
REFACTORING
Allowing design to emerge!

Good sources…

Overview
• Introduction
• What is a “Code Smell”?
• Examples…
• What do you do in response to a code smell? Refactor!
• What is a “refactoring”?

• When to do it… when not to do it…
• Good refactoring process
• Examples…
• A little practice
• Resources & Summary

Change is constant

…becomes:

fre
qu

en
t

ren
ter

 po
int

s
ch
ild
ren

's

mo
vie
s

fre
qu

en
t

ren
ter

 po
int

s

frequent renter
new release bonus

fre
qu

en
t

ren
ter

 po
int

s

new reporting

on rentals

and then becomes…

You might then add another method
“printLongFormStatement” that
reuses a lot of this code. And since
you are in a hurry, you might just
copy this method, and augment it.

don’t pretend you haven’t done this

So the code changes…
• It’s possible you (who are a perfect programmer) never

introduces duplication into your code.
• But:

• Others alter your code
• You alter other people’s code
• This is good: collaboration = better product!

And code issues emerge
And are expected in agile methodologies!

Code issues like:
• duplication
• rigidity
• lack of reusability
• mess Gradually, code begins to rot in

places.
!
Those places are said to “smell”
!
We, as designers/software
developers, have to chase down
these code smells and fix them.

What is a “Code Smell”?
• A recognizable indicator that

something may be wrong in
the code

• Can occur in the product
code as well as in the test
code!

The smells/refactorings in the following slides are from Martin Fowler, Refactoring,
“Improving the design of existing code”.  

For test code smells: van Deursen et al. “Refactoring Test Code”.

Some common issues
• Magic Numbers
• Duplicated Code
• Long Method
• Complicated Conditionals
• Switch Statements/Type Conditionals
• Large class (doing the work of two)
• Divergent Change
• Shotgun Surgery
• Comments

} within-class
smells

} between-class smells

http://en.wikipedia.org/wiki/Code_smell

Let’s look at a few…

Magic Numbers

 double potentialEnergy(double mass, double height) {!
 return mass * 9.81 * height;!
 }

Any use of an actual
number right in the code

Duplicate Code

These two loops are the same!

Almost-duplication

Still counts, even though
it’s not exact duplication

Method too long…
!
Deeply nested control structures: e.g. for-loops 3 levels deep or even just 2 levels deep with
nested if-statements that have complex conditions.
!
Too many state-defining parameters: By state-defining parameter, I mean a function parameter
that guarantees a particular execution path through the function. Get too many of these type of
parameters and you have a combinatorial explosion of execution paths (this usually happens in
tandem with #1).
!
Logic that is duplicated in other methods: poor code re-use is a huge contributor to monolithic
procedural code. A lot of such logic duplication can be very subtle, but once re-factored, the end
result can be a far more elegant design.
!
Excessive inter-class coupling: this lack of proper encapsulation results in functions being
concerned with intimate characteristics of other classes, hence lengthening them.
!
Unnecessary overhead: Comments that point out the obvious, deeply nested classes, superfluous
getters and setters for private nested class variables, and unusually long function/variable names
can all create syntactic noise within related functions that will ultimately increase their length.
!
Your massive developer-grade display isn't big enough to display it: Actually, displays of today
are big enough that a function that is anywhere close to its height is probably way too long. But, if it
is larger, this is a smoking gun that something is wrong.
!
You can't immediately determine the function's purpose: Furthermore, once you actually do
determine its purpose, if you can't summarize this purpose in a single sentence or happen to have a
tremendous headache, this should be a clue.
!

some red flags…

http://stackoverflow.com/a/475762

Complicated Conditionals

Switch Statements
a conditional that chooses different behaviour depending on the
type of an object (or a weird string representation of that type)

One class is actually two

Data Clump

public static void copyRange(int start, int end)
{

//do something
}

always passed around together

Sometimes combined with “Long
Parameter List” where bunches

of data clumps are passed into a
method with just too many

parameters
A good test is to consider

deleting one of the data values:
if you did this, would the others

make any sense?
If not, you have a data clump!

http://sourcemaking.com/refactoring/data-clumps

Divergent Changes

Divergent change occurs when one class is
commonly changed in different ways for
different reasons. …
Any change to handle a variation should
change a single class, and all the typing in
the new class should express the variation.

When you have to alter a class for
more than one kind of change

If you look at a class and say, "Well, I will have to change these three methods every
time I get a new database; I have to change these four methods every time there is
a new financial instrument," you likely have a situation in which two objects are
better than one. That way each object is changed only as a result of one kind of
change. Of course, you often discover this only after you've added a few databases
or financial instruments.

manageLoans()

manageInvestments()

printReports()

InvestmentAccount

will need to change
whenever the loans
implementation is
changed

will need to change
whenever investment
implementation is
changed

will need to change
every time the printing
implementation is
changed

3 reasons for change!

