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Abstract  

The state of reduced order modeling of unsteady 
aerodynamic flows for the efficient calculation 
of fluid-structure interaction (aeroelasticity) is 
discussed as well as very recent work on 
molecular dynamics simulations.  Starting with 
either a time domain or frequency domain 
computational fluid dynamics (CFD) analysis of 
unsteady aerodynamic flows, a large, sparse 
eigenvalue problem is solved.  Then, using just 
a few of the resulting aerodynamic eigenmodes, 
a Reduced Order Model (ROM) of the unsteady 
flow is constructed. The aerodynamic ROM can 
then be combined with a similar ROM for the 
structure to provide a Reduced Order 
Aeroelastic Model that reduces computational 
model sized and cost by several orders of 
magnitude. Moreover, the aerodynamic and 
aeroelastic eigenvalue and eigenmode 
information provides important insights into the 
physics of unsteady flows and fluid-structure 
interaction. 
 As an alternative to the use of 
aerodynamic eigenmodes, Proper Orthogonal 
Decomposition (POD) has also been explored. 
POD is an attractive alternative because of the 
greater simplicity of calculating POD modes 
rather than fluid eigenmodes per se. Moreover 
once the POD modes have been used to 
construct a Reduced Order Model, this ROM 
may be used to find a good approximation to the 
dominant aerodynamic eigenmodes. 
 After the Hopf Bifurcation (flutter) 
condition is determined for the fluid-structural 
system, a novel High Dimensional Harmonic 
Balance (HDHB) solution method for the fluid 
(and structural) model(s) proves to be a very 

efficient technique for determining limit cycle 
oscillations in fluid-structural systems.   
 Examples will be discussed including the 
limit cycle oscillations (LCO) of the F-16 
aircraft and the limit cycle oscillations (LCO) of 
the Von Karman vortex street behind a cylinder 
in a cross-flow.  The latter is a prototypical 
example of self-excited fluid oscillations that 
occur for bluff bodies including wings at high 
angles of attack. Correlation of theoretical 
calculations with experiment will also be shown.  
Finally a discussion of how similar methods 
may be used for molecular dynamics 
simulations concludes the paper. 
 
1  Introduction 
In this paper the initial focus is on two distinct 
yet fundamentally related phenomena in 
unsteady aerodynamics and aeroelasticity. The 
first is the limit cycle oscillations that may 
occur in high performance military and civilian 
aircraft. The other is the wake oscillation and 
vortex shedding that may occur behind a bluff 
body and the consequent fluid-structural 
dynamic interaction. In both cases theoretical 
modeling and correlation with experiment will 
be emphasized. 
 Earlier relevant discussions of these 
topics include review articles by Dowell and 
Hall [1] (reduced order aerodynamic modeling), 
Dowell and Tang [2] (nonlinear aeroelasticity 
and unsteady aerodynamics) and Dowell, 
Edwards and Strganac [3] (nonlinear 
aeroelasticity). Also excellent review articles on 
these topics have been written by Beran and 
Silva [4] (reduced order aerodynamic 
modeling), Lee et al [5] (freeplay and other 
related structural nonlinearities) and Lucia, 
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Beran and Silva [6] (reduced order aerodynamic 
modeling). 
 Limit cycle oscillations have been 
observed in the F-16 aircraft and this has 
motivated much of the work on this subject. 
Denegri and his colleagues [7-10] have written 
authoritative articles on results from flight tests 
and their interpretation in the light of existing 
mathematical models. 
 The paper concludes with a discussion 
of reduced order models in a different physical 
context, i.e. molecular dynamics simulations. 

2  Nonlinear Aeroelastic Response and its 
Interpretation 

To set the stage for our subsequent discussion, 
first consider Figure 1 which displays a 
schematic of limit cycle oscillation response as 
a function of flight speed. Other parameters 
such as Mach number or altitude might be used 
in lieu of flight speed, but the latter is as useful 
a parameter as any for our present purposes. 
 

 
Fig. 1.  Schematic of Limit Cycle Oscillation 
Response 
 
 There are two different generic 
responses shown. One is termed the case of a 
“good nonlinearity” and for this case there is no 
steady state limit cycle oscillation (LCO) below 
the flutter speed. The flutter speed is here 
defined (and in the present authors' opinion 
most usefully defined) as the flight velocity at 
which a dynamically linear (though possibly 
statically nonlinear) mathematical model would 
predict the system is dynamically unstable. 

