

Federal Agency for Cartography and Geodesy

Reference frames and geodetic products

Daniela Thaller

Introductory and Refresher Course on Satellite and Lunar Laser Ranging Stuttgart, Germany, October 20, 2019

Overview

• The 3 pillars of geodesy and the reference frames:

- Geometry Orientation Gravity field
- Contributions by SLR
- Parameters for actual ITRF generation

SLR-based products generated within the ILRS:

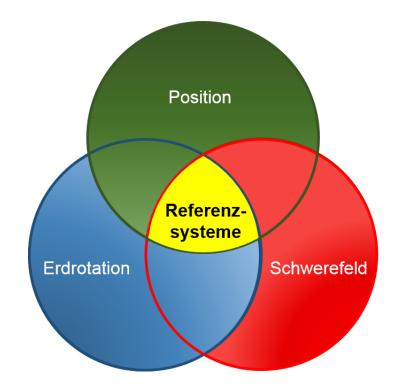
- Organizational aspects
- Characteristics of different products
- Examples

The 3 pillars of geodesy and the reference frames:

- Geometry Orientation Gravity field
- Contributions by SLR
- Parameters for actual ITRF generation
- SLR-based products generated within the ILRS:
 - Organizational aspects
 - Characteristics of different products
 - Examples

The 3 Pillars of Geodesy

Earth geometry and kinematics:

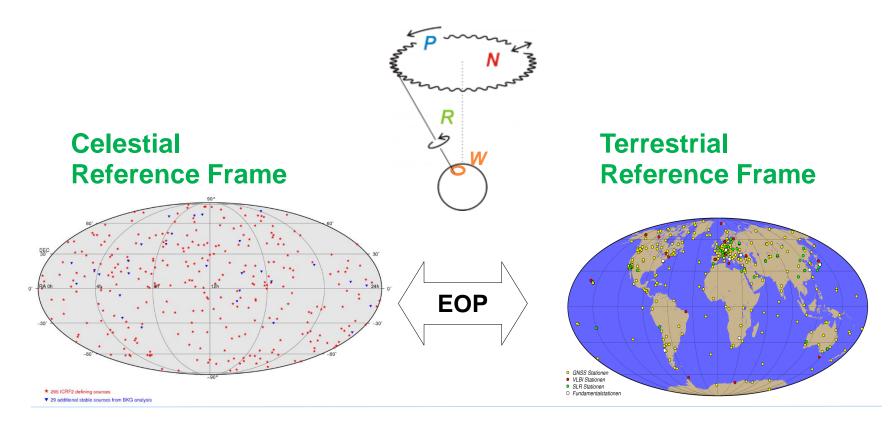

Shape of the Earth and its variation

Earth orientation and rotation:

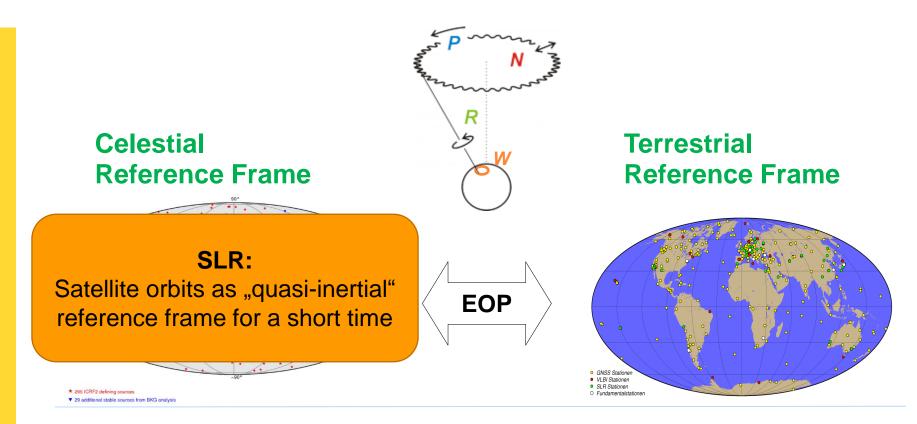
Earth rotation and its variation

Earth gravitational field:

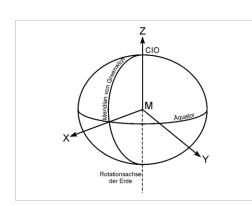
Static (mean) and variable gravity field



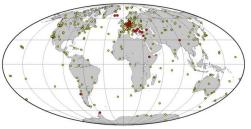
Requirement for integrated estimation: highly accurate, homogeneous, long-term stable reference frame


The 3 Pillars of Geodesy: Relationships

Earth Orientation


The 3 Pillars of Geodesy: Relationships


Earth Orientation



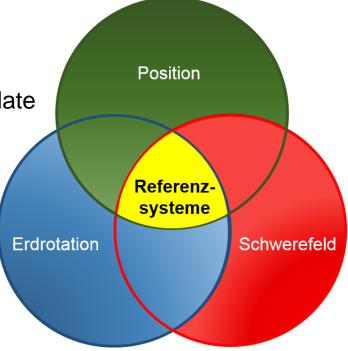
Federal Agency for Cartography and Geodesy

Reference System and Reference Frame

ITRF2008 STATION POSITIONS AT EPOCH 2005.0 AND VELOCITIES IGS STATIONS

DOMES NB.	SITE NO	AME	TECH.	ID.	X/Vx	Y/Vy	Z/Vz		Sigmas		SOLI	DATA	START	DATA	END
							m/m/y								
					4202777.371	171367.999	4778660.203								
100015006			GNSS	OPMI											
100015006					0125	0.0178	0.0107				120				
10002M006		(OCA)	GNSS	GRAS	4581690.901	556114.831	4389360.793				1	00:000	:00000	03:113	:00000
10002M006					0133	0.0188	0.0120								
10002M006	Grasse	(OCA)	GNSS	GRAS	4581690.900	556114.837	4389360.793				2	03:113	:00000	04:295	:43200
10002M006					0133	0.0188	0.0120								
10002M006	Grasse	(OCA)	GNSS	GRAS	4581690.900	556114.836	4389360.797				- 3	04:295	:43200	00:000	:00000
10002M006					0133	0.0188	0.0120								
10003M004	0003M004 Toulouse		GN55	TOUL	4627846.029	119629.333	4372999.818	0.001	0.001	0.001					
10003M004					0114	0.0193	0.0121	.0001	.0000	.0001					
10003M009	Toulous	se	GNSS	TLSE	4627851.831	119640.017	4372993.553	0.001	0.001	0.001	1	00:000	:00000	03:335	:00000
10003M009					0114	0.0193	0.0121	.0001	.0000	.0001					
10003M009	Toulous	90	GNSS	TLSE	4627851.828	119640.020	4372993.552	0.001	0.001	0.001	2	03:335	:00000	00:000	:00000
10003M009					0114	0.0193	0.0121	.0001	.0000	.0001					
10004M004	Brest		GNSS	BRST	4231162.578	-332746.680	4745130,926	0.001	0.001	0.001	1	00:000	:00000	06:207	:00000
10004M004					0115	0.0172	0.0115	.0001	.0000	.0001					
10004M004	Brest		GN55	BRST	4231162.578	-332746.675	4745130,916	0.001	0.001	0.001	2	06:207	:00000	08:163	: 36000
10004M004					0115	0.0172	0.0115	.0001	.0000	.0001					
10004M004	Breat		GN55	BRST	4231162.576	~332746.678	4745130.921	0.001	0.001	0.001	3	08:163	:36000	00:000	:00000
10004M004					0115	0.0172	0.0115								
10020M001	Chize		GNSS	CHTZ	4427603.244		4575621,805								
10020M001	CHARGE STREET		01100		0112	0.0188	0.0118								
10023M001	To Deal		(1100	TROC	4424632.565		4577544.083								
10023M001	and RUU		onaa	and the	0116	0.0184	0.0111								
100238001	Manager			MADE		499046 916	4950142 729							09.097	