Shotgun Surgeries
You whiff this when every time you make a
kind of change, you have to make a lot of
little changes to a lot of different classes.
When the changes are all over the place,
they are hard to find, and it's easy to miss
an important change.

http://sourcemaking.com/refactoring/shotgun-surgery

A change that alters many classes

this is the inverse of
divergent change.

One change in lots of
places, versus one
place with lots of

changes

calculateLoans()

printBasicReports()

BasicAccount

manageLoans()

manageInvestments()

printReports()

InvestmentAccount
changes in 2 places
for loan
implementation
changes

changes in 2 places
for report printing
changes

Needing comments to explain the code

A good time to use a comment is when you don't know
what to do. In addition to describing what is going on,
comments can indicate areas in which you aren't sure. A
comment is a good place to say why you did something.
This kind of information helps future modifiers,
especially forgetful ones.

… comments often are used as a deodorant. It's
surprising how often you look at thickly commented
code and notice that the comments are there
because the code is bad.

this isn’t the same as the REQUIRES/MODIFIES/EFFECTS comments we used in 210!

convert to cents
a = x * 100
!
avg cents per customer
avg = a / n
!
add to list
avgs < avg
t += 1

double getExpenseLimit() {
 // should have either expense limit or a primary project
 return (_expenseLimit != NULL_EXPENSE) ?
 _expenseLimit:
 _primaryProject.getMemberExpenseLimit();
 }

Okay…
• So now we know some symptoms of bad code.
• What do you do in response?

REFACTOR!
• Long-term investment in the quality of

the code and its structure
• No refactoring may save costs / time in

the short term but incurs a huge
penalty in the long run

What is “Refactoring”
“[Refactoring is] the process of changing a software system in such a way
that it does not alter the external behavior of the code yet improves its
internal structure” – Martin Fowler
!

• Changes made to a system that:
• Do not change observable behavior

• (MEANING PRESERVING)
• Remove duplication or needless complexity
• Enhance software quality
• Make the code easier and simpler to understand
• Make the code more flexible
• Make the code easier to change

• Requires Tests!

Refactoring
• At its simplest, it’s just a small, behaviour-preserving,

source-to-source transformation.
!

• Example:

Definition of broken code:
Every module has three functions:
• To execute according to its purpose
• To afford change
• To communicate to its readers
• If it does not do one or more of these, it is broken.

q = ((p<=1) ? (p ? 0 : 1) : (p==-4) ? 2 : (p
+1));

!
while (*a++ = *b--) ;
!
char b[2][10000],*s,*t=b,*d,*e=b+1,**p;main(int

c,char**v){int n=atoi(v[1]); strcpy(b,v[2]);
while(n--){for(s=t,d=e;*s; s++) {for(p=v
+3;*p;p++) if(**p==*s){strcpy(d,*p+2);d+=
strlen(d);goto x;}*d++=*s;x:} s=t;t=e;e=s; *d
++=0;}puts(t);}

When to refactor?
• NOT: 2 weeks every 6 months
• Do it as you develop - Opportunistic Refactoring
• Boy Scout principle: leave it better than you found it.
• If you recognize a warning sign (a bad smell)

• When you add a function
• Before, to start clean and/or
• After, to clean-up

• When you fix a bug
• When you code review
• You can use The Rule of Three

1. The first time, just do it!
2. Need it somewhere

else? Cut and paste it!
3. The third time, refactor!

When not to refactor?
• When the tests are failing
• When you should just rewrite the code
• When you have impending deadlines

How to refactor?
1. Make sure all your tests pass
2. Identify the code smell
3. Determine how to refactor this code
4. Apply the refactoring
5. Run tests to make sure you didn’t break anything
6. Repeat until the smell is gone

Ensure all
tests pass

Ensure all
tests still pass

Refactor

Determine
refactoring

Find code
that smells

Refactorings fix Code Smells
• Add Parameter
• Change Bidirectional Association to Unidirectional
• Change Reference to Value
• Change Unidirectional Association to Bidirectional
• Change Value to Reference
• Collapse Hierarchy
• Consolidate Conditional Expression
• Consolidate Duplicate Conditional Fragments
• Convert Procedural Design to Objects
• Decompose Conditional
• Duplicate Observed Data

• Encapsulate Collection
• Encapsulate Downcast
• Encapsulate Field
• Extract Class
• Extract Hierarchy
• Extract Interface
• Extract Method
• Extract Subclass
• Extract Superclass
• Form Template Method
• Hide Delegate
• Hide Method
• Inline Class
• Inline Method
• Rename Constant

Each of these is one predictably
meaning preserving code

transformation.