Physically it is the velocity one would observe 
in a flight test or wind tunnel test at which 
oscillations would begin to grow exponentially 
with time IF any external dynamic disturbances 
were sufficiently small.  In a mathematical 
sense such disturbances are assumed to be 
infinitesimally small, but only a nonlinear 
dynamic analysis can reveal how small is small 
enough. Often in experiments the disturbances 
cannot be kept small enough so that the flutter 
speed can be precisely determined. As the flight 
speed continues to increase, the LCO amplitude 
continues to increase (smoothly) and if the flight 
speed is decreased the LCO amplitude versus 
flight speed curve is retraced. Geometric 
nonlinearities in a low aspect ratio wing 
structure or a thin skin panel are typical physical 
sources of good nonlinearities. See Dowell and 
Tang [2] for a discussion of structural 
nonlinearities and the relevant literature. 
 

 
Fig. 2. Several Physical Sources of 
Nonlinearities 
 
 The other generic response shown in 
Figure 1 is for the case of a “bad nonlinearity”. 
In this case a limit cycle oscillation (LCO) may 
occur for flight speeds below the flutter speed 
IF the external disturbances are large enough. 
Again a nonlinear analysis is needed to 
determine how large is large enough and in an 
experiment one needs to closely control the 
nature and magnitude of the disturbances. Often 
such control is a major challenge in an 
experiment. In the case of a bad nonlinearity, if 
external disturbances are kept small enough 
then at the flutter speed there is a sudden jump 
to a finite amplitude limit cycle oscillation and 
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with further increases in flight speed the LCO 
amplitude continues to smoothly increase. 
However, if the flight speed is decreased, the 
LCO oscillation will continue to persist to flight 
speeds below the flutter speed and the 
aeroelastic system is said to have hysteresis. 
Freeplay between a control surface and wing 
structure is a typical source of a bad 
nonlinearity. See Lee et al [5] and Dowell and 
Tang [2] for a discussion of freeplay. 
 Figure 2 lists the principal sources of 
nonlinearities in aeroelastic systems. They may 
be inherent in the structure or the aerodynamic 
flow. They may be further characterized as 
“good” or “bad” and they may also be 
sometimes characterized in terms of the 
amplitude at which such a nonlinearity will 
become important. If there are several such 
possible nonlinearities the one that becomes 
important at the SMALLEST amplitude will 
generally be dominant for that aeroelastic 
system. For example, for thin plate-like 
structures the nonlinearity becomes significant 
when response amplitudes are of the order of 
the plate thickness. For freeplay it is when the 
response amplitudes become of the order of the 
range of freeplay. When a nonlinearity is 
important for smaller response amplitudes it is 
called “strong” and when becomes important for 
larger response amplitudes it is called “weak”. 
Also rather than using the terms “good” and 
“bad”, the more formal (mathematical) terms 
are sometimes used, “supercritical” and 
“subcritical”. See Figure 2.  
 For aerodynamic nonlinearities due to 
shock motion or separated flow, the response 
amplitude of amplitude at which such 
nonlinearities become important is a sensitive 
function of Mach number, perhaps Reynolds 
number and aircraft or wing geometry. And 
indeed these parameters also determine whether 
the nonlinearity is good or bad. For these 
reasons and because of the relatively greater 
difficulty of constructing a nonlinear 
mathematical model or performing an 
experiment to study aerodynamic nonlinearities, 
these are usually a greater challenge to 
understand and to describe in a compact 
mathematical model. A corollary of this is that 
if one wants to design a beneficial nonlinearity 

to suppress or at least diminish LCO, structural 
nonlinearities are usually a much more 
attractive and robust candidate for this purpose. 
Finally we emphasize that while LCO may be 
undesirable, it is usually safer to have LCO than 
flutter in a flight vehicle or wind tunnel model. 
 In this paper, the focus will be on 
aerodynamic nonlinearities due to shock waves 
and flow separation. 

