about matched rules, database status, and more. To
switch fapolicyd to debug mode:

1. Stop the fapolicyd service:

systemctl stop fapolicyd

2. Use debug mode to identify a corresponding rule:

fapolicyd --debug

Because the output of the fapolicyd --debug command is verbose, you can redirect the
error output to a file:

fapolicyd --debug 2> fapolicy.output

Removing the fapolicyd database

To solve problems related to the fapolicyd database, try to remove the database file:

systemctl stop fapolicyd
fapolicyd-cli --delete-db

WARNING

Do not remove the /var/lib/fapolicyd/ directory. The fapolicyd framework
automatically restores only the database file in this directory.

Dumping the fapolicyd database

The fapolicyd contains entries from all enabled trust sources. You can check the entries after
dumping the database:

fapolicyd-cli --dump-db

Application pipe

In rare cases, removing the fapolicyd pipe file can solve a lockup:

rm -f /var/run/fapolicyd/fapolicyd.fifo



CHAPTER 14. BLOCKING AND ALLOWING APPLICATIONS USING FAPOLICYD

121

Additional resources

fapolicyd-cli(1) man page.

14.7. ADDITIONAL RESOURCES

fapolicyd-related man pages listed by using the man -k fapolicyd command.

The FOSDEM 2020 fapolicyd presentation.

Red Hat Enterprise Linux 8 Security hardening

122

https://rsroka.fedorapeople.org/fapolicyd-fosdem.pdf

CHAPTER 15. PROTECTING SYSTEMS AGAINST INTRUSIVE
USB DEVICES

USB devices can be loaded with spyware, malware, or Trojans, which can steal your data or damage your
system. As a Red Hat Enterprise Linux administrator, you can prevent such USB attacks with USBGuard.

15.1. USBGUARD

With the USBGuard software framework, you can protect your systems against intrusive USB devices by
using basic lists of permitted and forbidden devices based on the USB device authorization feature in
the kernel.

The USBGuard framework provides the following components:

The system service component with an inter-process communication (IPC) interface for
dynamic interaction and policy enforcement

The command-line interface to interact with a running usbguard system service

The rule language for writing USB device authorization policies

The C++ API for interacting with the system service component implemented in a shared library

The usbguard system service configuration file (/etc/usbguard/usbguard-daemon.conf) includes the
options to authorize the users and groups to use the IPC interface.

IMPORTANT

The system service provides the USBGuard public IPC interface. In Red Hat Enterprise
Linux, the access to this interface is limited to the root user only by default.

Consider setting either the IPCAccessControlFiles option (recommended) or the
IPCAllowedUsers and IPCAllowedGroups options to limit access to the IPC interface.

Ensure that you do not leave the Access Control List (ACL) unconfigured as this exposes
the IPC interface to all local users and allows them to manipulate the authorization state
of USB devices and modify the USBGuard policy.

15.2. INSTALLING USBGUARD

Use this procedure to install and initiate the USBGuard framework.

Procedure

1. Install the usbguard package:

yum install usbguard

2. Create an initial rule set:

usbguard generate-policy > /etc/usbguard/rules.conf

3. Start the usbguard daemon and ensure that it starts automatically on boot:

CHAPTER 15. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES

123

systemctl enable --now usbguard

Verification

1. Verify that the usbguard service is running:

systemctl status usbguard
● usbguard.service - USBGuard daemon
 Loaded: loaded (/usr/lib/systemd/system/usbguard.service; enabled; vendor preset:
disabled)
 Active: active (running) since Thu 2019-11-07 09:44:07 CET; 3min 16s ago
 Docs: man:usbguard-daemon(8)
 Main PID: 6122 (usbguard-daemon)
 Tasks: 3 (limit: 11493)
 Memory: 1.2M
 CGroup: /system.slice/usbguard.service
 └─6122 /usr/sbin/usbguard-daemon -f -s -c /etc/usbguard/usbguard-daemon.conf

Nov 07 09:44:06 localhost.localdomain systemd[1]: Starting USBGuard daemon...
Nov 07 09:44:07 localhost.localdomain systemd[1]: Started USBGuard daemon.

2. List USB devices recognized by USBGuard:

usbguard list-devices
4: allow id 1d6b:0002 serial "0000:02:00.0" name "xHCI Host Controller" hash...

Additional resources

usbguard(1) and usbguard-daemon.conf(5) man pages.

15.3. BLOCKING AND AUTHORIZING A USB DEVICE USING CLI

This procedure outlines how to authorize and block a USB device using the usbguard command.

