Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

Reed's Conjecture

Naveen Sundar G.

April 15, 2010

イロン イヨン イヨン イヨン

The Outline

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case I Case I

Similar Conjectures

1

Preliminaries

- Basic Results
- The Conjecture
- General Properties

2 Line Graphs

- Definitions and Observations
- Fractional vertex c-coloring
- List Coloring
- Chromatic Index and Fractional Chromatic Index
- The Theorem and Proof
 - Case I
 - Case II

3 Similar Conjectures

<ロ> <同> <同> <三> < 回> < 回> < 三>

-∢ ≣ ≯

 ω , Δ & χ

Naveen Sundar G.

Outline

Preliminaries

Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case I Case II

Similar Conjectures

Definitions

Naveen Sundar G. Reed's Conjecture

 $\omega, \Delta \& \chi$

Naveen Sundar G.

Outline

Preliminaries

Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

Definitions

The clique number ω(G) of a graph G is the size of the largest clique in that graph.

(日) (四) (三) (三) (三)

 $\omega, \Delta \& \chi$

Naveen Sundar G.

Outline

Preliminaries

- Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
- Case II

Similar Conjectures

Definitions

- The clique number ω(G) of a graph G is the size of the largest clique in that graph.
- O The maximum degree Δ(G) of a graph G is the maximum number of neighbors of any vertex in that graph.

 $\omega, \Delta \& \chi$

Naveen Sundar G.

Outline

Preliminaries

- Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I

Similar Conjectures

Definitions

- The clique number ω(G) of a graph G is the size of the largest clique in that graph.
- The maximum degree Δ(G) of a graph G is the maximum number of neighbors of any vertex in that graph.
- The chromatic number χ(G) of a graph G is the minimum number of colors needed to color the vertices in that graph so that adjacent vertices have different colors.

 $\omega, \Delta \& \chi$

Naveen Sundar G.

Outline

Preliminaries

- Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I

Similar Conjectures

Definitions

- The clique number ω(G) of a graph G is the size of the largest clique in that graph.
- The maximum degree Δ(G) of a graph G is the maximum number of neighbors of any vertex in that graph.
- Some in the chromatic number χ(G) of a graph G is the minimum number of colors needed to color the vertices in that graph so that adjacent vertices have different colors.
- The chromatic index \(\chi_e(G)\) of a graph G is the minimum number of colors needed to color the edges in that graph so that adjacent edges have different colors.

イロン イ部ン イヨン イヨン 三日

Some basic bounds

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries

- Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem
- and Proof Case I Case II

Similar Conjectures The presence of a clique sets a lower bound on the maximum degree

Bound	Δ	ω
Upper Bound	None	$\Delta + 1$
Lower Bound	$\omega - 1$	None

イロト イヨト イヨト イヨト

Some basic bounds

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries

Basic Results The Conjecture General Properties

Line Graph

Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I

Similar Coniectures The presence of a clique sets a lower bound on the maximum degree

Bound	Δ	ω
Upper Bound	None	$\Delta + 1$
Lower Bound	$\omega-1$	None

We also have $\omega(G) \leq \chi(G) \leq \Delta(G) + 1$

・ロト ・回ト ・ヨト ・ヨト

Some basic bounds

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries

Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Inde and Fractional Chromatic Inde The Theorem

Case I Case II

Similar Conjectures The presence of a clique sets a lower bound on the maximum degree

Bound	Δ	ω
Upper Bound	None	$\Delta + 1$
Lower Bound	$\omega - 1$	None

We also have $\omega(G) \leq \chi(G) \leq \Delta(G) + 1$

Theorem (Brooks)

For graphs other than cliques and with $\Delta(G) \ge 3$ we have $\chi(G) \le \Delta(G)$

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Similar Conjectures

The Conjecture :
$$\chi(G) \leq \lceil \frac{1+\Delta+\omega}{2} \rceil$$

(日) (四) (三) (三) (三)

æ

The conjecture holds for $\omega \in \{2, \Delta - 1, \Delta, \Delta + 1\}$

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I

Similar Conjectures More densely connected a graph is the more colors we have to use to color the graph. Complete subgraphs increase the number of colors.

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I

Case II

Similar Conjectures

- More densely connected a graph is the more colors we have to use to color the graph. Complete subgraphs increase the number of colors.
- 2 The only cases where we need $\Delta + 1$ coloring are when the graph is a clique or an odd cycle.

Reed's Conjecture

Naveen Sundar G

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
- Case II

Similar Conjectures

- More densely connected a graph is the more colors we have to use to color the graph. Complete subgraphs increase the number of colors.
- 2 The only cases where we need $\Delta + 1$ coloring are when the graph is a clique or an odd cycle.
- The clique number can be very small and the maximum degree can grow pretty large.

Reed's Conjecture

Naveen Sundar G

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
- Case II

Similar Conjectures

- More densely connected a graph is the more colors we have to use to color the graph. Complete subgraphs increase the number of colors.
- 2 The only cases where we need $\Delta + 1$ coloring are when the graph is a clique or an odd cycle.
- The clique number can be very small and the maximum degree can grow pretty large.

Reed's Conjecture

Naveen Sundar G

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I
- Case II

Similar Conjectures

- More densely connected a graph is the more colors we have to use to color the graph. Complete subgraphs increase the number of colors.
- 2 The only cases where we need Δ + 1 coloring are when the graph is a clique or an odd cycle.
- The clique number can be very small and the maximum degree can grow pretty large.

Figure: Omega and Delta

The Conjecture For Line Graphs

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs

Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I Case I

Similar Conjectures

```
An upper bound for the chromatic number of line graphs
by
A.D. King, B.A. Reed, A. Vetta
2006.
http://www.columbia.edu/~ak3074/papers/
KingReedVetta-linegraphs.ps
```

イロト イヨト イヨト

Reed's
Conjecture
Conjecture
Naveen
Sundar G.
Outline
Line Graphs
Definitions and
Observations
and Fractional Chromatic Index
and Proof
Case I
Case II
Conjectures

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs

Definitions and Observations

Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I Case II

Similar Conjectures Multigraph A multigraph H is a graph in which there can be multiple edges between two nodes.

