Reed's
Conjecture
Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional
Chromatic Index
The Theorem and Proof
Case !
Case II
Similar
Conjectures

Reed's Conjecture

Naveen Sundar G.

April 15, 2010

The Outline

Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index
and Fractiont
Chromatic Index
The Theorem
and Proof
Casc I
Case II
Similar
Conjectures
(1) Preliminaries

- Basic Results
- The Conjecture
- General Properties
(2) Line Graphs
- Definitions and Observations
- Fractional vertex c-coloring
- List Coloring
- Chromatic Index and Fractional Chromatic Index
- The Theorem and Proof
- Case I
- Case II
(3) Similar Conjectures

$\omega, \Delta \& \chi$

Reed's Conjecture

Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case I
Case II
Similar
Conjectures

Definitions

$\omega, \Delta \& \chi$

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractionai Chromatic Index The Theorem and Proof
Case !
Case II
Similar
Conjectures

Definitions

(1) The clique number $\omega(G)$ of a graph G is the size of the largest clique in that graph.

$\omega, \Delta \& \chi$

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Casc I
Case II
Similar
Conjectures

Definitions

(1) The clique number $\omega(G)$ of a graph G is the size of the largest clique in that graph.
(2) The maximum degree $\Delta(G)$ of a graph G is the maximum number of neighbors of any vertex in that graph.

Preliminaries

Definitions

(1) The clique number $\omega(G)$ of a graph G is the size of the largest clique in that graph.
(2) The maximum degree $\Delta(G)$ of a graph G is the maximum number of neighbors of any vertex in that graph.
(3) The chromatic number $\chi(G)$ of a graph G is the minimum number of colors needed to color the vertices in that graph so that adjacent vertices have different colors.

Definitions

(1) The clique number $\omega(G)$ of a graph G is the size of the largest clique in that graph.
(2) The maximum degree $\Delta(G)$ of a graph G is the maximum number of neighbors of any vertex in that graph.
(3) The chromatic number $\chi(G)$ of a graph G is the minimum number of colors needed to color the vertices in that graph so that adjacent vertices have different colors.
(9) The chromatic index $\chi_{e}(G)$ of a graph G is the minimum number of colors needed to color the edges in that graph so that adjacent edges have different colors.

Some basic bounds

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractiontal Chromatic Index The Theorem and Proof
Casc I
Case II
Similar Conjectures

The presence of a clique sets a lower bound on the maximum degree

Bound	Δ	ω
Upper Bound	None	$\Delta+1$
Lower Bound	$\omega-1$	None

Some basic bounds

Reed's
Conjecture
Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractiontil
Chromatic Index
The Theorem
and Proof
Case 1
Case II
Similar
Conjectures

The presence of a clique sets a lower bound on the maximum degree

Bound	Δ	ω
Upper Bound	None	$\Delta+1$
Lower Bound	$\omega-1$	None

We also have $\omega(G) \leq \chi(G) \leq \Delta(G)+1$

Some basic bounds

Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case !
Case II

The presence of a clique sets a lower bound on the maximum degree

Bound	Δ	ω
Upper Bound	None	$\Delta+1$
Lower Bound	$\omega-1$	None

We also have $\omega(G) \leq \chi(G) \leq \Delta(G)+1$

Theorem (Brooks)

For graphs other than cliques and with $\Delta(G) \geq 3$ we have $\chi(G) \leq \Delta(G)$

Reed's Conjecture , 1998

Reed's
Conjecture
Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case I
Case II
Similar
Conjectures

The Conjecture :
$\chi(G) \leq\left\lceil\frac{1+\Delta+\omega}{2}\right\rceil$
The conjecture holds for $\omega \in\{2, \Delta-1, \Delta, \Delta+1\}$

Some Observations

Reed's
Conjecture
Naveen Sundar G.
(1) More densely connected a graph is the more colors we have to use to color the graph. Complete subgraphs increase the number of colors.

Outline

Preliminaries
Basic Results The Conjecture

General

Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index
and Fractional
Chromatic Index
The Theorem
and Proof
Case I
Case II
Similar
Conjectures

Some Observations

Reed's
Conjecture
Naveen
Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index
and Fractional
Chromatic Index
The Theorem
and Proof
Case I
Case II
Similar
Conjectures
(1) More densely connected a graph is the more colors we have to use to color the graph. Complete subgraphs increase the number of colors.
(2) The only cases where we need $\Delta+1$ coloring are when the graph is a clique or an odd cycle.

Some Observations

Reed's
Conjecture
Naveen
Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index
and Fractional
Chromatic Index
The Theorem
and Proof
Case !
Case II
Similar Conjectures
(1) More densely connected a graph is the more colors we have to use to color the graph. Complete subgraphs increase the number of colors.
(2) The only cases where we need $\Delta+1$ coloring are when the graph is a clique or an odd cycle.
(3) The clique number can be very small and the maximum degree can grow pretty large.

Some Observations

Reed's
Conjecture
Naveen
Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index
and Fractional
Chromatic Index
The Theorem
and Proof
Case !
Case II
Similar Conjectures
(1) More densely connected a graph is the more colors we have to use to color the graph. Complete subgraphs increase the number of colors.
(2) The only cases where we need $\Delta+1$ coloring are when the graph is a clique or an odd cycle.
(3) The clique number can be very small and the maximum degree can grow pretty large.

Some Observations

Reed's
Conjecture
Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I
Case II
Similar Conjectures
(1) More densely connected a graph is the more colors we have to use to color the graph. Complete subgraphs increase the number of colors.
(2) The only cases where we need $\Delta+1$ coloring are when the graph is a clique or an odd cycle.
(3) The clique number can be very small and the maximum degree can grow pretty large.

Figure: Omega and Delta

The Conjecture For Line Graphs

Reed's
Conjecture
Naveen
Sundar G.

Outline

Preliminaries

Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I
Case II
Similar Conjectures

An upper bound for the chromatic number of line graphs by
A.D. King, B.A. Reed, A. Vetta 2006.
http://www.columbia.edu/~ak3074/papers/ KingReedVetta-linegraphs.ps

Definitions and Observations

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and Observations
Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case 1
Case II
Similar
Conjectures

Naveen Sundar G. Reed's Conjecture

Definitions and Observations

Reed's
Conjecture
Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case I
Case II
Similar Conjectures

Multigraph A multigraph H is a graph in which there can be multiple edges between two nodes.

Definitions and Observations

Multigraph A multigraph H is a graph in which there can be multiple edges between two nodes.
Line Graph A line graph G of a graph H is a graph with the vertex set of $E(H)$ and two vertices in G are adjacent iff the corresponding edges in H are adjacent.

Definitions and Observations

Multigraph A multigraph H is a graph in which there can be multiple edges between two nodes.
Line Graph A line graph G of a graph H is a graph with the vertex set of $E(H)$ and two vertices in G are adjacent iff the corresponding edges in H are adjacent.
Hypergraph A hypergraph is a graph in which an edge has as endpoints two or more nodes. Every graph is the line graph of a hypergraph.