Online: http://www.refactoring.com/catalog

smell: magic numbers
refactoring: replace it with a symbolic constant

Smell: Repeated Lines of Code
Refactoring: Extract Method

Not all duplicate code
gets fixed by extracting a method.
You need to carefully assess what kind
of duplication you have.

Duplicate Code…

Smell: same method in two classes
Refactoring: Pull up method

http://www.refactoring.com/catalog/pullUpMethod.html

Duplicate Code…

Smell: almost duplicated code
Refactoring: move to template method

• Our early knotty code not quite
duplication problem can be solved using
refactoring.

• We can take that code, and transform it
into a template method:

Smell: Long method
Refactoring(s): Lots of options!

Extract Method
Replace Temp with Query
Replace Method with Method Object
Decompose Conditional
Consolidate Conditional Expression

Extract Method:
• Pull code out into a separate method when the

original method is long or complex
• Name the new method so as to make the original

method clearer
• Each method should have just one task

smell: Complicated conditional
Refactoring: Decompose conditional

extract methods from the
condition, the “then” and
the “else” parts.

smell: switch statement/typed conditional
refactor: replace conditional with polymorphism

Smell: one class doing the work of two
Refactoring: extract class

Smell: data clump (parameters that always go together)
Refactoring: introduce parameter object

Introduce parameter
object - If you have a
group of parameters that
naturally go together
then you can replace
them with an object.

http://martinfowler.com/bliki/DataClump.html

public static void copyRange(Range r){
//do something

}

int getStart()
int getEnd()

Range

public static void copyRange(int start, int end)
{

//do something
}

always passed around together

smell: divergent changes
refactoring: extract class

identify everything that changes for
a particular cause and use Extract

Class to put them all together

https://www.youtube.com/watch?v=f2-6W8wxIj0

InvestmentAccount

will need to change
whenever the loans
implementation is
changed

will need to change
whenever investment
implementation is
changed

will need to change
every time the printing
implementation is
changed

manageLoans()

LoanManager

manageInvestments()

InvestmentManager

printReports()

ReportPrinter

manageLoans()

manageInvestments()

printReports()

InvestmentAccount

ideally, there is a one-to-one link
between common changes and classes.

smell: shotgun surgery
refactoring: move method; move field

calculateLoans()

printBasicReports()

BasicAccount

manageLoans()

manageInvestments()

printReports()

InvestmentAccount

calculateLoans()

manageLoans()

LoanCalculator

printBasicReports()

printReports()

ReportPrinter

BasicAccount

manageInvestments()

InvestmentAccount

In this case you want to
use Move Method and

Move Field to put all the
changes into a single

class. If no current class
looks like a good

candidate, create one.

ideally, there is a one-to-one link
between common changes and classes.

smell: needing comments to explain the code
refactoring: extract functionality/introduce assertion

When you feel the need to
write a comment, first try to

refactor the code so that any
comment becomes

superfluous

convert to cents
a = x * 100 !
avg cents per customer
avg = a / n !
add to list
avgs < avg
t += 1

total_cents = total * 100
average_per_customer = total_cents / customer_count
!
track_average(average_per_customer)

http://programmers.stackexchange.com/questions/1/comments-are-a-code-smell

 double getExpenseLimit() {
 Assert.isTrue (_expenseLimit != NULL_EXPENSE || _primaryProject != null);
 return (_expenseLimit != NULL_EXPENSE) ?
 _expenseLimit:
 _primaryProject.getMemberExpenseLimit();
 }

double getExpenseLimit() {
 // should have either expense limit or a primary project
 return (_expenseLimit != NULL_EXPENSE) ?
 _expenseLimit:
 _primaryProject.getMemberExpenseLimit();
 }

Now … with all that under our belts…

What smells?
class Account {!
 float principal, rate;!
 int daysActive, accountType;!
 !
 public static final int STANDARD = 0;!
 public static final int BUDGET = 1;!
 public static final int PREMIUM = 2;!
 public static final int PREMIUM_PLUS = 3;!
}!
!
class Customer {!
 public float calculateFee(Account accounts[]) {!
 float totalFee = 0;!
 Account account;!
 for (int i=0; i<accounts length; i++) !
 if (account.accountType == Account.PREMIUM ||!
 account.accountType == Account.PREMIUM_PLUS) {!
 totalFee += .0125 * (account.principal!
 * Math.exp(account.rate * (account.daysActive/365.25))!
 - account.principal);!
 } !
 return totalFee;!
 }!
}