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs

Definitions and Observations

Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I Case II

Similar Conjectures Multigraph A multigraph H is a graph in which there can be multiple edges between two nodes.

Line Graph A line graph G of a graph H is a graph with the vertex set of E(H) and two vertices in G are adjacent iff the corresponding edges in H are adjacent.

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graph

Definitions and Observations

Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I Case II

Similar Conjectures Multigraph A multigraph H is a graph in which there can be multiple edges between two nodes.

Line Graph A line graph G of a graph H is a graph with the vertex set of E(H) and two vertices in G are adjacent iff the corresponding edges in H are adjacent.

Hypergraph A hypergraph is a graph in which an edge has as endpoints two or more nodes. Every graph is the line graph of a hypergraph.

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graph

Definitions and Observations

Fractional vertex c-coloring List Coloring Chromatic Indes and Fractional Chromatic Indes The Theorem and Proof Case I Case II

Similar Conjectures Multigraph A multigraph H is a graph in which there can be multiple edges between two nodes.

Line Graph A line graph G of a graph H is a graph with the vertex set of E(H) and two vertices in G are adjacent iff the corresponding edges in H are adjacent.

Hypergraph A hypergraph is a graph in which an edge has as endpoints two or more nodes. Every graph is the line graph of a hypergraph.

Multiplicity The multiplicity $\mu(a, b)$ of a pair of vertices a and b are the number of edges between them.

Not every graph is the line graph of a multi graph

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and

Observations and

Fractional vertex c-coloring List Coloring Chromatic Index

and Fractional Chromatic Inde:

and Proof Case I Case II

Similar Conjectures A vertex coloring is equivalent to a set of stable sets or independents sets.

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs

Observations Fractional

vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case I

Similar Conjectures

- A vertex coloring is equivalent to a set of stable sets or independents sets.
- 2 Each stable set corresponds to one color

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations

Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

- A vertex coloring is equivalent to a set of stable sets or independents sets.
- 2 Each stable set corresponds to one color
- This can be generalized. Each vertex can be colored by multiple colors with no two adjacent vertices sharing any color.

<ロ> <同> <同> < 同> < 同> < 同><<

Reed's Conjecture

Naveen Sundar G

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations
- Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I

Similar Conjectures

- A vertex coloring is equivalent to a set of stable sets or independents sets.
- 2 Each stable set corresponds to one color
- This can be generalized. Each vertex can be colored by multiple colors with no two adjacent vertices sharing any color.

<ロ> <同> <同> < 同> < 同> < 同><<

 Each color contributes fractionally. This gives rise to fractional vertex coloring

Reed's Conjecture

Naveen Sundar G

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations
- Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I

Case II Similar

Similar Conjectures

- A vertex coloring is equivalent to a set of stable sets or independents sets.
- 2 Each stable set corresponds to one color
- This can be generalized. Each vertex can be colored by multiple colors with no two adjacent vertices sharing any color.
- Each color contributes fractionally. This gives rise to fractional vertex coloring
- We can also set the colors available across different nodes to be different. Each node has at its disposal the same number of colors. This gives rise to list coloring

<ロ> <同> <同> < 同> < 同> < 同><<

Definition of a Fractional Vertex Coloring

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Definitions and

Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I

Case II

Similar Conjectures A fractional vertex c-coloring of a graph can be described as a set S_1, \ldots, S_l of stable sets with associated non-negative real weights w_1, \ldots, w_n such that for vertex ν ,

 $\sum_{S_i:\nu\in S_i}w_i=1$

and

$$\sum_{i=1}^{l} w_i = c$$

The *fractional chromatic number* of G denoted by $\chi^{f}(G)$ is the smallest c for which G has a fractional vertex c coloring.

Reed's Conjecture for Fractional Coloring

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and

Fractional vertex c-coloring List Coloring Chromatic Index and Fractional

Chromatic Ind The Theorem and Proof Case I Case II

Similar Conjectures

The conjecture holds for fractional vertex coloring

Theorem

For any graph G,

$$\chi^f(G) \leq \lceil rac{\Delta(G)+1+\omega(G)}{2}
angle$$

<ロ> <同> <同> <同> < 同>

_∢≣≯

χ and $\chi^{\it f}$

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and

Observations Fractional

vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

and Proof Case I Case II

Similar Conjectures Every integer coloring is also a fractional coloring with $w_i = 1$. So we can never have have $\chi < \chi^f$. But is $\chi^f < \chi$ possible? Yes. The cycle of 5 vertices has $\chi = 3$

Figure: Coloring of a 5 Cycle

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs

Definitions and Observations

Fractional vertex c-coloring List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures

The cycle of 5 vertices has 2.5 fractional coloring

A 2.5 Fractional Coloring

stable set	S_1	S_2	<i>S</i> ₃	<i>S</i> ₄	S_5
vertices	a,c	b,d	c,e	d,a	e,b
weights	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$

Figure: Coloring of a 5 Cycle

Naveen Sundar G.

Reed's Conjecture

< 🗗

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-colorin List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures

• We have to color each vertex from a predetermined list of *r* colors.

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G.

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring
- Chromatic Index and Fractional Chromatic Index
- The Theorem and Proof Case I Case II
- Similar Conjectures

- We have to color each vertex from a predetermined list of *r* colors.
- The list may differ for each vertex. In normal coloring the list is same across vertices.

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G.

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring
- Chromatic Inde and Fractional Chromatic Inde The Theorem and Proof Case I
- Case II
- Similar Conjectures

- We have to color each vertex from a predetermined list of *r* colors.
- The list may differ for each vertex. In normal coloring the list is same across vertices.
- The smallest list size r such that no matter how we choose the colors from each list the graph is properly colorable is the list chromatic index χ^l.