Prerequisites

The usbguard service is installed and running.

Procedure

1. List USB devices recognized by USBGuard:

usbguard list-devices
1: allow id 1d6b:0002 serial "0000:00:06.7" name "EHCI Host Controller" hash
"JDOb0BiktYs2ct3mSQKopnOOV2h9MGYADwhT+oUtF2s=" parent-hash
"4PHGcaDKWtPjKDwYpIRG722cB9SlGz9l9Iea93+Gt9c=" via-port "usb1" with-interface
09:00:00
...
6: block id 1b1c:1ab1 serial "000024937962" name "Voyager" hash
"CrXgiaWIf2bZAU+5WkzOE7y0rdSO82XMzubn7HDb95Q=" parent-hash
"JDOb0BiktYs2ct3mSQKopnOOV2h9MGYADwhT+oUtF2s=" via-port "1-3" with-interface
08:06:50

Red Hat Enterprise Linux 8 Security hardening

124

2. Authorize the device 6 to interact with the system:

usbguard allow-device 6

3. Deauthorize and remove the device 6:

usbguard reject-device 6

4. Deauthorize and retain the device 6:

usbguard block-device 6

NOTE

USBGuard uses the block and reject terms with the following meanings:

block: do not interact with this device for now.

reject: ignore this device as if it does not exist.

Additional resources

usbguard(1) man page.

Built-in help listed by using the usbguard --help command.

15.4. PERMANENTLY BLOCKING AND AUTHORIZING A USB DEVICE

You can permanently block and authorize a USB device using the -p option. This adds a device-specific
rule to the current policy.

Prerequisites

The usbguard service is installed and running.

Procedure

1. Configure SELinux to allow the usbguard daemon to write rules.

a. Display the semanage Booleans relevant to usbguard.

semanage boolean -l | grep usbguard
usbguard_daemon_write_conf (off , off) Allow usbguard to daemon write conf
usbguard_daemon_write_rules (on , on) Allow usbguard to daemon write rules

b. Optional: If the usbguard_daemon_write_rules Boolean is turned off, turn it on.

semanage boolean -m --on usbguard_daemon_write_rules

2. List USB devices recognized by USBGuard:

usbguard list-devices
1: allow id 1d6b:0002 serial "0000:00:06.7" name "EHCI Host Controller" hash

CHAPTER 15. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES

125

"JDOb0BiktYs2ct3mSQKopnOOV2h9MGYADwhT+oUtF2s=" parent-hash
"4PHGcaDKWtPjKDwYpIRG722cB9SlGz9l9Iea93+Gt9c=" via-port "usb1" with-interface
09:00:00
...
6: block id 1b1c:1ab1 serial "000024937962" name "Voyager" hash
"CrXgiaWIf2bZAU+5WkzOE7y0rdSO82XMzubn7HDb95Q=" parent-hash
"JDOb0BiktYs2ct3mSQKopnOOV2h9MGYADwhT+oUtF2s=" via-port "1-3" with-interface
08:06:50

3. Permanently authorize the device 6 to interact with the system:

usbguard allow-device 6 -p

4. Permanently deauthorize and remove the device 6:

usbguard reject-device 6 -p

5. Permanently deauthorize and retain the device 6:

usbguard block-device 6 -p

NOTE

USBGuard uses the terms block and reject with the following meanings:

block: do not interact with this device for now.

reject: ignore this device as if it does not exist.

Verification

1. Check that USBGuard rules include the changes you made.

usbguard list-rules

Additional resources

usbguard(1) man page.

Built-in help listed by using the usbguard --help command.

15.5. CREATING A CUSTOM POLICY FOR USB DEVICES

The following procedure contains steps for creating a rule set for USB devices that reflects the
requirements of your scenario.

Prerequisites

The usbguard service is installed and running.

The /etc/usbguard/rules.conf file contains an initial rule set generated by the usbguard
generate-policy command.

Red Hat Enterprise Linux 8 Security hardening

126

Procedure

1. Create a policy which authorizes the currently connected USB devices, and store the generated
rules to the rules.conf file:

usbguard generate-policy --no-hashes > ./rules.conf

The --no-hashes option does not generate hash attributes for devices. Avoid hash attributes in
your configuration settings because they might not be persistent.

2. Edit the rules.conf file with a text editor of your choice, for example:

vi ./rules.conf

3. Add, remove, or edit the rules as required. For example, the following rule allows only devices
with a single mass storage interface to interact with the system:

allow with-interface equals { 08:*:* }

See the usbguard-rules.conf(5) man page for a detailed rule-language description and more
examples.