Definitions and Observations

Multigraph A multigraph H is a graph in which there can be multiple edges between two nodes.
Line Graph A line graph G of a graph H is a graph with the vertex set of $E(H)$ and two vertices in G are adjacent iff the corresponding edges in H are adjacent.
Hypergraph A hypergraph is a graph in which an edge has as endpoints two or more nodes. Every graph is the line graph of a hypergraph.
Multiplicity The multiplicity $\mu(a, b)$ of a pair of vertices a and b are the number of edges between them.

Not every graph is the line graph of a multi graph

Reed's
Conjecture
Naveen
Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index
and Fractionat
Chromatic Index
The Theorem
and Proof
Case !
Case II
Similar
Conjectures

Figure: Hyper Graphs

Extending Vertex Coloring

Reed's
Conjecture
Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and Observations
Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case 1
Case II
Similar Conjectures
(1) A vertex coloring is equivalent to a set of stable sets or independents sets.

Extending Vertex Coloring

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and Observations
Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I
Case II
Similar Conjectures
(1) A vertex coloring is equivalent to a set of stable sets or independents sets.
(2) Each stable set corresponds to one color

Extending Vertex Coloring

(1) A vertex coloring is equivalent to a set of stable sets or independents sets.
(2) Each stable set corresponds to one color
(3) This can be generalized. Each vertex can be colored by multiple colors with no two adjacent vertices sharing any color.

Extending Vertex Coloring

(1) A vertex coloring is equivalent to a set of stable sets or independents sets.
(2) Each stable set corresponds to one color
(3) This can be generalized. Each vertex can be colored by multiple colors with no two adjacent vertices sharing any color.
(9) Each color contributes fractionally. This gives rise to fractional vertex coloring

Extending Vertex Coloring

(1) A vertex coloring is equivalent to a set of stable sets or independents sets.
(2) Each stable set corresponds to one color
(3) This can be generalized. Each vertex can be colored by multiple colors with no two adjacent vertices sharing any color.
(9) Each color contributes fractionally. This gives rise to fractional vertex coloring
(5) We can also set the colors available across different nodes to be different. Each node has at its disposal the same number of colors. This gives rise to list coloring

Definition of a Fractional Vertex Coloring

A fractional vertex c-coloring of a graph can be described as a set $S_{1}, \ldots, S_{\text {I }}$ of stable sets with associated non-negative real weights w_{1}, \ldots, w_{n} such that for vertex ν,

$$
\sum_{S_{i}: \nu \in S_{i}} w_{i}=1
$$

and

$$
\sum_{i=1}^{I} w_{i}=c
$$

The fractional chromatic number of G denoted by $\chi^{f}(G)$ is the smallest c for which G has a fractional vertex c coloring.

Reed's Conjecture for Fractional Coloring

Reed's
Conjecture
Naveen
Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index
and Fractional
Chromatic Index
The Theorem
and Proof
Case I
Case II
Similar
Conjectures

The conjecture holds for fractional vertex coloring

Theorem

For any graph G,

$$
\chi^{f}(G) \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

χ and χ^{f}

Reed's
Conjecture
Naveen
Sundar G.

Every integer coloring is also a fractional coloring with $w_{i}=1$. So we can never have have $\chi<\chi^{f}$. But is $\chi^{f}<\chi$ possible? Yes. The cycle of 5 vertices has $\chi=3$

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index
and Fractional
Chromatic Index
The Theorem
and Proof
Case I
Case II
Similar
Conjectures

Figure: Coloring of a 5 Cycle

Reed's Conjecture

Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case I
Case II
Similar
Conjectures

The cycle of 5 vertices has 2.5 fractional coloring

A 2.5 Fractional Coloring

stable set	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}
vertices	a, c	b, d	c, e	d, a	e, b
weights	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$

Figure: Coloring of a 5 Cycle

Definition of List Coloring

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Casc I
Case II
Similar Conjectures
(1) We have to color each vertex from a predetermined list of r colors.

Definition of List Coloring

Reed's
Conjecture
Naveen
Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case 1
Case II
Similar Conjectures
(1) We have to color each vertex from a predetermined list of r colors.
(2) The list may differ for each vertex. In normal coloring the list is same across vertices.

Definition of List Coloring

(1) We have to color each vertex from a predetermined list of r colors.
(2) The list may differ for each vertex. In normal coloring the list is same across vertices.
(3) The smallest list size r such that no matter how we choose the colors from each list the graph is properly colorable is the list chromatic index χ^{\prime}.

Definition of List Coloring

(1) We have to color each vertex from a predetermined list of r colors.
(2) The list may differ for each vertex. In normal coloring the list is same across vertices.
(3) The smallest list size r such that no matter how we choose the colors from each list the graph is properly colorable is the list chromatic index χ^{\prime}.
(9) We have χ^{\prime} definitely not less than χ. Can χ^{\prime} be greater than χ ?

List Coloring

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index
The Theorem
and Proof
Case !
Case II
Similar
Conjectures

Figure: List Coloring

List Coloring

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General Properties

Line Graphs
Definitions and
Observations
Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case I
Case II
Similar
Conjectures

Figure: List Coloring

List Coloring

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Propertios
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case I
Case II
Similar
Conjectures

Figure: List Coloring

Chromatic Index $X_{e}(H)$

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I
Case II
(1) The chromatic index $\chi_{e}(H)$ of a hypergraph H is the chromatic number $\chi(G)$ of its line $\operatorname{graph}(G=L(H)$.)
(2) The following theorem by Caprara and Rizzi puts an upper bound on the chromatic index of a multigraph $\chi_{e}(H) \leq \max (\lfloor 1.1 \Delta(H)+0.7\rfloor,\lceil\Gamma(H)\rceil)$.
(3) Goldberg-Seymour Conjecture For a multigraph H for which $\chi_{e}(H)>\Delta(H)+1, \chi_{e}(H)=\lceil\Gamma(H)\rceil$

Fractional Chromatic Index $X_{e}(H)$

Reed's
Conjecture

Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index and Fractional Chromatic Index
The Theorem
and Proof
Case I
Case II
Similar
Conjectures
(1) The fractional chromatic index $\chi_{e}^{f}(H)$ of a hypergraph H is the fractional chromatic number $\chi(G)$ of its line graph $\chi^{f}(G)(G=L(H)$.

Fractional Chromatic Index $X_{e}(H)$

Reed's
Conjecture

Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index and Fractional Chromatic Index
The Theorem
and Proof
Case 1
Case II
Similar
Conjectures
(1) The fractional chromatic index $\chi_{e}^{f}(H)$ of a hypergraph H is the fractional chromatic number $\chi(G)$ of its line graph $\chi^{f}(G)(G=L(H)$.)
(2) A matching in H corresponds to a stable set in G.

Fractional Chromatic Index $X_{e}(H)$

Reed's
Conjecture
Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Propertios
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index and Fractional Chromatic Index
The Theorem
and Proof
Case I
Case II
Similar Conjectures
(1) The fractional chromatic index $\chi_{e}^{f}(H)$ of a hypergraph H is the fractional chromatic number $\chi(G)$ of its line graph $\chi^{f}(G)(G=L(H)$.
(2) A matching in H corresponds to a stable set in G.
(3) Given a nonnegative weighting w on the edges of H such that for every matching M in H we have $\sum_{e \in M} w(e) \leq 1$ then $\chi_{e}^{f}(H) \geq \sum_{e \in E(H)} w(e)$

Fractional Chromatic Index $X_{e}(H)$

Reed's
Conjecture
Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Propertios
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring

Case II
(1) The fractional chromatic index $\chi_{e}^{f}(H)$ of a hypergraph H is the fractional chromatic number $\chi(G)$ of its line graph $\chi^{f}(G)(G=L(H)$.)
(2) A matching in H corresponds to a stable set in G.
(3) Given a nonnegative weighting w on the edges of H such that for every matching M in H we have $\sum_{e \in M} w(e) \leq 1$ then $\chi_{e}^{f}(H) \geq \sum_{e \in E(H)} w(e)$

Proof.