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring

Chromatic Inde and Fractional Chromatic Inde The Theorem and Proof Case I Case I

Similar Conjectures

- We have to color each vertex from a predetermined list of r colors.
- The list may differ for each vertex. In normal coloring the list is same across vertices.
- The smallest list size r such that no matter how we choose the colors from each list the graph is properly colorable is the list chromatic index χ^l.
- $\ \ \, {\rm We have} \ \chi^{\prime} \ {\rm definitely \ not \ less \ than} \ \chi. \ {\rm Can} \ \chi^{\prime} \ {\rm be \ greater} \ {\rm than} \ \chi?$

・ロト ・回ト ・ヨト

List Coloring

・ロ・ ・ 日・ ・ 日・ ・ 日・

List Coloring

Reed's Conjecture

Naveen Sundar G.

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-colorin

List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures

Figure: List Coloring

List Coloring

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-colorin List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures

Figure: List Coloring

Naveen Sundar G.

Reed's Conjecture

Chromatic Index $X_e(H)$

Reed's Conjecture

Naveen Sundar G

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures

- The chromatic index $\chi_e(H)$ of a hypergraph H is the chromatic number $\chi(G)$ of its line graph(G = L(H)).
- The following theorem by Caprara and Rizzi puts an upper bound on the chromatic index of a multigraph χ_e(H) ≤ max([1.1Δ(H) + 0.7], [Γ(H)]).
- **3** Goldberg-Seymour Conjecture For a multigraph *H* for which $\chi_e(H) > \Delta(H) + 1$, $\chi_e(H) = \lceil \Gamma(H) \rceil$

イロン イヨン イヨン イヨン

2

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Definitions and Observations Fractional vertex c-colorin List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures The fractional chromatic index χ^f_e(H) of a hypergraph H is the fractional chromatic number χ(G) of its line graph χ^f(G) (G = L(H).)

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-colorin List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures

- The fractional chromatic index χ^f_e(H) of a hypergraph H is the fractional chromatic number χ(G) of its line graph χ^f(G) (G = L(H).)
- **2** A matching in H corresponds to a stable set in G.

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Definitions and Observations Fractional vertex c-coloring List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures The fractional chromatic index χ^f_e(H) of a hypergraph H is the fractional chromatic number χ(G) of its line graph χ^f(G) (G = L(H).)

2 A matching in H corresponds to a stable set in G.

O Given a nonnegative weighting w on the edges of H such that for every matching M in H we have $\sum_{e \in M} w(e) \le 1$ then $\chi_e^f(H) \ge \sum_{e \in E(H)} w(e)$

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Definitions and Observations Fractional vertex c-coloring List Coloring

Proof.

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures The fractional chromatic index χ^f_e(H) of a hypergraph H is the fractional chromatic number χ(G) of its line graph χ^f(G) (G = L(H).)

2 A matching in H corresponds to a stable set in G.

O Given a nonnegative weighting w on the edges of H such that for every matching M in H we have $\sum_{e \in M} w(e) \le 1$ then $\chi_e^f(H) \ge \sum_{e \in E(H)} w(e)$

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures The fractional chromatic index χ^f_e(H) of a hypergraph H is the fractional chromatic number χ(G) of its line graph χ^f(G) (G = L(H).)

2 A matching in H corresponds to a stable set in G.

O Given a nonnegative weighting w on the edges of H such that for every matching M in H we have $\sum_{e \in M} w(e) \le 1$ then $\chi_e^f(H) \ge \sum_{e \in E(H)} w(e)$

Proof.

)
$$\chi_e^f(H) = \chi^f(G) = \sum_{\nu} \sum_{\nu \in S_i} \frac{w_i}{|S_i|}$$
 such that $\sum_{i:\nu \in S_i} w_i = 1$

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures The fractional chromatic index χ^f_e(H) of a hypergraph H is the fractional chromatic number χ(G) of its line graph χ^f(G) (G = L(H).)

2 A matching in H corresponds to a stable set in G.

O Given a nonnegative weighting w on the edges of H such that for every matching M in H we have $\sum_{e \in M} w(e) \le 1$ then $\chi_e^f(H) \ge \sum_{e \in E(H)} w(e)$

Proof.

•
$$\chi_e^f(H) = \chi^f(G) = \sum_{\nu} \sum_{\nu \in S_i} \frac{w_i}{|S_i|}$$
 such that $\sum_{i:\nu \in S_i} w_i = 1$
• $\sum_{e \in E(H)} w(e) = \sum_{\nu} \sum_{\nu \in S_i} \frac{w_i}{|S_i|}$ such that $\sum_{i:\nu \in S_i} w_i \le 1$

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures The fractional chromatic index χ^f_e(H) of a hypergraph H is the fractional chromatic number χ(G) of its line graph χ^f(G) (G = L(H).)

2 A matching in H corresponds to a stable set in G.

O Given a nonnegative weighting w on the edges of H such that for every matching M in H we have $\sum_{e \in M} w(e) \le 1$ then $\chi_e^f(H) \ge \sum_{e \in E(H)} w(e)$

Proof.

- $\chi_e^f(H) = \chi^f(G) = \sum_{\nu \in S_i} \frac{w_i}{|S_i|}$ such that $\sum_{i:\nu \in S_i} w_i = 1$
- $\bigcirc \sum_{e \in E(H)} w(e) = \sum_{\nu} \sum_{\nu \in S_i} \frac{w_i}{|S_i|} \text{ such that } \sum_{i:\nu \in S_i} w_i \leq 1$
- 3 Both the sums over the same set of indices.

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-colorin List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures

• We consider two such weightings.

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-colorin List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures

We consider two such weightings.

• A weight of 1 to each edge incident to just one vertex of maximum degree. Every other edge is assigned a weight 0.

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions an Observations

Fractional vertex c-coloring List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures

We consider two such weightings.

- A weight of 1 to each edge incident to just one vertex of maximum degree. Every other edge is assigned a weight 0.
- We take an induced subgraph W of H and assign to each edge of W a weight of 1/[|V(W)|/2] and other edges 0

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Definitions and Observations Fractional vertex c-colorin List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures

- We consider two such weightings.
 - A weight of 1 to each edge incident to just one vertex of maximum degree. Every other edge is assigned a weight 0.
 - We take an induced subgraph W of H and assign to each edge of W a weight of 1/L|V(W)|/2] and other edges 0

2 We can derive $\chi_e^f(H) \leq max(\Delta(H), \Gamma(H))$

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-colorin List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures We consider two such weightings.