Federal Agency for Cartography and Geodesy


The 3 Pillars of Geodesy: Contributions by SLR

Contributions by SLR:

- (1) Geometry:
 - Coordinates of SLR stations
 - Position variations due to, e.g., plate tectonics, loading deformation
 - Scale

(2) Earth Rotation:

- Polar motion
- Length of Day (LOD)
- (3) Gravity Field:
 - Geocenter
 - Low-degree harmonics of Earth's gravity field: depending on satellites

Parameter Space and Actual ITRF Computation

	GNSS	VLBI	SLR
Station coordinates + velocities	XG	XV	XS
Satellite orbits	Х		Х
Quasar coordinates		Х	
Polar motion + rates	Х	Х	Х
Universal Time (dUT)		Х	
Length of Day (LOD)	Х	Х	Х
Nutation (+ nutation rates)	(x)	Х	(x)
Geocenter	(X)		Х
Earth's gravity field	(x)		Х
Troposphere	Х	Х	
Ionosphere	Х	(x)	
Technique-specific parameters	xG	xV	xS

Parameter Space and Actual ITRF Computation: \Rightarrow only few parameter types are included

	GNSS	VLBI	SLR
Station coordinates + velocities	XG	XV	XS
Satellite orbits	-		-
Quasar coordinates		-	
Polar motion + rates	X	Х	Х
Universal Time (dUT)		Х	
Length of Day (LOD)	Х	Х	Х
Nutation (+ nutation rates)	-	Х	-
Geocenter	(X)		X
Earth's gravity field	(X)		X
Troposphere	X	X	
Ionosphere	X	(X)	
	xG	xV	xS

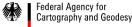
Parameter Space and Actual ITRF Computation

No Direct combination possible;

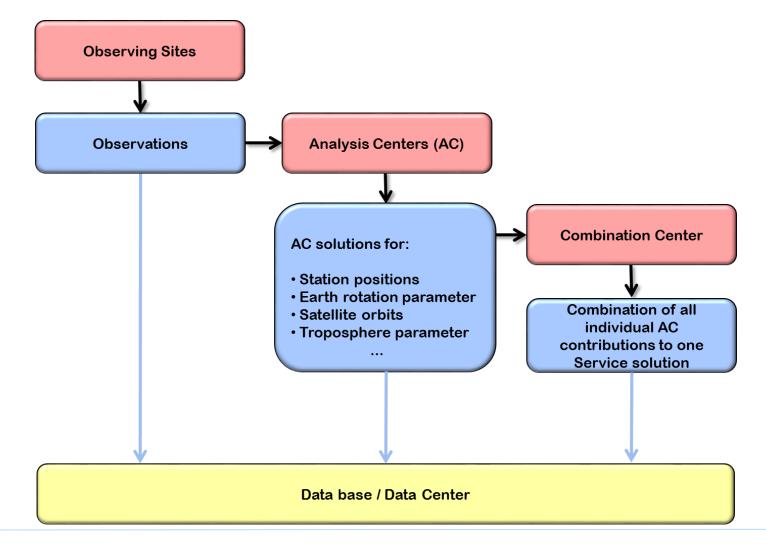
Co-location sites and Local Ties are needed

Station coordinates + velocities	XG	XV	XS
Satellite orbits	-		-
Quasar coordinates		-	
Polar motion + rates	Х	Х	Х
Universal Time (dUT)		Х	
Length of Day (LOD)	Х	Х	Х
Nutation (+ nutation rates)	-	Х	-
Geocenter	Direct com	bination is	s nossible
Earth's gravity field	(X)		
Troposphere	X	Х	
Ionosphere	X	(X)	
	xG	xV	xS