Fractional Chromatic Index $X_{e}(H)$

Reed's Conjecture

Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring
(1) The fractional chromatic index $\chi_{e}^{f}(H)$ of a hypergraph H is the fractional chromatic number $\chi(G)$ of its line graph $\chi^{f}(G)(G=L(H)$.)
(2) A matching in H corresponds to a stable set in G.
(3) Given a nonnegative weighting w on the edges of H such that for every matching M in H we have $\sum_{e \in M} w(e) \leq 1$ then $\chi_{e}^{f}(H) \geq \sum_{e \in E(H)} w(e)$

Proof.

(1) $\chi_{e}^{f}(H)=\chi^{f}(G)=\sum_{\nu} \sum_{\nu \in S_{i}} \frac{w_{i}}{\left|S_{i}\right|}$ such that $\sum_{i: \nu \in S_{i}} w_{i}=1$

Fractional Chromatic Index $X_{e}(H)$

Reed's Conjecture

Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
(1) The fractional chromatic index $\chi_{e}^{f}(H)$ of a hypergraph H is the fractional chromatic number $\chi(G)$ of its line graph $\chi^{f}(G)(G=L(H)$.)
(2) A matching in H corresponds to a stable set in G.
(3) Given a nonnegative weighting w on the edges of H such that for every matching M in H we have $\sum_{e \in M} w(e) \leq 1$ then $\chi_{e}^{f}(H) \geq \sum_{e \in E(H)} w(e)$

Proof.

(1) $\chi_{e}^{f}(H)=\chi^{f}(G)=\sum_{\nu} \sum_{\nu \in S_{i}} \frac{w_{i}}{\left|S_{i}\right|}$ such that $\sum_{i: \nu \in S_{i}} w_{i}=1$
(2) $\sum_{e \in E(H)} w(e)=\sum_{\nu} \sum_{\nu \in S_{i}} \frac{w_{i}}{\left|S_{i}\right|}$ such that $\sum_{i: \nu \in S_{i}} w_{i} \leq 1$

Fractional Chromatic Index $X_{e}(H)$

Reed's Conjecture

Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
(1) The fractional chromatic index $\chi_{e}^{f}(H)$ of a hypergraph H is the fractional chromatic number $\chi(G)$ of its line graph $\chi^{f}(G)(G=L(H)$.)
(2) A matching in H corresponds to a stable set in G.
(3) Given a nonnegative weighting w on the edges of H such that for every matching M in H we have $\sum_{e \in M} w(e) \leq 1$ then $\chi_{e}^{f}(H) \geq \sum_{e \in E(H)} w(e)$

Proof.

(1) $\chi_{e}^{f}(H)=\chi^{f}(G)=\sum_{\nu} \sum_{\nu \in S_{i}} \frac{w_{i}}{\left|S_{i}\right|}$ such that $\sum_{i: \nu \in S_{i}} w_{i}=1$
(2) $\sum_{e \in E(H)} w(e)=\sum_{\nu} \sum_{\nu \in S_{i}} \frac{w_{i}}{\left|S_{i}\right|}$ such that $\sum_{i: \nu \in S_{i}} w_{i} \leq 1$
(3) Both the sums over the same set of indices.

Bounds on the fractional chromatic index

Reed's
Conjecture
Naveen Sundar G.
(1) We consider two such weightings.

Bounds on the fractional chromatic index

Reed's
Conjecture
Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case 1
Case II
Similar Conjectures
(1) We consider two such weightings.
(1) A weight of 1 to each edge incident to just one vertex of maximum degree. Every other edge is assigned a weight 0 .

Bounds on the fractional chromatic index

Reed's
Conjecture
Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case I
Case II
Similar Conjectures
(1) We consider two such weightings.
(1) A weight of 1 to each edge incident to just one vertex of maximum degree. Every other edge is assigned a weight 0.
(2) We take an induced subgraph W of H and assign to each edge of W a weight of $1 /\lfloor|V(W)| / 2\rfloor$ and other edges 0

Bounds on the fractional chromatic index

Reed's
Conjecture

Naveen

Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index and Fractional Chromatic Index
The Theorem
and Proof
Case I
Case II
Similar Conjectures
(1) We consider two such weightings.
(1) A weight of 1 to each edge incident to just one vertex of maximum degree. Every other edge is assigned a weight 0.
(2) We take an induced subgraph W of H and assign to each edge of W a weight of $1 /\lfloor|V(W)| / 2\rfloor$ and other edges 0
(2) We can derive $\chi_{e}^{f}(H) \leq \max (\Delta(H), \Gamma(H))$

Bounds on the fractional chromatic index

Reed's
Conjecture

Naveen

Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case I
Case II
Similar Conjectures
(1) We consider two such weightings.
(1) A weight of 1 to each edge incident to just one vertex of maximum degree. Every other edge is assigned a weight 0.
(2) We take an induced subgraph W of H and assign to each edge of W a weight of $1 /\lfloor|V(W)| / 2\rfloor$ and other edges 0
(2) We can derive $\chi_{e}^{f}(H) \leq \max (\Delta(H), \Gamma(H))$
(3) where $\Gamma(H)=\max \left\{\frac{2|E(W)|}{|V(W)-1|}: W \subset H,|V(W)|\right.$ is odd $\}$

Bounds on the fractional chromatic index

Reed's
Conjecture

Naveen

Sundar G.
(1) We consider two such weightings.
(1) A weight of 1 to each edge incident to just one vertex of maximum degree. Every other edge is assigned a weight 0.
(2) We take an induced subgraph W of H and assign to each edge of W a weight of $1 /\lfloor|V(W)| / 2\rfloor$ and other edges 0
(2) We can derive $\chi_{e}^{f}(H) \leq \max (\Delta(H), \Gamma(H))$
(3) where $\Gamma(H)=\max \left\{\frac{2|E(W)|}{|V(W)-1|}: W \subset H,|V(W)|\right.$ is odd $\}$
(4) Edmond's theorem for matching polytypes

$$
\chi_{e}^{f}(H)=\max (\Delta(H), \Gamma(H))
$$

Reed's Conjecture for Line Graphs

Reed's
Conjecture
Naveen
Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I Case II
Similar Conjectures

Theorem

For any line graph G, Reed's conjecture holds.
We set $G=L(H)$ and consider two cases
(1) $\Delta(G)$ is large. That is $\Delta(G) \geq \frac{3}{2} \Delta(H)-1$
(2) $\Delta(G)$ is small. That is $\Delta(G)<\frac{3}{2} \Delta(H)-1$

Proof when $\Delta(G)$ is large

Reed's Conjecture

Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case I
Case II
Similar
Conjectures

Proof.