- A weight of 1 to each edge incident to just one vertex of maximum degree. Every other edge is assigned a weight 0.
- We take an induced subgraph W of H and assign to each edge of W a weight of 1/[|V(W)|/2] and other edges 0

イロト イポト イヨト イヨト

2) We can derive
$$\chi^f_e(H) \leq max(\Delta(H), \Gamma(H))$$

• where $\Gamma(H) = max\left\{\frac{2|E(W)|}{|V(W)-1|} : W \subset H, |V(W)| \text{ is odd}\right\}$

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-colorin List Coloring

Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures

- We consider two such weightings.
 - A weight of 1 to each edge incident to just one vertex of maximum degree. Every other edge is assigned a weight 0.
 - We take an induced subgraph W of H and assign to each edge of W a weight of 1/[|V(W)|/2] and other edges 0

イロト イヨト イヨト イヨト

3 We can derive
$$\chi_e^f(H) \leq max(\Delta(H), \Gamma(H))$$

• where $\Gamma(H) = max\left\{\frac{2|E(W)|}{|V(W)-1|} : W \subset H, |V(W)| \text{ is odd}\right\}$

• Edmond's theorem for matching polytypes $\chi_e^f(H) = max(\Delta(H), \Gamma(H))$

Reed's Conjecture for Line Graphs

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures

Theorem

For any line graph G, Reed's conjecture holds.

We set G = L(H) and consider two cases • $\Delta(G)$ is large. That is $\Delta(G) \ge \frac{3}{2}\Delta(H) - 1$ • $\Delta(G)$ is small. That is $\Delta(G) < \frac{3}{2}\Delta(H) - 1$

<ロ> (日) (日) (日) (日) (日)

Reed's Conjecture

Proof.

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

Case I

Similar Conjectures

• Given: $\chi_e^f = max(\Delta(H), \Gamma(H))$

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

Case I

Similar Conjectures

Proof.

• Given: $\chi_e^f = max(\Delta(H), \Gamma(H))$

2 Given: For any multigraph $\chi_e(H) \le max(\lfloor 1.1\Delta(H) + 0.7 \rfloor, \lceil \Gamma(H) \rceil)$. (Caprara)

Reed's Conjecture

Proof.

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

Case I

Similar Conjectures

Given: χ^f_e = max(Δ(H), Γ(H)) Given: For any multigraph χ_e(H) ≤ max(|1.1Δ(H) + 0.7|, [Γ(H)]). (Caprara)

Solution Combining 1 and 2 we get $\chi(G) \le max(\lfloor 1.1\Delta(H) + 0.7 \rfloor, \lceil \chi^f(G) \rceil)$

Reed's Conjecture

Proof.

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case I Case II

Similar Conjectures

• Given: $\chi_e^f = max(\Delta(H), \Gamma(H))$ • Given: For any multigraph $\chi_e(H) \le max(|1.1\Delta(H) + 0.7|, [\Gamma(H)])$. (Caprara)

• Combining 1 and 2 we get $\chi(G) \le max(\lfloor 1.1\Delta(H) + 0.7 \rfloor, \lceil \chi^{f}(G) \rceil)$

• Using Reed's theorem for fractional coloring $\chi(G) \leq max(\lfloor 1.1\Delta(H) + 0.7 \rfloor, \lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \rceil)$

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I

Case II

Similar Conjectures

Proof.

• Given: $\chi_e^f = max(\Delta(H), \Gamma(H))$

2 Given: For any multigraph $\chi_e(H) \le max(\lfloor 1.1\Delta(H) + 0.7 \rfloor, \lceil \Gamma(H) \rceil)$. (Caprara)

• Combining 1 and 2 we get $\chi(G) \le max(\lfloor 1.1\Delta(H) + 0.7 \rfloor, \lceil \chi^f(G) \rceil)$

- Using Reed's theorem for fractional coloring $\chi(G) \leq max(\lfloor 1.1\Delta(H) + 0.7 \rfloor, \lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \rceil)$
- Assumption: $\Delta(G) \geq \frac{3}{2}\Delta(H) 1$

Reed's Conjecture

Proof.

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case I Case II

Similar Conjectures

Given: χ^f_e = max(Δ(H), Γ(H)) Given: For any multigraph χ_e(H) ≤ max([1.1Δ(H) + 0.7], [Γ(H)]). (Caprara)

• Combining 1 and 2 we get $\chi(G) \le max(\lfloor 1.1\Delta(H) + 0.7 \rfloor, \lceil \chi^f(G) \rceil)$

- Using Reed's theorem for fractional coloring $\chi(G) \leq max(\lfloor 1.1\Delta(H) + 0.7 \rfloor, \lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \rceil)$
- (a) Assumption: $\Delta(G) \geq \frac{3}{2}\Delta(H) 1$
- Therefore $\lceil \frac{\Delta(G)+1+\omega(G)}{2} \rceil \ge \lceil \frac{5}{4} \rceil \ge \lfloor 1.1\Delta(H) + 0.7 \rfloor$

Reed's Conjecture

Proof.

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case I Case II

Similar Conjectures

• Given: $\chi_e^f = max(\Delta(H), \Gamma(H))$ • Given: For any multigraph $\chi_e(H) \le max(\lfloor 1.1\Delta(H) + 0.7 \rfloor, \lceil \Gamma(H) \rceil)$. (Caprara)

• Combining 1 and 2 we get $\chi(G) \le max(\lfloor 1.1\Delta(H) + 0.7 \rfloor, \lceil \chi^f(G) \rceil)$

- Using Reed's theorem for fractional coloring $\chi(G) \le max(\lfloor 1.1\Delta(H) + 0.7 \rfloor, \lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \rceil)$
- S Assumption: $\Delta(G) \geq \frac{3}{2}\Delta(H) 1$
- Therefore $\lceil \frac{\Delta(G)+1+\omega(G)}{2} \rceil \ge \lceil \frac{5}{4} \rceil \ge \lfloor 1.1\Delta(H) + 0.7 \rfloor$
- Therefore $\chi(G) \leq \frac{\Delta(G) + 1\omega(G)}{2}$

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

and Proof Case I Case II

Similar Conjectures

Given

$\Delta(G) < \tfrac{3}{2}\Delta(H) - 1$

We prove using induction. The base case consisting of all the hypergraph of two vertices satisfies Reed's conjecture.