2.1 Some Important Theoretical Ideas  

Before presenting representative results, a few 
fundamental and important theoretical ideas are 
discussed which form the basis for the methods 
used to obtain the results to be presented later. 
 Three ideas are summarized here. The 
first idea is that of DYNAMIC perturbation 
theory or as it is sometimes term in the 
aeroelastic literature, “time linearization”. 
“Dynamic linearization” would perhaps be a 
better term. The basis for this idea is the 
following. Whatever the fundamental fluid or 
aerodynamic model, be it a potential flow model 
or an (inviscid) Euler model or a (viscous) 
Navier-Stokes model, one can always in 
principle and today in practice do the following. 
First determine a steady (time independent) 
flow about (at most) a statically deformed 
structure. This steady flow solution may itself 
require a NONLINEAR static or steady flow 
analysis. Then consider a small dynamic (time 
dependent) perturbation about this static 
deformation shape of the structure and the 
related steady flow field. In terms of the 
dynamic fluid and structural motion, the 
governing equations of the mathematical model 
are LINEAR and all the powerful tools of linear 
dynamic analysis may be brought into play. 
This provides a very substantial conceptual and 
computational simplification for the aeroelastic 
analysis.  And such a model is entirely adequate 
for determining the flutter boundary of an 
aeroelastic system. And IF all nonlinearities 
were “good” rather than “bad”, we would be 
assured that any limit cycle oscillations that may 
occur would be at flight speeds higher than the 
flutter speed. But as we have discussed some 
nonlinearities are “bad” or “subcritical”. Thus 
there will be a need for a FULLY 
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DYNAMICALLY NONLINEAR analysis for 
some cases, to determine the onset of limit cycle 
oscillations (LCO) as well as the variation of 
LCO amplitudes with system parameters. 
 Traditionally such FULLY 
DYNAMICALLY NONLINEAR analysis has 
been conducted by time simulation. But recently 
Hall and colleagues have developed an 
alternative method for such analyses based upon 
the observation that the usual LCO is periodic in 
time and thus the response can be represented 
by a Fourier series in time where the unknowns 
are the amplitudes of a small number of 
harmonics, typically two or three or even only 
one. This greatly reduces the computational cost 
of determining LCO response. The method used 
is a novel form of the harmonic balance method 
developed especially for the very high 
dimensional systems typical of computational 
fluid dynamic (CFD) models. This has been 
called the high dimensional harmonic balance 
(HDHB) method and it is well described by 
Hall, Thomas and Clark [11], but also in Dowell 
and Hall [1] and Thomas, Hall and Dowell [12]. 
 The third theoretical idea is use the 
notion of spatial aerodynamic modes to create 
an aerodynamic model rather than using local 
spatial grids typical of traditional CFD codes. 
Referring back to the first idea of a small 
dynamic perturbation or time linearization, once 
such a model exists it is natural to find its 
eigenmodes and then reconstitute the CFD 
model in terms of such eigenmodes. For many 
years aeroelasticians have done this for complex 
structural models and with great success. So it 
may be somewhat surprising that this has only 
been done relatively recently for aerodynamic 
models. But the reason for this is not far to seek. 
Finding the eigenmodes of a typical CFD code 
is a far more difficult task than for a typical 
finite element structural model and the 
interpretation of such eigenmodes is more 
subtle. For a more in depth discussion see 
Dowell and Hall [1]. Here we simply note that 
the eigenvalues of such eigenmodes are 
complex numbers representing the frequency 
and damping in each aerodynamic mode and for 
an unbounded fluid domain the eigenvalues are 
continuous rather than discrete. Nevertheless for 
time linearized models this idea has been used 

with great success to determine flutter 
boundaries using the Euler and Navier-Stokes 
equations for the fluid. It typical reduces 
computational costs by a factor of 100 to 10,000 
depending on the particulars of the aeroelastic 
system. Most recently the use of Proper 
Orthogonal Decomposition to construct modal 
basis vectors has been shown to be a relatively 
simple and effective approach and is currently 
the method of choice. 
 To use the second and third ideas in 
combination is currently a subject of research.  
Yet another attractive idea is to use (POD) 
aerodynamic modes in combination with system 
identification methods to construct a reduced 
order FULLY NONLINEAR REDUCED 
ORDER MODEL. See the paper by Lucia, 
Beran and Silva [6] and also the paper by Attar, 
Dowell, White and Thomas [13]. 