(1) Given: $\chi_{e}^{f}=\max (\Delta(H), \Gamma(H))$

Proof when $\Delta(G)$ is large

Reed's
Conjecture
Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractionai
Chromatic Index
The Theorem and Proof
Case I
Case II
Similar
Conjectures

Proof.

(1) Given: $\chi_{e}^{f}=\max (\Delta(H), \Gamma(H))$
(2) Given: For any multigraph

$$
\chi_{e}(H) \leq \max (\lfloor 1.1 \Delta(H)+0.7\rfloor,\lceil\Gamma(H)\rceil) .(\text { Caprara })
$$

Proof when $\Delta(G)$ is large

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractionai Chromatic Index The Theorem and Proof
Case I
Case II

Similar

Conjectures

Proof.

(1) Given: $\chi_{e}^{f}=\max (\Delta(H), \Gamma(H))$
(2) Given: For any multigraph

$$
\chi_{e}(H) \leq \max (\lfloor 1.1 \Delta(H)+0.7\rfloor,\lceil\Gamma(H)\rceil) .(\text { Caprara })
$$

(3) Combining 1 and 2 we get

$$
\chi(G) \leq \max \left(\lfloor 1.1 \Delta(H)+0.7\rfloor,\left\lceil\chi^{f}(G)\right\rceil\right)
$$

Proof when $\Delta(G)$ is large

Reed's
Conjecture
Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Propertios
Line Graphs
Definitions and Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractionaí Chromatic Index The Theorem and Proof
Case I
Case II
Similar Conjectures

Proof.

(1) Given: $\chi_{e}^{f}=\max (\Delta(H), \Gamma(H))$
(2) Given: For any multigraph

$$
\chi_{e}(H) \leq \max (\lfloor 1.1 \Delta(H)+0.7\rfloor,\lceil\Gamma(H)\rceil) .(\text { Caprara })
$$

(3) Combining 1 and 2 we get
$\chi(G) \leq \max \left(\lfloor 1.1 \Delta(H)+0.7\rfloor,\left\lceil\chi^{f}(G)\right\rceil\right)$
(9) Using Reed's theorem for fractional coloring

$$
\chi(G) \leq \max \left(\lfloor 1.1 \Delta(H)+0.7\rfloor,\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil\right)
$$

Proof when $\Delta(G)$ is large

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Propertios

Line Graphs Definitions and Observations
Fractional vertex c-coloring
List Coloring
Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case I
Case II

Similar

 Conjectures
Proof.

(1) Given: $\chi_{e}^{f}=\max (\Delta(H), \Gamma(H))$
(2) Given: For any multigraph

$$
\chi_{e}(H) \leq \max (\lfloor 1.1 \Delta(H)+0.7\rfloor,\lceil\Gamma(H)\rceil) .(\text { Caprara })
$$

(3) Combining 1 and 2 we get
$\chi(G) \leq \max \left(\lfloor 1.1 \Delta(H)+0.7\rfloor,\left\lceil\chi^{f}(G)\right\rceil\right)$
(9) Using Reed's theorem for fractional coloring

$$
\chi(G) \leq \max \left(\lfloor 1.1 \Delta(H)+0.7\rfloor,\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil\right)
$$

(0) Assumption: $\Delta(G) \geq \frac{3}{2} \Delta(H)-1$

Proof when $\Delta(G)$ is large

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index
The Theorem and Proof
Case I
Case II

Similar

 Conjectures
Proof.

(1) Given: $\chi_{e}^{f}=\max (\Delta(H), \Gamma(H))$
(2) Given: For any multigraph

$$
\chi_{e}(H) \leq \max (\lfloor 1.1 \Delta(H)+0.7\rfloor,\lceil\Gamma(H)\rceil) .(\text { Caprara })
$$

(3) Combining 1 and 2 we get
$\chi(G) \leq \max \left(\lfloor 1.1 \Delta(H)+0.7\rfloor,\left\lceil\chi^{f}(G)\right\rceil\right)$
(4) Using Reed's theorem for fractional coloring

$$
\chi(G) \leq \max \left(\lfloor 1.1 \Delta(H)+0.7\rfloor,\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil\right)
$$

(5) Assumption: $\Delta(G) \geq \frac{3}{2} \Delta(H)-1$
(0. Therefore $\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil \geq\left\lceil\frac{5}{4}\right\rceil \geq\lfloor 1.1 \Delta(H)+0.7\rfloor$

Proof when $\Delta(G)$ is large

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries Basic Results The Conjecture General Properties

Line Graphs Definitions and Observations Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index
The Theorem and Proof
Case I
Case II

Proof.

(1) Given: $\chi_{e}^{f}=\max (\Delta(H), \Gamma(H))$
(2) Given: For any multigraph

$$
\chi_{e}(H) \leq \max (\lfloor 1.1 \Delta(H)+0.7\rfloor,\lceil\Gamma(H)\rceil) .(\text { Caprara })
$$

(3) Combining 1 and 2 we get
$\chi(G) \leq \max \left(\lfloor 1.1 \Delta(H)+0.7\rfloor,\left\lceil\chi^{f}(G)\right\rceil\right)$
(4) Using Reed's theorem for fractional coloring

$$
\chi(G) \leq \max \left(\lfloor 1.1 \Delta(H)+0.7\rfloor,\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil\right)
$$

(3) Assumption: $\Delta(G) \geq \frac{3}{2} \Delta(H)-1$
(0) Therefore $\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil \geq\left\lceil\frac{5}{4}\right\rceil \geq\lfloor 1.1 \Delta(H)+0.7\rfloor$
(1) Therefore $\chi(G) \leq \frac{\Delta(G)+1 \omega(G)}{2}$

Proof when $\Delta(G)$ is small

Reed's
Conjecture
Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case !
Case II
Similar Conjectures

Given

$\Delta(G)<\frac{3}{2} \Delta(H)-1$
We prove using induction. The base case consisting of all the hypergraph of two vertices satisfies Reed's conjecture.

Proof when $\Delta(G)$ is small

Reed's
Conjecture
Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I
Case II

Similar

 Conjectures
Given

$\Delta(G)<\frac{3}{2} \Delta(H)-1$
We prove using induction. The base case consisting of all the hypergraph of two vertices satisfies Reed's conjecture.
(1) G^{\prime} is the subgraph of G with fewer vertices which needs to satisfy $\Delta\left(G^{\prime}\right) \leq \Delta(G)-1$ (since S is maximal) and $\omega\left(G^{\prime}\right)=\omega(G)-1$

Proof when $\Delta(G)$ is small

Given

$\Delta(G)<\frac{3}{2} \Delta(H)-1$
We prove using induction. The base case consisting of all the hypergraph of two vertices satisfies Reed's conjecture.
(1) G^{\prime} is the subgraph of G with fewer vertices which needs to satisfy $\Delta\left(G^{\prime}\right) \leq \Delta(G)-1$ (since S is maximal) and $\omega\left(G^{\prime}\right)=\omega(G)-1$
(2) G^{\prime} is also a line graph and we have using the induction hypothesis and (2) and (3)

$$
\chi\left(G^{\prime}\right) \leq\left\lceil\frac{\Delta\left(G^{\prime}\right)+1+\omega\left(G^{\prime}\right)}{2}\right\rceil
$$

Proof when $\Delta(G)$ is small

Given

$\Delta(G)<\frac{3}{2} \Delta(H)-1$
We prove using induction. The base case consisting of all the hypergraph of two vertices satisfies Reed's conjecture.
(1) G^{\prime} is the subgraph of G with fewer vertices which needs to satisfy $\Delta\left(G^{\prime}\right) \leq \Delta(G)-1$ (since S is maximal) and $\omega\left(G^{\prime}\right)=\omega(G)-1$
(2) G^{\prime} is also a line graph and we have using the induction hypothesis and (2) and (3)

$$
\chi\left(G^{\prime}\right) \leq\left\lceil\frac{\Delta\left(G^{\prime}\right)+1+\omega\left(G^{\prime}\right)}{2}\right\rceil
$$

(3) combining the above $\chi\left(G^{\prime}\right) \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil-1$

Proof when $\Delta(G)$ is small

Reed's
Conjecture
Naveen
Sundar G.