<ロ> (日) (日) (日) (日) (日)

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Indes and Fractional Chromatic Indes The Theorem

Case I Case II

Similar Conjectures

Given

$\Delta(G) < \frac{3}{2}\Delta(H) - 1$

We prove using induction. The base case consisting of all the hypergraph of two vertices satisfies Reed's conjecture.

• G' is the subgraph of G with fewer vertices which needs to satisfy $\Delta(G') \leq \Delta(G) - 1$ (since S is maximal) and $\omega(G') = \omega(G) - 1$

・ロン ・回と ・ヨン・

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Indee and Fractional Chromatic Indee The Theorem

Case I Case II

Similar Conjectures

Given

$\Delta(G) < \frac{3}{2}\Delta(H) - 1$

We prove using induction. The base case consisting of all the hypergraph of two vertices satisfies Reed's conjecture.

- G' is the subgraph of G with fewer vertices which needs to satisfy $\Delta(G') \leq \Delta(G) 1$ (since S is maximal) and $\omega(G') = \omega(G) 1$
- **2** G' is also a line graph and we have using the induction hypothesis and (2) and (3)

$$\chi(G') \leq \lceil rac{\Delta(G') + 1 + \omega(G')}{2}
ceil$$

・ロト ・回ト ・ヨト ・ヨト

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

and Proof Case I Case II

Similar Conjectures

Given

$\Delta(G) < \frac{3}{2}\Delta(H) - 1$

We prove using induction. The base case consisting of all the hypergraph of two vertices satisfies Reed's conjecture.

- G' is the subgraph of G with fewer vertices which needs to satisfy $\Delta(G') \leq \Delta(G) 1$ (since S is maximal) and $\omega(G') = \omega(G) 1$
- 2 G' is also a line graph and we have using the induction hypothesis and (2) and (3)

$$\chi(G') \leq \lceil rac{\Delta(G') + 1 + \omega(G')}{2}
ceil$$

3 combining the above $\chi(G') \leq \lceil \frac{\Delta(G)+1+\omega(G)}{2} \rceil - 1$

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

Case I

Similar Conjectures

• $V(G) \setminus V(G')$ should be a stable set

・ロト ・回ト ・ヨト ・ヨト

Reed's Conjecture

Naveen Sundar G

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem
- Case I Case II

Similar Conjectures

- $V(G) \setminus V(G')$ should be a stable set
- We can construct a proper \(\chi(G') + 1\)-coloring of \(V(G)\) by taking the \(\chi(G')\) coloring of \(G'\) and we take \(S\) to be the final color class.

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

Case I Case II

Similar Conjectures

- $V(G) \setminus V(G')$ should be a stable set
- We can construct a proper \(\chi(G') + 1\)-coloring of \(V(G)\) by taking the \(\chi(G')\) coloring of \(G'\) and we take \(S\) to be the final color class.

• Therefore
$$\chi(G) \leq \frac{\Delta(G)+1+\omega(G)}{2}$$

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G.

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Indes and Fractional Chromatic Indes The Theorem and Proof

Case II

Similar Conjectures

- $V(G) \setminus V(G')$ should be a stable set
- We can construct a proper \(\chi(G') + 1\)-coloring of \(V(G)\) by taking the \(\chi(G')\) coloring of \(G'\) and we take \(S\) to be the final color class.

o Therefore
$$\chi(G) \leq rac{\Delta(G)+1+\omega(G)}{2}$$

If ind a maximal stable set S ⊂ V(G) that has a vertex from every maximum clique in G.

イロト イヨト イヨト イヨト

Basic Idea

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

Case I Case II

Similar Conjectures We need to show when $\Delta(G) < \frac{3}{2}\Delta(H) - 1$ we have a maximal stable set *S* which contains a vertex from every maximum clique.

イロト イヨト イヨト イヨト

Basic Idea

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

Case I Case II

Similar Conjectures We need to show when $\Delta(G) < \frac{3}{2}\Delta(H) - 1$ we have a maximal stable set S which contains a vertex from every maximum clique.

イロト イヨト イヨト イヨト

Basic Idea

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures We need to show when $\Delta(G) < \frac{3}{2}\Delta(H) - 1$ we have a maximal stable set *S* which contains a vertex from every maximum clique.

$$(G) = max_{uv \in E(H)} \{ deg(u) + deg(v) - \mu(u, v) - 1 \}$$

Every maximum clique in G comes either from a vertex of maximum degree in H or a triangle with a large number of edges in H.

- ∢ ≣ >

Basic Idea

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

Case I Case II

Similar Conjectures We need to show when $\Delta(G) < \frac{3}{2}\Delta(H) - 1$ we have a maximal stable set S which contains a vertex from every maximum clique.

Every maximum clique in G comes either from a vertex of maximum degree in H or a triangle with a large number of edges in H.

イロト イヨト イヨト イヨト

If tri(H) is the maximum number of edges in a triangle.
 ω(G) = max{Δ(H), tri(H)}

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case I Case II

Similar Conjectures • We say that a matching hits a vertex v if it is an endpoint of an edge in the matching.

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G.

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem
- and Proof Case I Case II

Similar Conjectures

- We say that a matching hits a vertex v if it is an endpoint of an edge in the matching.
- We need to find a maximal matching *M* in *H* which will correspond to the stable set *S* in *G*. *M* should hit every vertex of maximum degree in *H* and contain an edge of every triangle with max{Δ(H), tri(H)} edges.

Reed's Conjecture

Naveen Sundar G.

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

- We say that a matching hits a vertex v if it is an endpoint of an edge in the matching.
- We need to find a maximal matching *M* in *H* which will correspond to the stable set *S* in *G*. *M* should hit every vertex of maximum degree in *H* and contain an edge of every triangle with max{Δ(H), tri(H)} edges.

 S_{Δ} is the set of vertices in H of degree $\Delta(H)$

Reed's Conjecture

Naveen Sundar G.