2.2 The F-16 Aircraft: Flutter and Limit 
Cycle Oscillations 

This discussion of the F-16 aircraft relies 
substantially on the paper by Thomas, Dowell, 
Hall and Denegri [14] as well as more recent as 
yet unpublished work of these same colleagues. 
The challenge is that the F-16 may undergo 
limit cycle oscillations (LCO) and there are 
many possible stores that can be carried by this 
aircraft and hence its structural dynamic, 
unsteady aerodynamic and aeroelastic 
characteristics may change from one store 
configuration to another. To date flight testing 
has been used to determine the LCO response of 
the F-16 configurations and this is very 
expensive and time consuming. Yet there has 
not been a reliable theoretical method to predict 
LCO. Here one approach is discussed that has 
proven to be useful and the results obtained are 
encouraging. 
 In our work to date we have modeled the 
aerodynamic flow around the wing, but only 
used highly simplified geometries to represent 
the aerodynamics of the stores per se. The 
structural characteristics of the wing plus store 
are fully accounted for by a dynamically linear 
structural model in terms of the natural modes 
as derived from a finite element structural 
model. Both Euler based and Navier-Stokes 
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based aerodynamic CFD codes have been used. 
But for this configuration we only show results 
from the Navier-Stokes fluid model as the Euler 
model does not appear adequate for this 
configuration at the Mach numbers and 
Reynolds numbers of interest. 
 

 
Fig.3. F-16 Forward Wingtip Launcher 
Accelerometer LCO Response Tred (Denegri et 
al) 
 
 Figure 3 shows the measured dynamic 
response of the aircraft in terms of acceleration 
at a forward position on the wingtip launcher as 
a function of Mach number at several fixed 
altitudes. The results are not especially sensitive 
to altitude over the range shown. For M=.9 LCO 
seems clearly indicated and for M less than .75 
it appears there is no LCO. For this 
configuration no appreciable hysteresis was 
seen, i.e. it appears that there is a “good 
nonlinearity”.  The question arises then, what is 
the flutter Mach number? As with beauty, the 
flutter Mach number may be at least to some 
degree in the eye of the beholder. Because of 
atmospheric disturbances and perhaps pilot 
induced disturbances as well, the external 
excitations are not completely controlled and 
appear to be sufficiently large to mask a precise 
determination of the flutter Mach number. It 
appears to be somewhere in the range of M=.8 
to .9. As we will see, in the theory any external 
disturbance can be suppressed, and a precise 
determination of the flutter Mach number is 
obtained that falls in this range of Mach 
number, i.e. M = .8 to .9. 
 A summary of the theoretical model 
used to compute the flutter Mach number per se 

is now described. The governing aeroelastic 
equation is the usual Lagrangian formulation 
except the aerodynamic model may be 
dynamically linear or nonlinear depending on 
our purpose and what we wish to determine 
from the model, i.e. flutter only or LCO 
response as well. The structural modes were 
determined from a NASTRAN finite element 
analysis. The aerodynamic generalized forces 
depend parametrically on the aeroelastic 
frequency, modal displacement amplitudes, 
Mach number, Reynolds number, any mean or 
static angle of attack and altitude.  

 
Fig. 4. Sample F-16 NASTRAN Structural 
Model Mode Shapes 
 
The generalized aerodynamic forces are 
nonlinear functions of the structural modal 
amplitudes when undertaking a LCO analysis, 
but are linear functions (the analysis is time 
linearized) when only a flutter analysis is 
performed. Of course the flutter point may be 
determined by the fully nonlinear analysis used 
for LCO, but it is certainly less expensive and 
usually more insightful to use a dynamically 
linear analysis for predicting the flutter Mach 
number per se. The results in this paper were 
obtained by first using a dynamically linear 
analysis to determine the flutter Mach number 
and then a fully nonlinear dynamical analysis to 
determine LCO. 
 Figure 4 shows the two most important 
structural modes which contribute to the flutter 
mode and the LCO response. Note these modes 
are antisymmetric and have closely spaced 
natural frequencies. 
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 A novel high dimensional harmonic 
balance procedure (HDHB) used to calculate a 
solution to the aerodynamic CFD model. 
Expanding the solution in a Fourier Series in 
time, one seeks to find the coefficients of the 
Fourier Series. When the underlying CFD 
model is fully nonlinear dynamically, there is 
nonlinear coupling among these Fourier 
coefficients. It is noted that there is unique 
relationship (transformation) between these 
Fourier coefficients and the solution at certain 
discrete times over ONE period of the LCO. For 
technical reasons it is simpler to determine the 
solution at these discrete times directly. For a 
more in depth discussion of the HDHB 
methodology, see Hall et al [11] or Thomas et al 
[12]. 