Outline

(9) $V(G) \backslash V\left(G^{\prime}\right)$ should be a stable set

Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Casc I
Case II
Similar
Conjectures

Proof when $\Delta(G)$ is small

Reed's
Conjecture
Naveen
Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index
and Fractiont!
Chromatic Index
The Theorem
and Proof
Case I
Case II
Similar
Conjectures
(9) $V(G) \backslash V\left(G^{\prime}\right)$ should be a stable set
(0) We can construct a proper $\chi\left(G^{\prime}\right)+1$-coloring of $V(G)$ by taking the $\chi\left(G^{\prime}\right)$ coloring of G^{\prime} and we take S to be the final color class.

Proof when $\Delta(G)$ is small

Reed's
Conjecture
Naveen
Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case I
Case II
Similar
Conjectures
(9) $V(G) \backslash V\left(G^{\prime}\right)$ should be a stable set
(5) We can construct a proper $\chi\left(G^{\prime}\right)+1$-coloring of $V(G)$ by taking the $\chi\left(G^{\prime}\right)$ coloring of G^{\prime} and we take S to be the final color class.
(0 Therefore $\chi(G) \leq \frac{\Delta(G)+1+\omega(G)}{2}$

Proof when $\Delta(G)$ is small

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index
and Fractional
Chromatic Index
The Theorem
and Proof
Case I
Case II
Similar Conjectures
(9) $V(G) \backslash V\left(G^{\prime}\right)$ should be a stable set
(0) We can construct a proper $\chi\left(G^{\prime}\right)+1$-coloring of $V(G)$ by taking the $\chi\left(G^{\prime}\right)$ coloring of G^{\prime} and we take S to be the final color class.
(0 Therefore $\chi(G) \leq \frac{\Delta(G)+1+\omega(G)}{2}$
((Find a maximal stable set $S \subset V(G)$ that has a vertex from every maximum clique in G.

Basic Idea

Reed's
Conjecture
Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index
and Fractional
Chromatic Index
The Theorem
and Proof
Casc 1
Case II
Similar
Conjectures

We need to show when $\Delta(G)<\frac{3}{2} \Delta(H)-1$ we have a maximal stable set S which contains a vertex from every maximum clique.

Basic Idea

Reed's
Conjecture
Naveen
Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Propertics
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractionai Chromatic Index The Theorem and Proof
Case I
Case II
Similar Conjectures

We need to show when $\Delta(G)<\frac{3}{2} \Delta(H)-1$ we have a maximal stable set S which contains a vertex from every maximum clique.
(1) $\Delta(G)=\max _{u v \in E(H)}\{\operatorname{deg}(u)+\operatorname{deg}(v)-\mu(u, v)-1\}$

Basic Idea

We need to show when $\Delta(G)<\frac{3}{2} \Delta(H)-1$ we have a maximal stable set S which contains a vertex from every maximum clique.
(1) $\Delta(G)=\max _{u v \in E(H)}\{\operatorname{deg}(u)+\operatorname{deg}(v)-\mu(u, v)-1\}$
(2) Every maximum clique in G comes either from a vertex of maximum degree in H or a triangle with a large number of edges in H.

Basic Idea

We need to show when $\Delta(G)<\frac{3}{2} \Delta(H)-1$ we have a maximal stable set S which contains a vertex from every maximum clique.
(1) $\Delta(G)=\max _{u v \in E(H)}\{\operatorname{deg}(u)+\operatorname{deg}(v)-\mu(u, v)-1\}$
(2) Every maximum clique in G comes either from a vertex of maximum degree in H or a triangle with a large number of edges in H.
(3) If $\operatorname{tri}(H)$ is the maximum number of edges in a triangle. $\omega(G)=\max \{\Delta(H), \operatorname{tri}(H)\}$

Basic Idea Continued

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Casc I
Case II
Similar
Conjectures
(1) We say that a matching hits a vertex v if it is an endpoint of an edge in the matching.

Basic Idea Continued

(1) We say that a matching hits a vertex v if it is an endpoint of an edge in the matching.
(2) We need to find a maximal matching M in H which will correspond to the stable set S in $G . M$ should hit every vertex of maximum degree in H and contain an edge of every triangle with $\max \{\Delta(H), \operatorname{tri}(H)\}$ edges.

Basic Idea Continued

(1) We say that a matching hits a vertex v if it is an endpoint of an edge in the matching.
(2) We need to find a maximal matching M in H which will correspond to the stable set S in $G . M$ should hit every vertex of maximum degree in H and contain an edge of every triangle with $\max \{\Delta(H), \operatorname{tri}(H)\}$ edges.
S_{Δ} is the set of vertices in H of degree $\Delta(H)$

Basic Idea Continued

(1) We say that a matching hits a vertex v if it is an endpoint of an edge in the matching.
(2) We need to find a maximal matching M in H which will correspond to the stable set S in $G . M$ should hit every vertex of maximum degree in H and contain an edge of every triangle with $\max \{\Delta(H), \operatorname{tri}(H)\}$ edges.
S_{Δ} is the set of vertices in H of degree $\Delta(H)$
T is the set of all triangles in H with $\max \{\Delta(H), \operatorname{tri}(H)\}$ edges.

Lemma 1

Reed's
Conjecture
Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Casc I
Case II
Similar
Conjectures

Theorem (Lemma 1)

If two triangles of T intersect in exactly the vertices a and b then ab has multiplicity greater than $\Delta(H) / 2$

Lemma 1

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case !
Case II

Similar

Conjectures

Theorem (Lemma 1)

If two triangles of T intersect in exactly the vertices a and b then ab has multiplicity greater than $\Delta(H) / 2$

Proof.