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II Similar

- We say that a matching hits a vertex v if it is an endpoint of an edge in the matching.
- We need to find a maximal matching M in H which will correspond to the stable set S in G. M should hit every vertex of maximum degree in H and contain an edge of every triangle with max{Δ(H), tri(H)} edges.

 S_{Δ} is the set of vertices in *H* of degree $\Delta(H)$

T is the set of all triangles in H with $max{\Delta(H), tri(H)}$ edges.

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

and Proof Case I Case II

Similar Conjectures

Theorem (Lemma 1)

If two triangles of T intersect in exactly the vertices a and b then ab has multiplicity greater than $\Delta(H)/2$

<ロ> (日) (日) (日) (日) (日)

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Precef

Case I Case II

Similar Conjectures

Theorem (Lemma 1)

If two triangles of T intersect in exactly the vertices a and b then ab has multiplicity greater than $\Delta(H)/2$

Proof.

イロン 不同と 不同と 不同と

Э

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

Case I Case II

Similar Conjectures

Theorem (Lemma 1)

If two triangles of T intersect in exactly the vertices a and b then ab has multiplicity greater than $\Delta(H)/2$

Proof.

$$rac{3}{2}\Delta H > rac{3}{2}\Delta(H) - 1 > \Delta(G) \ge 2\Delta(H) - \mu(a, b)$$

イロン 不同と 不同と 不同と

Э

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

Case I

Similar Conjectures

Theorem (Lemma 1)

If two triangles of T intersect in exactly the vertices a and b then ab has multiplicity greater than $\Delta(H)/2$

Proof.

$$\frac{3}{2}\Delta H > \frac{3}{2}\Delta(H) - 1 > \Delta(G) \ge 2\Delta(H) - \mu(a, b)$$

$$\frac{3}{2}\Delta H > 2\Delta(H) - \mu(a, b)$$

イロン 不同と 不同と 不同と

Э

0

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

and Proof Case I Case II

Similar Conjectures

Theorem (Lemma 1)

If two triangles of T intersect in exactly the vertices a and b then ab has multiplicity greater than $\Delta(H)/2$

Proof.

$$\frac{3}{2}\Delta H > \frac{3}{2}\Delta(H) - 1 > \Delta(G) \ge 2\Delta(H) - \mu(a, b)$$
$$\frac{3}{2}\Delta H > 2\Delta(H) - \mu(a, b)$$

$$\mu(a, b) \geq \Delta(H)/2$$

イロン イヨン イヨン イヨン

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Indes and Fractional Chromatic Indes

and Proof Case I Case II

Similar Conjectures

Theorem (Lemma 2)

If abc is a triangle of T intersecting another triangle ade of T in exactly the vertex a then $\mu(b, c)$ is greater than $\Delta(H)/2$

・ロト ・回ト ・ヨト ・ヨト

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

Case I

Similar Conjectures

Theorem (Lemma 2)

If abc is a triangle of T intersecting another triangle ade of T in exactly the vertex a then $\mu(b, c)$ is greater than $\Delta(H)/2$

Proof.

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

Theorem (Lemma 2)

If abc is a triangle of T intersecting another triangle ade of T in exactly the vertex a then $\mu(b, c)$ is greater than $\Delta(H)/2$

Proof.

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

Theorem (Lemma 2)

If abc is a triangle of T intersecting another triangle ade of T in exactly the vertex a then $\mu(b, c)$ is greater than $\Delta(H)/2$

Proof.

$$\frac{3}{2}\Delta(H) - 1 > \Delta(G) \ge 2\Delta(H) - \mu(b, c) - 1$$

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case I Case II

Similar Conjectures

Theorem (Lemma 2)

If abc is a triangle of T intersecting another triangle ade of T in exactly the vertex a then $\mu(b, c)$ is greater than $\Delta(H)/2$

Proof.

$$\frac{3}{2}\Delta(H) - 1 > \Delta(G) \ge 2\Delta(H) - \mu(b,c) - 1$$

$$\frac{3}{2}\Delta(H) - 1 > 2\Delta(H) - \mu(b,c) - 1$$

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

Theorem (Lemma 2)

If abc is a triangle of T intersecting another triangle ade of T in exactly the vertex a then $\mu(b, c)$ is greater than $\Delta(H)/2$

Proof.

$$\frac{3}{2}\Delta(H) - 1 > \Delta(G) \ge 2\Delta(H) - \mu(b, c) - 1$$

$$rac{3}{2}\Delta(H)-1>2\Delta(H)-\mu(b,c)-1$$
 $\therefore \mu(b,c)\geq rac{1}{2}\Delta(H)$

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

and Proof Case I Case II

Similar Conjectures

Theorem (Lemma 3)

If there is an edge of H joining two vertices a and b of S_Δ then $\mu(a,b) > \Delta(H)/2$

・ロト ・回ト ・ヨト ・ヨト

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

Theorem (Lemma 3)

If there is an edge of H joining two vertices a and b of S_Δ then $\mu(a,b) > \Delta(H)/2$

Proof.

・ロン ・回 と ・ ヨ と ・ ヨ と

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theerem and Proof

Case II

Similar Conjectures

Theorem (Lemma 3)

If there is an edge of H joining two vertices a and b of S_Δ then $\mu(a,b) > \Delta(H)/2$

Proof.