 
Fig.5. Computed F-16 Flutter Onset Altitude 
Structural Modal Convergence Trend 
 

2.3 Flutter and LCO Calculations: 
Figure 5 shows the altitude at which flutter is 
calculated to occur at two different Mach 
numbers, M= .8 and .9. Also shown are results 
for various combinations of structural modes 
retained in the aeroelastic model. Note the 
symmetric structural modes, i.e. 1, 3, 5, etc. 
make no detectable contribution to the flutter 
mode and that the lowest two antisymmetric 
structural modes, i.e. 2 and 4, dominate the 
flutter solution. There is a discernible, if 
modest, effect on flutter due to the rigid body 
roll mode. 
 Figure 6 shows the flutter boundary as a 
plot of altitude versus Mach number. Also 
shown in the inset box is the modal amplitude 

ratio of the two dominant modes showing both 
the in-phase (real) and out of phase (imaginary) 
components. The flutter frequency does not 
change much with altitude and is near the two 
closely spaced resonant frequencies of the two 
dominant structural modes. 
 The HDHB LCO solution methodology 
is as follows. An amplitude of a prominent 
structural mode is chosen and the solution 
procedure determines the amplitude of all other 
structural modes, the frequency of the LCO and 
the Mach number at which those LCO 
amplitudes and frequency will occur. The 
solution method is basically solving a 
NONLINEAR eigenvalue problem by driving 
the characteristic determinant of the aeroelastic 
model to zero. 

 
Fig. 6. Computed F-16 Flutter Onset Altitude 
vs. Mach Number Trend 
 
 Figure 7 shows the LCO results from the 
theoretical model compared to the results from 
flight test. As may be seen the theoretical model 
predicts a precise flutter Mach number because 
all external disturbances have been suppressed. 
Also the theoretical model does well in 
predicting the maximum LCO response and the 
range of Mach number where LCO is seen in 
the flight test. It would be of interest to include 
some representation of the external disturbances 
in the calculation if we had an accurate 
knowledge of what they are. This might be best 
done by using the HDHB analysis to compute a 
(nonlinear) transfer function for the aeroelastic 
model and using a power spectral density 
representation of a random gust. Finally it is 
noted that the theoretical model predicts 
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correctly the critical (antisymmetric) structural 
modes and the observed LCO frequency. 
 Perhaps it bears some emphasis to note 
that in fact the LCO predicted is the result of the 
onset of flutter which is then followed by LCO 
as the aircraft flies beyond the flutter boundary. 
No hysteresis is seen in the present calculations. 
Interestingly hysteresis was observed in some 
earlier calculations using the Euler fluid model, 
however the Euler model predicts LCO 
behavior that is quite different from the Navier-
Stokes model and is in poorer agreement with 
the flights test measurements. Hence these 
results are not shown. 

 
Fig. 7. Computed and Experimental LCO 
Response Trends 
 
 The main conclusions of the F-16 study 
are that the HDHB/LCO solution technique 
works well and is the only method to date to 
predict LCO for the F-16. The LCO response 
levels correlate well with experiment and the 
computational times are far less than any other 
methods proposed to date. 
 

2.4 Unsteady Flow About a Circular Cylinder 
in a Cross-Flow 

Another class of unsteady aerodynamic and 
nonlinear aeroelastic phenomena is the study of 
flow around a bluff body. Of course streamlined 
bodies become bluff bodies if placed at a 
sufficiently high angle of attack. Thus buffeting 
of aircraft at high angles of attack, such as wing 
drop or abrupt wing stall as most recently seen 
on the F-18 but also as seen over many years on 
other aircraft, as well as the flow around ships 

all are important examples of this class. Here we 
consider the classic example of the class, i.e. the 
famed Von Karman vortex street that occurs 
behind a circular cylinder in cross flow at 
sufficiently high Reynolds number. As an aside, 
in his autobiography Theodore Von Karman 
notes that in France the Von Karman vortex 
street is known as Bernard Boulevard and in 
Germany as Prandtl Strasse. Whatever the name 
it is a very interesting nonlinear dynamic 
unsteady flow. The work described here has 
been briefly discussed by Thomas et al [15-17]. 
The prior experiments were reported by 
Anagnostopoulos and Bearman [18]. 