Lemma 1

Reed's Conjecture

Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Propertios
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case I
Case II

Similar

Conjectures

Theorem (Lemma 1)

If two triangles of T intersect in exactly the vertices a and b then ab has multiplicity greater than $\Delta(H) / 2$

Proof.

$$
\frac{3}{2} \Delta H>\frac{3}{2} \Delta(H)-1>\Delta(G) \geq 2 \Delta(H)-\mu(a, b)
$$

Lemma 1

Reed's Conjecture

Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Propertios
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractiomal Chromatic Index The Theorem and Proof Case I Case II

Similar

Conjectures

Theorem (Lemma 1)

If two triangles of T intersect in exactly the vertices a and b then ab has multiplicity greater than $\Delta(H) / 2$

Proof.

$$
\begin{gathered}
\frac{3}{2} \Delta H>\frac{3}{2} \Delta(H)-1>\Delta(G) \geq 2 \Delta(H)-\mu(a, b) \\
\frac{3}{2} \Delta H>2 \Delta(H)-\mu(a, b)
\end{gathered}
$$

Lemma 1

Reed's Conjecture

Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Propertios
Line Graphs
Definitions and Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractionat Chromatic Index The Theorem and Proof Case I Case II

Similar

Conjectures

Theorem (Lemma 1)

If two triangles of T intersect in exactly the vertices a and b then ab has multiplicity greater than $\Delta(H) / 2$

Proof.

$$
\begin{gathered}
\frac{3}{2} \Delta H>\frac{3}{2} \Delta(H)-1>\Delta(G) \geq 2 \Delta(H)-\mu(a, b) \\
\frac{3}{2} \Delta H>2 \Delta(H)-\mu(a, b) \\
\mu(a, b) \geq \Delta(H) / 2
\end{gathered}
$$

Lemma 2

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case !
Case II
Similar
Conjectures

Theorem (Lemma 2)

If abc is a triangle of T intersecting another triangle ade of T in exactly the vertex a then $\mu(b, c)$ is greater than $\Delta(H) / 2$

Lemma 2

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case I
Case II
Similar Conjectures

Theorem (Lemma 2)

If abc is a triangle of T intersecting another triangle ade of T in exactly the vertex a then $\mu(b, c)$ is greater than $\Delta(H) / 2$

Proof.

Lemma 2

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Propertios
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Inde and Fractional Chromatic Index The Theorem and Proof Casc I
Case II

Similar

 Conjectures
Theorem (Lemma 2)

If abc is a triangle of T intersecting another triangle ade of T in exactly the vertex a then $\mu(b, c)$ is greater than $\Delta(H) / 2$

Proof.

The degree of a vertex of G corresponding to an edge between a and d is at least $2 \Delta(H)-\mu(b, c)-1$

Lemma 2

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Propertios
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring

Similar

 Conjectures
Theorem (Lemma 2)

If abc is a triangle of T intersecting another triangle ade of T in exactly the vertex a then $\mu(b, c)$ is greater than $\Delta(H) / 2$

Proof.

The degree of a vertex of G corresponding to an edge between a and d is at least $2 \Delta(H)-\mu(b, c)-1$

$$
\frac{3}{2} \Delta(H)-1>\Delta(G) \geq 2 \Delta(H)-\mu(b, c)-1
$$

Lemma 2

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Inde: and Fractionat Chromatic Index The Theorem and Proof Casc ! Case II

Similar

 Conjectures
Theorem (Lemma 2)

If abc is a triangle of T intersecting another triangle ade of T in exactly the vertex a then $\mu(b, c)$ is greater than $\Delta(H) / 2$

Proof.

The degree of a vertex of G corresponding to an edge between a and d is at least $2 \Delta(H)-\mu(b, c)-1$

$$
\frac{3}{2} \Delta(H)-1>\Delta(G) \geq 2 \Delta(H)-\mu(b, c)-1
$$

$$
\frac{3}{2} \Delta(H)-1>2 \Delta(H)-\mu(b, c)-1
$$

Lemma 2

Reed's Conjecture

Naveen Sundar G.

Outline
Preliminaries Basic Results The Conjecture General Properties

Line Graphs
Definitions and Observations
Fractional vertex c-coloring List Coloring Chromatic Index and Fractionai Chromatic Index The Theorem and Proof Casc ! Case II

Similar

 Conjectures
Theorem (Lemma 2)

If abc is a triangle of T intersecting another triangle ade of T in exactly the vertex a then $\mu(b, c)$ is greater than $\Delta(H) / 2$

Proof.

The degree of a vertex of G corresponding to an edge between a and d is at least $2 \Delta(H)-\mu(b, c)-1$

$$
\frac{3}{2} \Delta(H)-1>\Delta(G) \geq 2 \Delta(H)-\mu(b, c)-1
$$

$$
\frac{3}{2} \Delta(H)-1>2 \Delta(H)-\mu(b, c)-1
$$

$$
\therefore \mu(b, c) \geq \frac{1}{2} \Delta(H)
$$

Lemma 3

Reed's
Conjecture
Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Casc I
Case II
Similar
Conjectures

Theorem (Lemma 3)

If there is an edge of H joining two vertices a and b of S_{Δ} then $\mu(a, b)>\Delta(H) / 2$

Lemma 3

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Casc !
Case II

Similar

Conjectures

Theorem (Lemma 3)

If there is an edge of H joining two vertices a and b of S_{Δ} then $\mu(a, b)>\Delta(H) / 2$

Proof.

Lemma 3

Reed's Conjecture

Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Propertios
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring

Theorem (Lemma 3)

If there is an edge of H joining two vertices a and b of S_{Δ} then $\mu(a, b)>\Delta(H) / 2$

Proof.

$$
\frac{3}{2} \Delta(H)-1>\Delta(G) \geq 2 \Delta(H)-\mu(a, b)-1
$$

Lemma 3

Reed's Conjecture

Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring

$$
\begin{gathered}
\frac{3}{2} \Delta(H)-1>\Delta(G) \geq 2 \Delta(H)-\mu(a, b)-1 \\
\therefore u(a, b)>\Delta(H) / 2
\end{gathered}
$$

Similar

Conjectures

Theorem (Lemma 3)

If there is an edge of H joining two vertices a and b of S_{Δ} then $\mu(a, b)>\Delta(H) / 2$

Proof.

More Terminology

Reed's
Conjecture
Naveen Sundar G.

Outline

Preliminaries

Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring List Coloring Chromatic Index and Fractiontal Chromatic Index The Theorem and Proof
Case !
Case II
Similar
Conjectures
(1) T^{\prime} is the set of triangles in T that contain no pair of vertices of multiplicity $>\Delta(H) / 2$

More Terminology

Reed's
Conjecture
Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index
and Fractiont!
Chromatic Index
The Theorem
and Proof
Case I
Case II
Similar
Conjectures
(1) T^{\prime} is the set of triangles in T that contain no pair of vertices of multiplicity $>\Delta(H) / 2$
(2) S_{Δ}^{\prime} are those elements of S_{Δ} which are not part of any pair of vertices of multiplicity $>\Delta(H) / 2$

More Terminology

(1) T^{\prime} is the set of triangles in T that contain no pair of vertices of multiplicity $>\Delta(H) / 2$
(2) S_{Δ}^{\prime} are those elements of S_{Δ} which are not part of any pair of vertices of multiplicity $>\Delta(H) / 2$
(3) For a set of vertices S the union of the vertices' neighbourhoods is $N(S)$

Lemma 4

Reed's Conjecture

Naveen Sundar G.

Theorem (Lemma 4)
 For any $S \subset S_{\Delta}^{\prime}$ we have $|N(S)| \geq|S|$

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index
The Theorem and Proof
Casc I
Case II
Similar
Conjectures

Lemma 4

Reed's Conjecture

Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Propertios
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring

Casc I
Case II

Similar

Conjectures

Theorem (Lemma 4)

For any $S \subset S_{\Delta}^{\prime}$ we have $|N(S)| \geq|S|$

Proof.