 $\frac{3}{2}\Delta(H) - 1 > \Delta(G) \ge 2\Delta(H) - \mu(a, b) - 1$

イロン イヨン イヨン イヨン

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

Theorem (Lemma 3)

If there is an edge of H joining two vertices a and b of S_Δ then $\mu(a,b) > \Delta(H)/2$

Proof.

$$rac{3}{2}\Delta(H)-1>\Delta(G)\geq 2\Delta(H)-\mu(a,b)-1$$

 $\therefore u(a,b)>\Delta(H)/2$

・ロト ・回ト ・ヨト ・ヨト

More Terminology

Reed's Conjecture

Naveen Sundar G

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index
- The Theorem and Proof Case I Case II
- Similar Conjectures

• T' is the set of triangles in T that contain no pair of vertices of multiplicity $> \Delta(H)/2$

イロト イヨト イヨト イヨト

More Terminology

Reed's Conjecture

Naveen Sundar G

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Percef
- Case I Case II

Similar Conjectures

- T' is the set of triangles in T that contain no pair of vertices of multiplicity $> \Delta(H)/2$
- 3 S'_{Δ} are those elements of S_{Δ} which are not part of any pair of vertices of multiplicity $> \Delta(H)/2$

イロト イヨト イヨト イヨト

More Terminology

Reed's Conjecture

Naveen Sundar G

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Indes and Fractional Chromatic Indes The Theorem and Proof

Case II

Similar Conjectures

- T' is the set of triangles in T that contain no pair of vertices of multiplicity $> \Delta(H)/2$
- 3 S'_{Δ} are those elements of S_{Δ} which are not part of any pair of vertices of multiplicity $> \Delta(H)/2$
- For a set of vertices S the union of the vertices' neighbourhoods is N(S)

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

Case I Case II

Similar Conjectures

Theorem (Lemma 4)

For any $S \subset S'_\Delta$ we have $|N(S)| \geq |S|$

・ロン ・回と ・ヨン ・ヨン

Э

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

and Proof Case I Case II

Similar Conjectures

Theorem (Lemma 4)

For any $S \subset S'_\Delta$ we have $|N(S)| \ge |S|$

Proof.

It follows from Lemma 3 that S'_{Δ} that is a stable set. This implies that S and N(S) are disjoint.

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

Theorem (Lemma 4)

For any $S \subset S'_\Delta$ we have $|N(S)| \ge |S|$

Proof.

It follows from Lemma 3 that S'_{Δ} that is a stable set. This implies that S and N(S) are disjoint. There are $|S|\Delta(H)$ edges between S and N(S).

・ロト ・回ト ・ヨト ・ヨト

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I

Case II

Similar Conjectures

Theorem (Lemma 4)

For any $S \subset S'_{\Delta}$ we have $|N(S)| \geq |S|$

Proof.

It follows from Lemma 3 that S'_{Δ} that is a stable set. This implies that S and N(S) are disjoint. There are $|S|\Delta(H)$ edges between S and N(S). Upper bound on the number of edges from nodes in N(S) is $N(S)\Delta(H)$

$$N(S)\Delta(H) \ge |S|\Delta(H)$$

 $\therefore |N(S)| \ge |S|$

・ロト ・回ト ・ヨト ・ヨト

2

Reed's Conjecture

Naveen Sundar G.

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index
- and Proof Case I Case II

Similar Conjectures

Theorem (Lemma 5)

If an edge ab in H has exactly one endpoint in a triangle bcd of T' , then the degree of a is less than $\Delta(H)$

イロン イヨン イヨン イヨン

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index

and Proof Case I Case II

Similar Coniectures

Theorem (Lemma 5)

If an edge ab in H has exactly one endpoint in a triangle bcd of T' , then the degree of a is less than $\Delta(H)$

Proof.

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case I Case II

Similar Conjectures

Theorem (Lemma 5)

If an edge ab in H has exactly one endpoint in a triangle bcd of T' , then the degree of a is less than $\Delta(H)$

Proof.

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case I Case II

Similar Conjectures

Theorem (Lemma 5)

If an edge ab in H has exactly one endpoint in a triangle bcd of T' , then the degree of a is less than $\Delta(H)$

Proof.

$$\mu(c,d) \leq \Delta(H) + 1$$

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case I Case II

Similar Conjectures

Theorem (Lemma 5)

If an edge ab in H has exactly one endpoint in a triangle bcd of T' , then the degree of a is less than $\Delta(H)$

Proof.

$$\mu(c,d) \leq \Delta(H) + 1$$

$$3/2\Delta(H) - 1 \geq deg(a) - 1 + \Delta(H)/2$$

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

Theorem (Lemma 5)

If an edge ab in H has exactly one endpoint in a triangle bcd of T' , then the degree of a is less than $\Delta(H)$

Proof.

$$\mu(c,d) \leq \Delta(H) + 1$$

$$3/2\Delta(H) - 1 \ge deg(a) - 1 + \Delta(H)/2$$

 $\therefore \Delta(H)/2 \ge deg(a)$

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

and Proof Case I Case II

Similar Conjectures

Theorem (Lemma 6)

If an edge ab in H has exactly one endpoint in a triangle bcd of T' then $\mu(a, b) \le \Delta(H)/2$

イロン イヨン イヨン イヨン

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

and Proof Case I Case II

Similar Conjectures

Theorem (Lemma 6)

If an edge ab in H has exactly one endpoint in a triangle bcd of T' then $\mu(a, b) \leq \Delta(H)/2$

Proof.

・ロン ・回と ・ヨン・

Э

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

Theorem (Lemma 6)

If an edge ab in H has exactly one endpoint in a triangle bcd of T' then $\mu(a, b) \leq \Delta(H)/2$

Proof.

The degree of any vertex in G corresponding to an edge between b and c has degree at least $\mu(a, b) + \Delta(H) - 1$

・ロト ・回ト ・ヨト ・ヨト

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

Theorem (Lemma 6)

If an edge ab in H has exactly one endpoint in a triangle bcd of T' then $\mu(a, b) \leq \Delta(H)/2$

Proof.

The degree of any vertex in *G* corresponding to an edge between *b* and *c* has degree at least $\mu(a, b) + \Delta(H) - 1$

$$3/2\Delta(H) - 1 \geq \mu(a, b) + \Delta(H) - 1$$

・ロト ・回ト ・ヨト ・ヨト

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

Theorem (Lemma 6)

If an edge ab in H has exactly one endpoint in a triangle bcd of T' then $\mu(a, b) \leq \Delta(H)/2$

Proof.