 
Fig. 8. Unsteady Vortex Shedding Aft of a 
Cylinder in Crossflow, RE=150 
 

 
Fig. 9. Magnitude of Unsteady Lift as a 
Function of Reynolds Number 
 
 Figure 8 shows the circular cylinder 
geometry, the CFD grid and a typical flow 
pattern of total pressure contours for vortex 
shedding behind the cylinder.  



DOWELL, HALL, THOMAS, KIELB, SPIKER, LI, DENEGRI 

8 

• Stationary Cylinder: Even if the cylinder 
is stationary, the flow may begin to 
oscillate above a critical Reynolds 
number, Re_critical. Based upon 
cylinder diameter, Re_critical=47. 
Above this Re there is a limit cycle 
oscillation of the flow alone, using the 
language of this paper. Thus in Figure 9 
the magnitude of the unsteady lift is 
shown as a function of Re. 
Unfortunately there are no experimental 
data to compare to the theoretical results 
of Figure 9. However, for the range of 
Re shown, the flow oscillation is 
dominated by a single harmonic of a 
certain frequency (Strouhal number) that 
is in good agreement with previous 
experiments (not shown here). 

 
Fig. 10. Oscillation Amplitude vs. Ration of 
Strouhal Frequency of Wake to Prescribed 
Frequency of Cylinder Motion 
 

• Cylinder with Prescribed Motion: When 
the cylinder is given a motion of a 
prescribed amplitude and frequency, and 
if this frequency is sufficiently near the 
Strouhal frequency of the flow (the 
frequency of the flow LCO when the 
cylinder is not moving), then the flow 
will oscillate with the prescribed 
frequency and not the flow Strouhal 
frequency. In Figure 10, results are 
shown for this so called “lock-in” range 
in terms of cylinder frequency 
normalized by the Strouhal frequency 
versus amplitude of cylinder motion. 
The agreement between the present 

theoretical results and prior experiments 
is very good for low amplitudes and less 
good at higher amplitudes where higher 
harmonics not included in the analysis 
are thought to be more important. 

• Cylinder Free to Move/Aeroelastic 
Cylinder: If the cylinder is spring 
mounted so that it is free to move and 
dynamically interact with the oscillating 
flow, then even more interesting 
responses arise. Now an aeroelastic LCO 
is possible and indeed occurs. Figure 11 
shows the LCO amplitude of the 
cylinder response normalized by the 
cylinder diameter versus Reynolds 
number. This self-excited response is 
present most prominently in the lock-in 
range and the frequency of the response 
is very nearly the natural frequency of 
the structure, i.e. the resonant frequency 
of the cylinder mass on the spring 
mount. Results are shown from previous 
experiments and also from the present 
analysis. Theoretical results are shown 
for various numbers of harmonics 
retained in the analysis to illustrate the 
good harmonic convergence of the 
HDHB analysis. The analysis agrees 
very well with the main features of the 
experimental results, i.e. the abrupt jump 
in LCO amplitude that occurs at Re 
=105 as well as the smoother decrease of 
the LCO amplitude with Re as the Re 
increases to about 130. It is interesting to 
note that the analysis predicts two 
possible LCO amplitudes over a smaller 
range of Re from about Re=125 to 130. 
It is thought, but not yet conclusively 
shown, that the smaller LCO amplitude 
in this range of Re corresponds to an 
LCO which is itself unstable. If so, then 
this LCO also shows hysteresis in this 
range of Re.  Finally the underprediction 
of the largest LCO amplitudes shown in 
Figure 31 may be a result of only using 
one harmonic in the structural analysis 
even though higher harmonics were 
included in the fluid model. 

The principal conclusion drawn from this 
example is that unsteady and unstable 
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aerodynamic flows may also be treated by the 
methods that have been developed and 
discussed here. Moreover bluff as well as 
aerodynamic streamlined bodies and their 
aeroelastic behavior may be studied by these 
new methods. 

 
Fig. 11. LCO Amplitude vs. Reynolds Number 

3  Modal Reduction of Mathematical Models 
of Biological Molecules 

A detailed study has been undertaken [19] of 
modal reduction based on either linear normal 
mode (LNM) analysis or proper orthogonal 
decomposition (POD) for modeling a single �-
D-glucopyranose monomer as well as a chain of 
monomers. Also a modal reduction method 
combining POD and component modal 
synthesis (CMS) has been developed. The focus 
of this study is to determine to what extent these 
methods can reduce the time and cost of 
molecular modeling and simultaneously provide 
the required accuracy. It has been demonstrated 
that a linear reduced order model (ROM) is 
valid for small amplitude excitation and low 
frequency excitation. It is found that a nonlinear 
ROM based on POD modes provides a good 
approximation even for large excitation while 
the nonlinear ROM using linear eigenmodes as 
the basis vectors is less effective for modeling 
molecules with a strong nonlinearity. The ROM 
based on CMS using POD modes for each 
component also gives a good approximation. 
With the reduction in the dimension of the 
system using these methods the computational 
time and cost can be reduced significantly. 
 