4. Install the updated policy:

install -m 0600 -o root -g root rules.conf /etc/usbguard/rules.conf

5. Restart the usbguard daemon to apply your changes:

systemctl restart usbguard

Verification

1. Check that your custom rules are in the active policy, for example:

usbguard list-rules
...
4: allow with-interface 08:*:*
...

Additional resources

usbguard-rules.conf(5) man page.

15.6. CREATING A STRUCTURED CUSTOM POLICY FOR USB DEVICES

You can organize your custom USBGuard policy in several .conf files within the /etc/usbguard/rules.d/
directory. The usbguard-daemon then combines the main rules.conf file with the .conf files within the
directory in alphabetical order.

Prerequisites

The usbguard service is installed and running.

CHAPTER 15. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES

127

Procedure

1. Create a policy which authorizes the currently connected USB devices, and store the generated
rules to a new .conf file, for example, policy.conf.

usbguard generate-policy --no-hashes > ./policy.conf

The --no-hashes option does not generate hash attributes for devices. Avoid hash attributes in
your configuration settings because they might not be persistent.

2. Display the policy.conf file with a text editor of your choice, for example:

vi ./policy.conf
...
allow id 04f2:0833 serial "" name "USB Keyboard" via-port "7-2" with-interface { 03:01:01
03:00:00 } with-connect-type "unknown"
...

3. Move selected lines into a separate .conf file.

NOTE

The two digits at the beginning of the file name specify the order in which the
daemon reads the configuration files.

For example, copy the rules for your keyboards into a new .conf file.

grep "USB Keyboard" ./policy.conf > ./10keyboards.conf

4. Install the new policy to the /etc/usbguard/rules.d/ directory.

install -m 0600 -o root -g root 10keyboards.conf /etc/usbguard/rules.d/10keyboards.conf

5. Move the rest of the lines to a main rules.conf file.

grep -v "USB Keyboard" ./policy.conf > ./rules.conf

6. Install the remaining rules.

install -m 0600 -o root -g root rules.conf /etc/usbguard/rules.conf

7. Restart the usbguard daemon to apply your changes.

systemctl restart usbguard

Verification

1. Display all active USBGuard rules.

usbguard list-rules
...
15: allow id 04f2:0833 serial "" name "USB Keyboard" hash

Red Hat Enterprise Linux 8 Security hardening

128

"kxM/iddRe/WSCocgiuQlVs6Dn0VEza7KiHoDeTz0fyg=" parent-hash
"2i6ZBJfTl5BakXF7Gba84/Cp1gslnNc1DM6vWQpie3s=" via-port "7-2" with-interface {
03:01:01 03:00:00 } with-connect-type "unknown"
...

2. Display the contents of the rules.conf file and all the .conf files in the /etc/usbguard/rules.d/
directory.

cat /etc/usbguard/rules.conf /etc/usbguard/rules.d/*.conf

3. Verify that the active rules contain all the rules from the files and are in the correct order.

Additional resources

usbguard-rules.conf(5) man page.

15.7. AUTHORIZING USERS AND GROUPS TO USE THE USBGUARD IPC
INTERFACE

Use this procedure to authorize a specific user or a group to use the USBGuard public IPC interface. By
default, only the root user can use this interface.

Prerequisites

The usbguard service is installed and running.

The /etc/usbguard/rules.conf file contains an initial rule set generated by the usbguard
generate-policy command.

Procedure

1. Edit the /etc/usbguard/usbguard-daemon.conf file with a text editor of your choice:

vi /etc/usbguard/usbguard-daemon.conf

2. For example, add a line with a rule that allows all users in the wheel group to use the IPC
interface, and save the file:

IPCAllowGroups=wheel

3. You can add users or groups also with the usbguard command. For example, the following
command enables the joesec user to have full access to the Devices and Exceptions sections.
Furthermore, joesec can list the current policy and listen to policy signals.

usbguard add-user joesec --devices ALL --policy list,listen --exceptions ALL

To remove the granted permissions for the joesec user, use the usbguard remove-user joesec
command.

4. Restart the usbguard daemon to apply your changes:

systemctl restart usbguard

CHAPTER 15. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES

129

Additional resources

usbguard(1) and usbguard-rules.conf(5) man pages.

15.8. LOGGING USBGUARD AUTHORIZATION EVENTS TO THE LINUX
AUDIT LOG

Use the following steps to integrate logging of USBguard authorization events to the standard Linux
Audit log. By default, the usbguard daemon logs events to the /var/log/usbguard/usbguard-audit.log
file.