It follows from Lemma 3 that S_{Δ}^{\prime} that is a stable set. This implies that S and $N(S)$ are disjoint.

Lemma 4

Reed's
Conjecture
Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case I
Case II

Similar

Conjectures

Theorem (Lemma 4)

For any $S \subset S_{\Delta}^{\prime}$ we have $|N(S)| \geq|S|$

Proof.

It follows from Lemma 3 that S_{Δ}^{\prime} that is a stable set. This implies that S and $N(S)$ are disjoint. There are $|S| \Delta(H)$ edges between S and $N(S)$.

Lemma 4

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index
and Fractional
Chromatic Index
The Theorem and Proof
Casc !
Case II

Similar

Conjectures

Theorem (Lemma 4)

For any $S \subset S_{\Delta}^{\prime}$ we have $|N(S)| \geq|S|$

Proof.

It follows from Lemma 3 that S_{Δ}^{\prime} that is a stable set. This implies that S and $N(S)$ are disjoint. There are $|S| \Delta(H)$ edges between S and $N(S)$. Upper bound on the number of edges from nodes in $N(S)$ is $N(S) \Delta(H)$

$$
N(S) \Delta(H) \geq|S| \Delta(H)
$$

$$
\therefore|N(S)| \geq|S|
$$

Lemma 5

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractionat Chromatic Index The Theorem and Proof
Casc I
Case II
Similar
Conjectures

Theorem (Lemma 5)
If an edge $a b$ in H has exactly one endpoint in a triangle bcd of T^{\prime}, then the degree of a is less than $\Delta(H)$

Lemma 5

Reed's
Conjecture
Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractionai Chromatic Index The Theorem and Proof
Case !
Case II

Similar

Conjectures

Theorem (Lemma 5)
If an edge $a b$ in H has exactly one endpoint in a triangle bcd of T^{\prime}, then the degree of a is less than $\Delta(H)$

Proof.

Lemma 5

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case ! Case II

Similar

 Conjectures
Theorem (Lemma 5)

If an edge $a b$ in H has exactly one endpoint in a triangle bcd of T^{\prime}, then the degree of a is less than $\Delta(H)$

Proof.

Any vertex in G corresponding to an edge between a and b has degree at least $\operatorname{deg}(a)-1+\Delta(H)-\mu(c, d)$

Lemma 5

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case ! Case II

Similar

 Conjectures
Theorem (Lemma 5)

If an edge $a b$ in H has exactly one endpoint in a triangle bcd of T^{\prime}, then the degree of a is less than $\Delta(H)$

Proof.

Any vertex in G corresponding to an edge between a and b has degree at least $\operatorname{deg}(a)-1+\Delta(H)-\mu(c, d)$

$$
\mu(c, d) \leq \Delta(H)+1
$$

Lemma 5

Reed's
Conjecture
Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and Observations
Fractional
vertex c-coloring
List Coloring

Theorem (Lemma 5)

If an edge $a b$ in H has exactly one endpoint in a triangle bcd of T^{\prime}, then the degree of a is less than $\Delta(H)$

Proof.

Any vertex in G corresponding to an edge between a and b has degree at least $\operatorname{deg}(a)-1+\Delta(H)-\mu(c, d)$

$$
\mu(c, d) \leq \Delta(H)+1
$$

$$
3 / 2 \Delta(H)-1 \geq \operatorname{deg}(a)-1+\Delta(H) / 2
$$

Lemma 5

Reed's
Conjecture
Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and Observations Fractional vertex c-coloring List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Case I Case II

Similar

 Conjectures
Theorem (Lemma 5)

If an edge $a b$ in H has exactly one endpoint in a triangle bcd of T^{\prime}, then the degree of a is less than $\Delta(H)$

Proof.

Any vertex in G corresponding to an edge between a and b has degree at least $\operatorname{deg}(a)-1+\Delta(H)-\mu(c, d)$

$$
\mu(c, d) \leq \Delta(H)+1
$$

$$
3 / 2 \Delta(H)-1 \geq \operatorname{deg}(a)-1+\Delta(H) / 2
$$

$$
\therefore \Delta(H) / 2 \geq \operatorname{deg}(a)
$$

Lemma 6

Reed's
Conjecture
Naveen Sundar G.

Outline

Preliminaries

Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Casc I
Case II
Similar
Conjectures

Theorem (Lemma 6)
 If an edge $a b$ in H has exactly one endpoint in a triangle bcd of T^{\prime} then $\mu(a, b) \leq \Delta(H) / 2$

Lemma 6

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Casc 1
Case II

Similar

Conjectures

Theorem (Lemma 6)
 If an edge $a b$ in H has exactly one endpoint in a triangle bcd of T^{\prime} then $\mu(a, b) \leq \Delta(H) / 2$

Proof.

Lemma 6

Reed's Conjecture

Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and Observations
Fractional
vertex c-coloring
List Coloring Chromatic Inde and Fractionat Chromatic Index The Theorem and Proof
Casc 1
Case II

Similar

Conjectures

Theorem (Lemma 6)

If an edge $a b$ in H has exactly one endpoint in a triangle bcd of T^{\prime} then $\mu(a, b) \leq \Delta(H) / 2$

Proof.

The degree of any vertex in G corresponding to an edge between b and c has degree at least $\mu(a, b)+\Delta(H)-1$

Lemma 6

Reed's Conjecture

Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Propertios
Line Graphs
Definitions and Observations Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof Casc I Case II

Similar

 Conjectures
Theorem (Lemma 6)

If an edge $a b$ in H has exactly one endpoint in a triangle bcd of T^{\prime} then $\mu(a, b) \leq \Delta(H) / 2$

Proof.

The degree of any vertex in G corresponding to an edge between b and c has degree at least $\mu(a, b)+\Delta(H)-1$

$$
3 / 2 \Delta(H)-1 \geq \mu(a, b)+\Delta(H)-1
$$

Lemma 6

Theorem (Lemma 6)

If an edge $a b$ in H has exactly one endpoint in a triangle bcd of T^{\prime} then $\mu(a, b) \leq \Delta(H) / 2$

Preliminaries
Basic Results
The Conjecture
General
Propertios
Line Graphs
Definitions and Observations Fractional vertex c-coloring:
List Coloring Chromatic Inde and Fractional Chromatic Index The Theorem and Proof
Case !
Case II

Similar

Conjectures

Proof.

The degree of any vertex in G corresponding to an edge between b and c has degree at least $\mu(a, b)+\Delta(H)-1$

$$
3 / 2 \Delta(H)-1 \geq \mu(a, b)+\Delta(H)-1
$$

$$
\therefore \mu(a, b) \leq \Delta(H) / 2
$$

Lemma 7

Reed's
Conjecture
Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case I
Case II
Similar
Conjectures

Theorem (Lemma 7)
 For any vertex v with neighbors v and w, $\operatorname{deg}(u)+\mu(v w)-1 \leq 3 / 2 \Delta(H)-1$

Lemma 7

Reed's Conjecture

Naveen Sundar G.