3.1 Physical Context  

Biomolecular motions involve a large number 
of atoms and take place over a great range of 
time and length scales. Moreover, because of 
the existence of high frequency motions, the 
usual time step in a molecular dynamics 
simulation is around 1 femtosecond. These 
characteristics make a numerical molecular 
dynamic simulation a computationally intensive 
task. There is a clear need to reduce the cost of 
the computation. Modal reduction methods 
described here are directed toward that end.  
 A key challenge for constructing low-
dimensional models for complex physical 
systems is the choice of basis vectors. In this 
research two kinds of subspaces are considered, 
linear normal mode (LNM) and proper 
orthogonal decomposition modes (POD). The 
POD method is a procedure for extracting 
modal information from a set of data obtained in 
experiments or numerical simulations, thus 
providing an optimal basis for modal reduction.  
 The application of modal analysis to 
molecular dynamics first appeared in the early 
1980s. In [20] the author shows that multiple 
minima exist in proteins and the harmonic 
(quadratic) approximation of the potential 
energy is in question. Paradoxically, in [21] it is 
proven that the very low-frequency normal 
modes make the major contributions to the 
conformational fluctuations at thermal 
equilibrium and the author argued that this fact 
justifies the use of very-low-frequency normal 
modes to describe the most significant 
conformational dynamics of proteins. The use of 
traditional normal modes is still under study 
today. As an alternative to traditional normal 
modal analysis, POD has been introduced in 
molecular dynamics. In [22] the authors applied 
both normal modal analysis and principal 
component analysis to the dynamics of BPTI 
and the results show that the first principal 
component makes an overwhelmingly large 
contribution to the total mean-square fluctuation 
and represents the transitions between energy 
minima or static equilibria. For more examples, 
see references [23-27]. The results of these 
papers support the use of modal reduction in 
computational biology. 
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 However, so far in molecular dynamics 
most reduced order models using normal modes 
or POD are assumed to be linear around the 
static equilibrium state or conformation. The 
study of a nonlinear reduced order model is 
rarely considered. In [19] normal modes and 
POD modes are used to construct linear and 
nonlinear reduced order models for a �-D-
glucopyranose monomer to determine if modal 
reduction can provide a good approximation to 
the original system and can improve the 
efficiency of computation in molecular 
dynamics. This is a continuation of our previous 
studies that mainly used linear models [28]. 
 In addition, a reduced order model based 
on POD and component modal synthesis (CMS) 
is also constructed. As is well known, 
component modal synthesis can be 
advantageous in modeling large systems. For 
biological molecules, the dimension of the 
system is very high. The calculation of proper 
orthogonal modes (POM) for the entire system 
is very expensive since the correlation matrix is 
so big. And also the accuracy may be in doubt 
when solving a large eigenvalue problem. Thus, 
CMS is another attractive option. To 
demonstrate the utility of this method, the 
simulation of a ten-monomer amylose chain is 
carried out. 

3.2 Method and Discussion  

The chemical formula of α-D-glucopyranose is 
C6H12O6. It includes 24 atoms and has a six-
member ring structure with one side-group. The 
latest version [29] of the parameters for the 
semi-empirical potential energy is used in the 
simulations here. 
 The schematic diagram of a α-D-
glucopyranose chain with an Atomic Force 
Microscope (AFM) attached is shown in Figure 
12. Assume the AFM is attached to atom k and 
moves along the z-direction. In matrix form the 
equations of motion are given by 
 

( ) ( )N e sM x C x F F k B t i kδ +  −  +  =  −
i i

  (1) 
 
where x is the position vector for the atoms, M 
is a diagonal matrix of the atomic mass, Fe is the 

force due to the AFM and FN is the force due to 
the potential energy which describes atom 
interactions. The equation for the reduced order 
models (ROM) is the projection of this equation 
to the subspace spanned by LNM or POM. 