The degree of any vertex in *G* corresponding to an edge between *b* and *c* has degree at least $\mu(a, b) + \Delta(H) - 1$

$$3/2\Delta(H) - 1 \ge \mu(a, b) + \Delta(H) - 1$$

$$\therefore \mu(a, b) \leq \Delta(H)/2$$

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

and Proof Case I Case II

Similar Conjectures

Theorem (Lemma 7)

For any vertex v with neighbors v and w, $deg(u) + \mu(vw) - 1 \le 3/2\Delta(H) - 1$

・ロン ・回と ・ヨン ・ヨン

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

Case I

Similar Conjectures

Theorem (Lemma 7)

For any vertex v with neighbors v and w, $deg(u) + \mu(vw) - 1 \le 3/2\Delta(H) - 1$

Proof.

・ロン ・回と ・ヨン・

Э

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

Theorem (Lemma 7)

For any vertex v with neighbors v and w, $deg(u) + \mu(vw) - 1 \le 3/2\Delta(H) - 1$

Proof.

An edge between u and v is incident to at least $deg(u) + \mu(vw) - 1$ other edges

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

Theorem (Lemma 7)

For any vertex v with neighbors v and w, $deg(u) + \mu(vw) - 1 \le 3/2\Delta(H) - 1$

Proof.

An edge between u and v is incident to at least $deg(u) + \mu(vw) - 1$ other edges

$$(u) + \mu(vw) - 1 \leq 3/2\Delta(H) - 1$$

・ロン ・回と ・ヨン ・ヨン

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

Theorem (Lemma 7)

For any vertex v with neighbors v and w, $deg(u) + \mu(vw) - 1 \le 3/2\Delta(H) - 1$

Proof.

An edge between u and v is incident to at least $deg(u) + \mu(vw) - 1$ other edges

$$(u) + \mu(vw) - 1 \leq 3/2\Delta(H) - 1$$

$$\therefore$$
 deg(u) + μ (vw) $\leq 3/2\Delta(H) - 1$

・ロン ・回 と ・ ヨ と ・ ヨ と

Hall's Theorem

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

Theorem

Let G be a bipartite graph with vertex set V = (A,B). There is a matching that hits every vertex in A precisely if for every $S \subset A$ we have $|N(S)| \ge |S|$

イロト イヨト イヨト イヨト

Completion of the proof

Case II

Similar Conjectures

イロト イヨト イヨト イヨト

Completion of the proof

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I

Case II

Similar Conjectures We need to show that our desired matching exists, We construct three matchings and combine them. Have to show the combination is still a matching and the combination is possible.

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Indes and Fractional Chromatic Indes The Theorem and Proof

Case II

Similar Conjectures

Step one: Construct matching M_1

One edge between each vertex pair with multiplicity greater than $\Delta(H)/2$. This hits $S_{\Delta} \setminus S'_{\Delta}$ and contains one edge of each triangle in $T \setminus T'$

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I

Case II

Similar Conjectures

Step two: Construct matching M_2

Using Lemma 4 (For any $S \subset S'_{\Delta}$ we have $|N(S)| \ge |S|$) and Hall's theorem we can construct a matching that hits S'_{Δ}

Lemma 7 shows that this matching cannot hit M_2 so the union on M_1 and M_2 hits S_{Δ} and an edge of each triangle in $T \setminus T'$

・ロト ・回ト ・ヨト ・ヨト

Reed's Conjecture

Naveen Sundar G

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I Case I

Similar Conjectures

Step two: Construct matching M_2

Using Lemma 4 (For any $S \subset S'_{\Delta}$ we have $|N(S)| \ge |S|$) and Hall's theorem we can construct a matching that hits S'_{Δ}

Lemma 7 shows that this matching cannot hit M_2 so the union on M_1 and M_2 hits S_{Δ} and an edge of each triangle in $T \setminus T'$ Every edge in the matching $M' = M_1 \cup M_2$ hits a maximum-vertex in H or has endpoints with multiplicity greater than $\Delta(H)/2$

・ロト ・回ト ・ヨト ・ヨト

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index

The Theorem and Proof Case I Case II

Similar Conjectures

Figure: The Final Matching

<ロ> <部> <部> <き> <き> <

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case I Case II

Similar Conjectures Using lemma 4 and We have to include edges from T'. We can blindly add an arbitrary edge from each triangle in T' but at least two vertices should remain uncontaminated by M'

Step three: Construct matching M

Lemmas 3 ,5 and 6 show that M' hits at most one vertex in T'. We extend M' to contain an edge of every triangle in T' and obtain M

This matching M satisfies our requirements. This matching corresponds to our maximal stable set in G that has a vertex from every maximum clique.

イロト イヨト イヨト イヨト

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem

Case I Case II

Similar Conjectures

Figure: The Final Matching

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

•
$$\chi(G) \leq \frac{\omega(G) + \Delta(G)}{2} + o(\omega(G))$$

< □ > < □ > < □ > < □ > < □ > .

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

$$\chi(G) \leq \frac{\omega(G) + \Delta(G)}{2} + o(\omega(G))$$
$$\chi(G) \leq \frac{\omega(G) + \Delta(G)}{2} + o(\Delta(G))$$

< □ > < □ > < □ > < □ > < □ > .

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I

Case II

Similar Conjectures

$$\begin{array}{l} \bullet \quad \chi(G) \leq \frac{\omega(G) + \Delta(G)}{2} + o(\omega(G)) \\ \bullet \quad \chi(G) \leq \frac{\omega(G) + \Delta(G)}{2} + o(\Delta(G)) \\ \bullet \quad \text{with } \Delta(G) \geq 3 \ \chi(G) \leq \frac{2(\Delta(G) + 1) + \omega(G)}{3} \end{array}$$

< □ > < □ > < □ > < □ > < □ > .

Reed's Conjecture

Naveen Sundar G

Outline

- Preliminaries Basic Results The Conjecture General Properties
- Line Graphs Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof

Case II

Similar Conjectures

•
$$\chi(G) \leq \frac{\omega(G) + \Delta(G)}{2} + o(\omega(G))$$

• $\chi(G) \leq \frac{\omega(G) + \Delta(G)}{2} + o(\Delta(G))$
• with $\Delta(G) \geq 3 \ \chi(G) \leq \frac{2(\Delta(G) + 1) + \omega(G)}{3}$

• There is some constant α such that for any graph $\chi(G) \le \alpha \omega(G) + \frac{1}{2}(\Delta(G) + 1)$

イロト イヨト イヨト イヨト