Outline

Theorem (Lemma 7)

For any vertex v with neighbors v and w, $\operatorname{deg}(u)+\mu(v w)-1 \leq 3 / 2 \Delta(H)-1$

Proof.

Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Casc I
Case II

Similar

Conjectures

Lemma 7

Reed's Conjecture

Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Propertics
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractionai Chromatic Index The Theorem and Proof
Case 1
Case II

Similar

Conjectures

Theorem (Lemma 7)

For any vertex v with neighbors v and w, $\operatorname{deg}(u)+\mu(v w)-1 \leq 3 / 2 \Delta(H)-1$

Proof.

An edge between u and v is incident to at least $\operatorname{deg}(u)+\mu(v w)-1$ other edges

Lemma 7

Reed's Conjecture

Naveen Sundar G.

Outline

Theorem (Lemma 7)

For any vertex v with neighbors v and w, $\operatorname{deg}(u)+\mu(v w)-1 \leq 3 / 2 \Delta(H)-1$

Proof.

An edge between u and v is incident to at least $\operatorname{deg}(u)+\mu(v w)-1$ other edges

$$
(u)+\mu(v w)-1 \leq 3 / 2 \Delta(H)-1
$$

Lemma 7

Reed's Conjecture

Naveen Sundar G.

Outline

Theorem (Lemma 7)

For any vertex v with neighbors v and w, $\operatorname{deg}(u)+\mu(v w)-1 \leq 3 / 2 \Delta(H)-1$

Proof.

An edge between u and v is incident to at least $\operatorname{deg}(u)+\mu(v w)-1$ other edges

$$
\begin{aligned}
& (u)+\mu(v w)-1 \leq 3 / 2 \Delta(H)-1 \\
& \therefore \operatorname{deg}(u)+\mu(v w) \leq 3 / 2 \Delta(H)-1
\end{aligned}
$$

Hall's Theorem

Reed's
Conjecture
Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractional Chromatic Index The Theorem and Proof
Case I
Case II
Similar Conjectures

Theorem

Let G be a bipartite graph with vertex set $V=(A, B)$. There is a matching that hits every vertex in A precisely if for every $S \subset A$ we have $|N(S)| \geq|S|$

Completion of the proof

Reed's
Conjecture
Naveen Sundar G.

Outline

Preliminaries

Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring List Coloring Chromatic Index and Fractiontil Chromatic Index The Theorem and Proof
Case !
Case II
Similar
Conjectures

We need to show that our desired matching exists,

Completion of the proof

We need to show that our desired matching exists, We construct three matchings and combine them. Have to show the combination is still a matching and the combination is possible.

Construction of a matching

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractionat Chromatic Index The Theorem and Proof
Casc !
Case II
Similar
Conjectures

Step one: Construct matching M_{1}
One edge between each vertex pair with multiplicity greater than $\Delta(H) / 2$. This hits $S_{\Delta} \backslash S_{\Delta}^{\prime}$ and contains one edge of each triangle in $T \backslash T^{\prime}$

Construction of a matching

Step two: Construct matching M_{2}

Using Lemma 4 (For any $S \subset S_{\Delta}^{\prime}$ we have $|N(S)| \geq|S|$) and Hall's theorem we can construct a matching that hits S_{Δ}^{\prime}

Lemma 7 shows that this matching cannot hit M_{2} so the union on M_{1} and M_{2} hits S_{Δ} and an edge of each triangle in $T \backslash T^{\prime}$

Construction of a matching

Step two: Construct matching M_{2}

Using Lemma 4 (For any $S \subset S_{\Delta}^{\prime}$ we have $|N(S)| \geq|S|$) and Hall's theorem we can construct a matching that hits S_{Δ}^{\prime}

Lemma 7 shows that this matching cannot hit M_{2} so the union on M_{1} and M_{2} hits S_{Δ} and an edge of each triangle in $T \backslash T^{\prime}$ Every edge in the matching $M^{\prime}=M_{1} \cup M_{2}$ hits a maximum-vertex in H or has endpoints with multiplicity greater than $\Delta(H) / 2$

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries

Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index
and Fractionate
Chromatic Index
The Theorem and Proof
Case I
Case II
Similar
Conjectures

Figure: The Final Matching

 S_{Δ}^{\prime}

w
$\mu(a, b)>\Delta(H) / 2$

Construction of a matching

Using lemma 4 and We have to include edges from T^{\prime}. We can blindly add an arbitrary edge from each triangle in T^{\prime} but at least two vertices should remain uncontaminated by M^{\prime}

Step three: Construct matching M

Lemmas 3,5 and 6 show that M^{\prime} hits at most one vertex in T^{\prime}. We extend M^{\prime} to contain an edge of every triangle in T^{\prime} and obtain M

This matching M satisfies our requirements. This matching corresponds to our maximal stable set in G that has a vertex from every maximum clique.

Reed's Conjecture

Naveen Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractionat Chromatic Index The Theorem and Proof Casc !
Case II

Similar

Conjectures

Figure: The Final Matching

Naveen Sundar G. Reed's Conjecture

Similar Conjectures

Reed's
Conjecture
Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional vertex c-coloring
List Coloring Chromatic Index and Fractiont Chromatic Index The Theorem and Proof
Casc 1
Case II
Similar
Conjectures
(1) $\chi(G) \leq \frac{\omega(G)+\Delta(G)}{2}+o(\omega(G))$

Similar Conjectures

Reed's
Conjecture
Naveen
Sundar G.

Outline

Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring Chromatic Index and Fractiontal Chromatic Index The Theorem and Proof
Casc 1
Case II
Similar
Conjectures
(1) $\chi(G) \leq \frac{\omega(G)+\Delta(G)}{2}+o(\omega(G))$
(2) $\chi(G) \leq \frac{\omega(G)+\Delta(G)}{2}+o(\Delta(G))$

Similar Conjectures

Reed's
Conjecture
Naveen
Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index
and Fractiontal
Chromatic Index
The Theorem
and Proof
Case I
Case II
Similar
Conjectures
(1) $\chi(G) \leq \frac{\omega(G)+\Delta(G)}{2}+o(\omega(G))$
(2) $\chi(G) \leq \frac{\omega(G)+\Delta(G)}{2}+o(\Delta(G))$
(3) with $\Delta(G) \geq 3 \chi(G) \leq \frac{2(\Delta(G)+1)+\omega(G)}{3}$

Similar Conjectures

Reed's
Conjecture
Naveen Sundar G.

Outline
Preliminaries
Basic Results
The Conjecture
General
Properties
Line Graphs
Definitions and
Observations
Fractional
vertex c-coloring
List Coloring
Chromatic Index
and Fractionaí
Chromatic Index
The Theorem
and Proof
Case !
Case II
Similar
Conjectures
(1) $\chi(G) \leq \frac{\omega(G)+\Delta(G)}{2}+o(\omega(G))$
(2) $\chi(G) \leq \frac{\omega(G)+\Delta(G)}{2}+o(\Delta(G))$
(3) with $\Delta(G) \geq 3 \chi(G) \leq \frac{2(\Delta(G)+1)+\omega(G)}{3}$
(9) There is some constant α such that for any graph $\chi(G) \leq \alpha \omega(G)+\frac{1}{2}(\Delta(G)+1)$