 
Fig. 12. Schematic Diagram for Streatching of 
the Molecule by an AFM 

 
Fig. 13. Total RMS Error vs. Number of 
Eigenmodes for Different Excitation 
Amplitudes Using the Linear ROM f=100GHz 

3.3  Linear ROM Results 

Figure 13 shows the total rms error compared to 
the exact solution vs. the number of modes 
included in the linear ROM for different 
excitation amplitudes with the frequency of f 
=100GHz. The total rms error is defined to be 
the mean square of the error of the rms 
amplitudes for all the atoms calculated by the 
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ROM compared to the original equations. The 
total error decreases as the number of modes 
included in the linear ROM increases and 
eventually reaches a constant value which 
accounts for the difference between the fully 
linear model and the original nonlinear system. 
As the excitation amplitude increases, this 
difference gets larger.  

3.4  Nonlinear ROM Results 

Figure 14 shows the total rms error vs. the 
number of LNM or POM in the nonlinear ROM. 
It is found the results from the ROM based on 
LNM converge to the exact solution much more 
slowly than the results obtained from the ROM 
with POM as the basis. For the LNM, the results 
agree well with the exact solution when full 
model is used but the error increases 
significantly even if only a few high frequency 
modes are omitted in the ROM. This is probably 
because linear eigenmodes are no longer 
invariant manifolds. Reduced order models 
based on LNM cannot capture the essential 
dynamics by simply truncating the high 
frequency modes. This is similar to the case 
reported in [30]. 

 
Fig. 14.  Total RMS Error vs. Number of LNM 
or POM Included in the Nonlinear ROM.  
A=1Å and f=100GHz 
 

3.5  Reduction in Computational Time 

With the ROM, the computational time and cost 
can be significantly reduced in two ways: (1) by 
decreasing the number of system variables 

which characterize the system dynamics and (2) 
by increasing the computational time step. For 
the linear models both ways contribute to the 
increase of computational efficiency. For 
nonlinear reduced order models the efficiency is 
achieved mainly by increasing the time step, see 
Figure 15 for an example. Figure 15 shows the 
computational time for the POD/CMS ROM 
relative to the original full time marching model 
vs. the logarithm of the time step used in the 
simulations. In the plot the relative 
computational time is defined to be the ratio of 
the computational time for the ROM to that of 
the original system. The computational time of 
the original system is that for time marching a 
solution with a time step of 2×10-3ps, which is 
the maximum allowable time step for the 
original system. It turns out that the 
computational time and cost of the ROM can be 
significantly reduced (by a factor of up to 10) by 
increasing the time step without changing the 
solution accuracy. Also it is noted that the 
models with lower dimension have a slightly 
smaller relative computational time.  

 
Fig. 15. Ratio of Computational Time for ROM 
(POD and CMS) model to that of a Time 
Marching Solution Vs. the Chosen Numerical 
Time Step for Different Number of Modal 
Coordinates retained, N, in the whole system. 
A=Å and f=20GHz 

3.6  Conclusions 

A detailed study of modal reduction based on 
LNM and POM has been carried out in 
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modeling a �-D-glucopyranose monomer and 
also a chain of monomers under harmonic AFM 
base excitation. It has been demonstrated that 
the linear reduced order model (ROM) is valid 
for small amplitude excitation and low 
frequency excitation. The nonlinear reduced 
order model with LNM as the basis vectors is 
less useful in modeling the molecules with a 
strong nonlinearity. Fortunately, the nonlinear 
reduced order model based on POM provides a 
good approximation even for large amplitude or 
high frequency excitation. Also it is important 
to note that the POM model obtained in one 
case for a given amplitude of excitation is 
applicable for a wide range of excitation 
amplitudes. 
 A reduced order model based on 
component modal synthesis using POM for each 
component can also be constructed. Although 
the POM for each component is calculated from 
the full model simulation, CMS makes the 
eigenvalue problem of the correlation matrix 
more tractable and more efficient. Since there 
are many complicated and large biological 
molecules in the nature, the combination of 
CMS and POD may provide a useful method for 
modeling their dynamic behavior. 
 With the reduced order system, the 
computational time and cost can be significantly 
reduced by a factor of ten or even a hundred 
depending on the external excitations and 
whether the linear or nonlinear model is used in 
the simulation.  Therefore, modal reduction is a 
possible, effective way to decrease the 
computational time and cost of a molecular 
dynamics simulation. 
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