Prerequisites

The usbguard service is installed and running.

The auditd service is running.

Procedure

1. Edit the usbguard-daemon.conf file with a text editor of your choice:

vi /etc/usbguard/usbguard-daemon.conf

2. Change the AuditBackend option from FileAudit to LinuxAudit:

AuditBackend=LinuxAudit

3. Restart the usbguard daemon to apply the configuration change:

systemctl restart usbguard

Verification

1. Query the audit daemon log for a USB authorization event, for example:

ausearch -ts recent -m USER_DEVICE

Additional resources

usbguard-daemon.conf(5) man page.

15.9. ADDITIONAL RESOURCES

usbguard(1), usbguard-rules.conf(5), usbguard-daemon(8), and usbguard-daemon.conf(5)
man pages.

USBGuard Homepage.

Red Hat Enterprise Linux 8 Security hardening

130

https://usbguard.github.io/

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. OVERVIEW OF SECURITY HARDENING IN RHEL
	1.1. WHAT IS COMPUTER SECURITY?
	1.2. STANDARDIZING SECURITY
	1.3. CRYPTOGRAPHIC SOFTWARE AND CERTIFICATIONS
	1.4. SECURITY CONTROLS
	1.4.1. Physical controls
	1.4.2. Technical controls
	1.4.3. Administrative controls

	1.5. VULNERABILITY ASSESSMENT
	1.5.1. Defining assessment and testing
	1.5.2. Establishing a methodology for vulnerability assessment
	1.5.3. Vulnerability assessment tools

	1.6. SECURITY THREATS
	1.6.1. Threats to network security
	1.6.2. Threats to server security
	1.6.3. Threats to workstation and home PC security

	1.7. COMMON EXPLOITS AND ATTACKS

	CHAPTER 2. SECURING RHEL DURING INSTALLATION
	2.1. BIOS AND UEFI SECURITY
	2.1.1. BIOS passwords
	2.1.2. Non-BIOS-based systems security

	2.2. DISK PARTITIONING
	2.3. RESTRICTING NETWORK CONNECTIVITY DURING THE INSTALLATION PROCESS
	2.4. INSTALLING THE MINIMUM AMOUNT OF PACKAGES REQUIRED
	2.5. POST-INSTALLATION PROCEDURES

	CHAPTER 3. SECURING SERVICES
	3.1. SECURING RPCBIND
	3.2. SECURING RPC.MOUNTD

	CHAPTER 4. INSTALLING A RHEL 8 SYSTEM WITH FIPS MODE ENABLED
	4.1. FEDERAL INFORMATION PROCESSING STANDARD (FIPS)
	4.2. INSTALLING THE SYSTEM WITH FIPS MODE ENABLED
	4.3. ADDITIONAL RESOURCES

	CHAPTER 5. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES
	5.1. SYSTEM-WIDE CRYPTOGRAPHIC POLICIES
	Tool for managing crypto policies
	Strong crypto defaults by removing insecure cipher suites and protocols
	Cipher suites and protocols disabled in all policy levels
	Cipher suites and protocols enabled in the crypto-policies levels

	5.2. SWITCHING THE SYSTEM-WIDE CRYPTOGRAPHIC POLICY TO MODE COMPATIBLE WITH EARLIER RELEASES
	5.3. SWITCHING THE SYSTEM TO FIPS MODE
	5.4. ENABLING FIPS MODE IN A CONTAINER
	5.4.1. Enabling FIPS mode in a container in RHEL 8.2
	5.4.2. Enabling FIPS mode in a container in RHEL 8.1 and earlier

	5.5. LIST OF RHEL APPLICATIONS USING CRYPTOGRAPHY THAT IS NOT COMPLIANT WITH FIPS 140-2
	5.6. EXCLUDING AN APPLICATION FROM FOLLOWING SYSTEM-WIDE CRYPTO POLICIES
	5.6.1. Examples of opting out of system-wide crypto policies

	5.7. CUSTOMIZING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES WITH POLICY MODIFIERS
	5.8. DISABLING SHA-1 BY CUSTOMIZING A SYSTEM-WIDE CRYPTOGRAPHIC POLICY
	5.9. CREATING AND SETTING A CUSTOM SYSTEM-WIDE CRYPTOGRAPHIC POLICY
	5.10. RELATED INFORMATION