What smells?
class Account {!
 float principal, rate;!
 int daysActive, accountType;!
 !
 public static final int STANDARD = 0;!
 public static final int BUDGET = 1;!
 public static final int PREMIUM = 2;!
 public static final int PREMIUM_PLUS = 3;!
}!
!
class Customer {!
 public float calculateFee(Account accounts[]) {!
 float totalFee = 0;!
 Account account;!
 for (int i=0; i<accounts length; i++) !
 if (account.accountType == Account.PREMIUM ||!
 account.accountType == Account.PREMIUM_PLUS) {!
 totalFee += .0125 * (account.principal!
 * Math.exp(account.rate * (account.daysActive/365.25))!
 - account.principal);!
 } !
 return totalFee;!
 }!
}

Complicated

Conditional

unreadable
functionality

Magic

Number

Which refactorings would work?
class Account {!
 float principal, rate;!
 int daysActive, accountType;!
 !
 public static final int STANDARD = 0;!
 public static final int BUDGET = 1;!
 public static final int PREMIUM = 2;!
 public static final int PREMIUM_PLUS = 3;!
}!
!
class Customer {!
 public float calculateFee(Account accounts[]) {!
 float totalFee = 0;!
 Account account;!
 for (int i=0; i<accounts length; i++) !
 if (account.accountType == Account.PREMIUM ||!
 account.accountType == Account.PREMIUM_PLUS) {!
 totalFee += .0125 * (account.principal!
 * Math.exp(account.rate * (account.daysActive/365.25))!
 - account.principal);!
 } !
 return totalFee;!
 }!
}

Complicated

Conditional

unreadable
functionality

Magic

Number

Replace with
Symbolic
Constant

Decompose
Conditional

Extract
Functionality

The end result…
Magic

Number

Replace with
Symbolic
Constant

Complicated

Conditional

unreadable
functionality

Decompose
Conditional

Extract
Functionality

class Account {
 float principal, rate;
 int daysActive, accountType;

 public static final int STANDARD = 0;
 public static final int BUDGET = 1;
 public static final int PREMIUM = 2;
 public static final int PREMIUM_PLUS = 3;
}

class Customer {
 public float calculateFee(Account accounts[]) {
 float totalFee = 0;
 Account account;
 for (int i=0; i<accounts length; i++)
 if (account.accountType == Account.PREMIUM ||
 account.accountType == Account.PREMIUM_PLUS) {
 totalFee += .0125 * (account.principal
 * Math.exp(account.rate * (account.daysActive/365.25))
 - account.principal);
 }
 return totalFee;
 }
}private float interestEarned() {!

 float years = daysActive / (float) 365.25;!
 float compoundInterest = principal * (float) Math.exp(rate * years);!
 return (compoundInterest – principal);!
}!
!
private float isPremium() {!
 if (accountType == Account.PREMIUM || accountType == Account.PREMIUM_PLUS)!
 return true;!
 else return false;!
}!
!
public float calculateFee(Account accounts[]) {!
 float totalFee = 0;!
 Account account;!
 for (int i=0; i<accounts.length; i++) {!
 account = accounts[i];!
 if (account isPremium()) !
 totalFee += BROKER_FEE_PERCENT * account.interestEarned();!
 }!
 return totalFee;;!
}!
!
static final double BROKER_FEE_PERCENT = 0.0125;

Replace with
Symbolic
Constant

Decompose
Conditional

Extract
Functionality

Resources
• “The” Book, by Martin Fowler

• Refactoring: Improving the design of existing code
!

• Smells to refactorings
• http://wiki.java.net/bin/view/People/SmellsToRefactorings
!

• List of refactorings
• http://www.refactoring.com/catalog
!

• A refactoring “cheat sheet”
• http://industriallogic.com/papers/smellstorefactorings.pdf
!

• Use IDE support! Manual refactoring is hard and potentially error prone.
Eclipse/IntelliJ both provide automatic refactoring support)

http://wiki.java.net/bin/view/People/SmellsToRefactorings
http://www.refactoring.com/catalog
http://industriallogic.com/papers/smellstorefactorings.pdf

Remember:

• A potential for refactoring is not a smell
• Just because you see a potential for refactoring doesn’t

mean you should apply it. Only refactor if the code suffers
from a code smell.

• Some refactorings are opposites of one another (you could
get caught in a loop of refactorings if you do them just for
the sake of it! Inline versus Extract method, for instance.)
!

• First smell, then refactor

Summary
• Code decays for many reasons

• Collaboration, rework, external conditions, agility
• Refactoring improves existing code

• Does not change existing behaviour
• Refactoring improves maintainability and hence productivity
• Refactor continuously
• Refactoring is an iterative process

• Tests pass ! Find smell ! Refactor ! Repeat
• Many smells, even more refactorings!