	CHAPTER 6. SETTING A CUSTOM CRYPTOGRAPHIC POLICY ACROSS SYSTEMS
	6.1. CRYPTO POLICIES SYSTEM ROLE VARIABLES AND FACTS
	6.2. SETTING A CUSTOM CRYPTOGRAPHIC POLICY USING THE CRYPTO POLICIES SYSTEM ROLE
	6.3. ADDITIONAL RESOURCES

	CHAPTER 7. CONFIGURING APPLICATIONS TO USE CRYPTOGRAPHIC HARDWARE THROUGH PKCS #11
	7.1. CRYPTOGRAPHIC HARDWARE SUPPORT THROUGH PKCS #11
	7.2. USING SSH KEYS STORED ON A SMART CARD
	7.3. CONFIGURING APPLICATIONS TO AUTHENTICATE USING CERTIFICATES FROM SMART CARDS
	7.4. USING HSMS PROTECTING PRIVATE KEYS IN APACHE
	7.5. USING HSMS PROTECTING PRIVATE KEYS IN NGINX
	7.6. RELATED INFORMATION

	CHAPTER 8. USING SHARED SYSTEM CERTIFICATES
	8.1. THE SYSTEM-WIDE TRUST STORE
	8.2. ADDING NEW CERTIFICATES
	8.3. MANAGING TRUSTED SYSTEM CERTIFICATES
	8.4. ADDITIONAL RESOURCES

	CHAPTER 9. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES
	9.1. CONFIGURATION COMPLIANCE TOOLS IN RHEL
	9.2. VULNERABILITY SCANNING
	9.2.1. Red Hat Security Advisories OVAL feed
	9.2.2. Scanning the system for vulnerabilities
	9.2.3. Scanning remote systems for vulnerabilities

	9.3. CONFIGURATION COMPLIANCE SCANNING
	9.3.1. Configuration compliance in RHEL 8
	9.3.2. Possible results of an OpenSCAP scan
	9.3.3. Viewing profiles for configuration compliance
	9.3.4. Assessing configuration compliance with a specific baseline

	9.4. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC BASELINE
	9.5. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC BASELINE USING THE SSG ANSIBLE PLAYBOOK
	9.6. CREATING A REMEDIATION ANSIBLE PLAYBOOK TO ALIGN THE SYSTEM WITH A SPECIFIC BASELINE
	9.7. CREATING A REMEDIATION BASH SCRIPT FOR A LATER APPLICATION
	9.8. SCANNING THE SYSTEM WITH A CUSTOMIZED PROFILE USING SCAP WORKBENCH
	9.8.1. Using SCAP Workbench to scan and remediate the system
	9.8.2. Customizing a security profile with SCAP Workbench
	9.8.3. Related information

	9.9. DEPLOYING SYSTEMS THAT ARE COMPLIANT WITH A SECURITY PROFILE IMMEDIATELY AFTER AN INSTALLATION
	9.9.1. Deploying baseline-compliant RHEL systems using the graphical installation
	9.9.2. Deploying baseline-compliant RHEL systems using Kickstart

	9.10. SCANNING CONTAINER AND CONTAINER IMAGES FOR VULNERABILITIES
	9.11. ASSESSING SECURITY COMPLIANCE OF A CONTAINER OR A CONTAINER IMAGE WITH A SPECIFIC BASELINE
	9.12. SUPPORTED VERSIONS OF THE SCAP SECURITY GUIDE IN RHEL
	9.13. SCAP SECURITY GUIDE PROFILES SUPPORTED IN RHEL 8
	9.14. RELATED INFORMATION

	CHAPTER 10. CHECKING INTEGRITY WITH AIDE
	10.1. INSTALLING AIDE
	10.2. PERFORMING INTEGRITY CHECKS WITH AIDE
	10.3. UPDATING AN AIDE DATABASE
	10.4. RELATED INFORMATION

	CHAPTER 11. ENCRYPTING BLOCK DEVICES USING LUKS
	11.1. LUKS DISK ENCRYPTION
	11.2. LUKS VERSIONS IN RHEL 8
	11.3. OPTIONS FOR DATA PROTECTION DURING LUKS2 RE-ENCRYPTION
	11.4. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING LUKS2
	11.5. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING LUKS2 WITH A DETACHED HEADER
	11.6. ENCRYPTING A BLANK BLOCK DEVICE USING LUKS2
	11.7. CREATING A LUKS ENCRYPTED VOLUME USING THE STORAGE ROLE

	CHAPTER 12. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES USING POLICY-BASED DECRYPTION
	12.1. NETWORK-BOUND DISK ENCRYPTION
	12.2. INSTALLING AN ENCRYPTION CLIENT - CLEVIS
	12.3. DEPLOYING A TANG SERVER WITH SELINUX IN ENFORCING MODE
	12.4. ROTATING TANG SERVER KEYS AND UPDATING BINDINGS ON CLIENTS
	12.5. CONFIGURING AUTOMATED UNLOCKING USING A TANG KEY IN THE WEB CONSOLE
	12.6. BASIC NBDE AND TPM2 ENCRYPTION-CLIENT OPERATIONS
	12.7. REMOVING A CLEVIS PIN FROM A LUKS-ENCRYPTED VOLUME MANUALLY
	12.8. CONFIGURING MANUAL ENROLLMENT OF LUKS-ENCRYPTED VOLUMES
	12.9. CONFIGURING MANUAL ENROLLMENT OF LUKS-ENCRYPTED VOLUMES USING A TPM 2.0 POLICY
	12.10. CONFIGURING AUTOMATED ENROLLMENT OF LUKS-ENCRYPTED VOLUMES USING KICKSTART
	12.11. CONFIGURING AUTOMATED UNLOCKING OF A LUKS-ENCRYPTED REMOVABLE STORAGE DEVICE
	12.12. DEPLOYING HIGH-AVAILABILITY NBDE SYSTEMS
	12.12.1. High-available NBDE using Shamir’s Secret Sharing
	12.12.1.1. Example 1: Redundancy with two Tang servers
	12.12.1.2. Example 2: Shared secret on a Tang server and a TPM device

	12.13. DEPLOYMENT OF VIRTUAL MACHINES IN A NBDE NETWORK
	12.14. BUILDING AUTOMATICALLY-ENROLLABLE VM IMAGES FOR CLOUD ENVIRONMENTS USING NBDE
	12.15. DEPLOYING TANG AS A CONTAINER
	12.16. INTRODUCTION TO THE CLEVIS AND TANG SYSTEM ROLES
	12.17. USING THE NBDE_SERVER SYSTEM ROLE FOR SETTING UP MULTIPLE TANG SERVERS
	12.18. USING THE NBDE_CLIENT SYSTEM ROLE FOR SETTING UP MULTIPLE CLEVIS CLIENTS
	12.19. ADDITIONAL RESOURCES

	CHAPTER 13. AUDITING THE SYSTEM
	13.1. LINUX AUDIT
	13.2. AUDIT SYSTEM ARCHITECTURE
	13.3. CONFIGURING AUDITD FOR A SECURE ENVIRONMENT
	13.4. STARTING AND CONTROLLING AUDITD
	13.5. UNDERSTANDING AUDIT LOG FILES
	13.6. USING AUDITCTL FOR DEFINING AND EXECUTING AUDIT RULES
	13.7. DEFINING PERSISTENT AUDIT RULES
	13.8. USING PRE-CONFIGURED RULES FILES
	13.9. USING AUGENRULES TO DEFINE PERSISTENT RULES
	13.10. DISABLING AUGENRULES
	13.11. RELATED INFORMATION

	CHAPTER 14. BLOCKING AND ALLOWING APPLICATIONS USING FAPOLICYD
	14.1. INTRODUCTION TO FAPOLICYD
	14.2. DEPLOYING FAPOLICYD
	14.3. MARKING FILES AS TRUSTED USING AN ADDITIONAL SOURCE OF TRUST
	14.4. ADDING CUSTOM ALLOW AND DENY RULES FOR FAPOLICYD
	14.5. ENABLING FAPOLICYD INTEGRITY CHECKS
	14.6. TROUBLESHOOTING PROBLEMS RELATED TO FAPOLICYD
	14.7. ADDITIONAL RESOURCES

	CHAPTER 15. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES
	15.1. USBGUARD
	15.2. INSTALLING USBGUARD
	15.3. BLOCKING AND AUTHORIZING A USB DEVICE USING CLI
	15.4. PERMANENTLY BLOCKING AND AUTHORIZING A USB DEVICE
	15.5. CREATING A CUSTOM POLICY FOR USB DEVICES
	15.6. CREATING A STRUCTURED CUSTOM POLICY FOR USB DEVICES
	15.7. AUTHORIZING USERS AND GROUPS TO USE THE USBGUARD IPC INTERFACE
	15.8. LOGGING USBGUARD AUTHORIZATION EVENTS TO THE LINUX AUDIT LOG
	15.9. ADDITIONAL RESOURCES