- The 3 pillars of geodesy and the reference frames:
 - Geometry Orientation Gravity field
 - Contributions by SLR
 - Parameters for actual ITRF generation


SLR-based products generated within the ILRS:

- Organizational aspects
- Characteristics of different products
- Examples

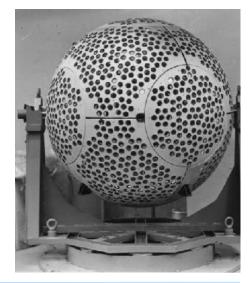

The ILRS – International Laser Ranging Service

- Under the umbrella of IAG (International Association of Geodesy)
- Integrated into the IERS as one of the Technique Centers
- Organizing product generation, data/product holding, exchange between individual groups, support new developments, exchange of knowledge

The ILRS – International Laser Ranging Service

ILRS Analysis and Combination Centers

ILRS Analysis Centers: Software Packages used


 A broad variety of analysis software packages used among the Analysis Centers helps to reduce the "Analysis Noise"

ILRS Analysis Centre	Software Package				
ASI, Italy	Geodyn				
BKG, Germany	Bernese GNSS Software, SLR development version				
DGFI-TUM, Germany	DOGS-OC				
ESA	NAPEOS				
GFZ, Germany	EPOS				
GRGS, France	GINS / Dynamo				
JCET, USA	Geodyn				
NSGF, UK	SATAN				

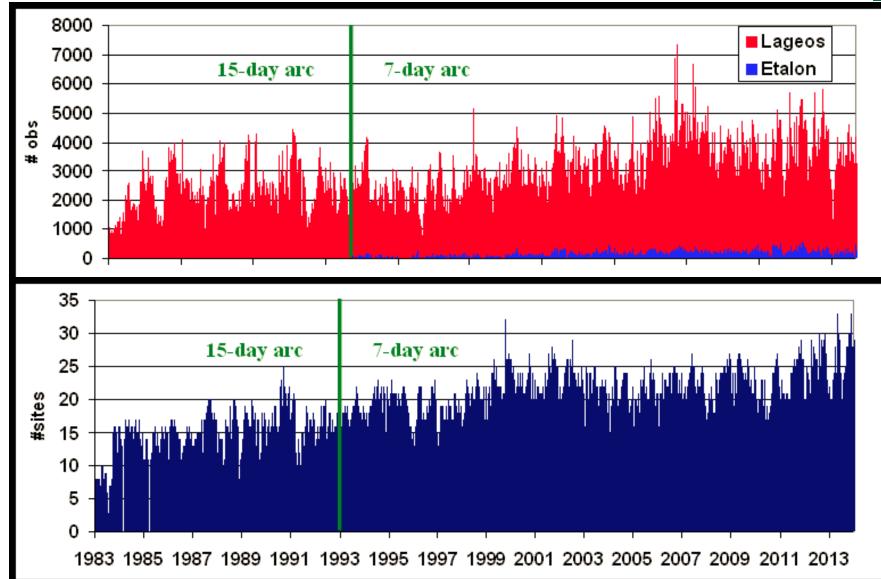
SLR-based Products by the ILRS

- 7-day solutions = 7-day orbital arcs
- Satellites used for operational products:
 - LAGEOS, LAGEOS-2:
 - Orbital height \approx 5.800 km
 - ETALON-1/-2:
 - Orbital height \approx 19.000 km
- Parameters estimated:
 - Satellite orbits
 - Station coordinates
 - Earth rotation parameters: x-/y-pole, LOD
 - Range biases for selected stations

SLR-based Products by the ILRS

(1) Operational products

- DAILY products (= "Rapid" product) are due 2 days after last observation day:
 - e.g. for the DAILY orbital arc Tuesday-Monday, the product needs to be delivered on Wednesday morning (UT)
- WEEKLY products (orbital arc Sunday Saturday) are due on Wednesday


(2) Special study products:

- Estimating range biases to investigate potential sytematic errors
- Inclusion of the LARES satellite
- Estimation of low-degree gravity field coefficients
- Impact of non-tidal loading

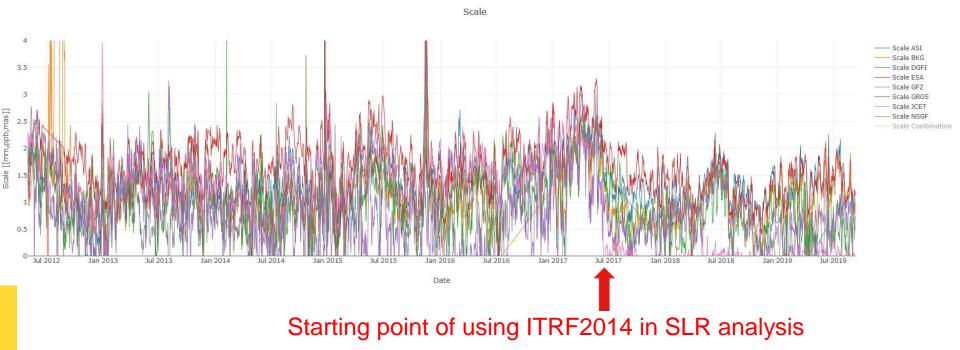
(3) Re-analysis for ITRF generation (e.g. input for ITRF2020)

ILRS Analysis Statistics per Orbital Arc

(from Luceri et al., 2014)

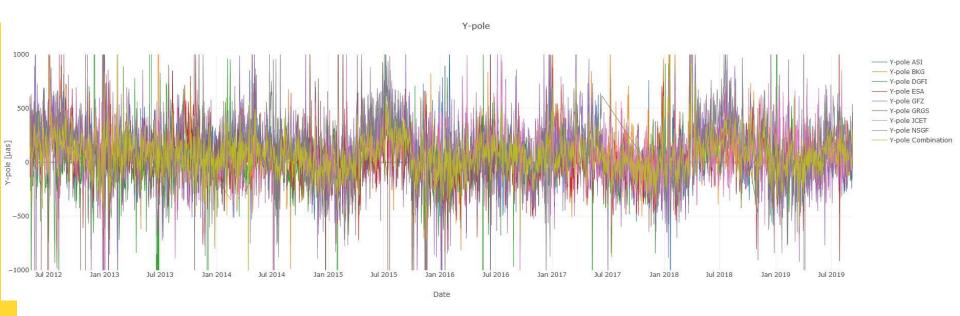
Geodetic Products by the ILRS

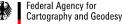
- Station coordinates:
 - DAILY
 - WEEKLY
 - via ITRF
- Station velocities:
 - via ITRF
- ERPs:
 - DAILY
 - WEEKLY
- Satellite orbits:
 - WEEKLY


- Position

 Referenzsysteme

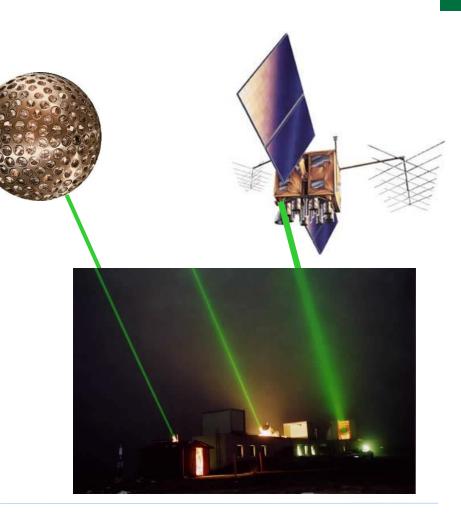
 Erdrotation
- Geocenter / Gravity field: no official ILRS product yet


ILRS DAILY Solution Series: Scale


Scale w.r.t. actually used ITRF (using "Core Sites"): 0.3 – 2.0 ppb

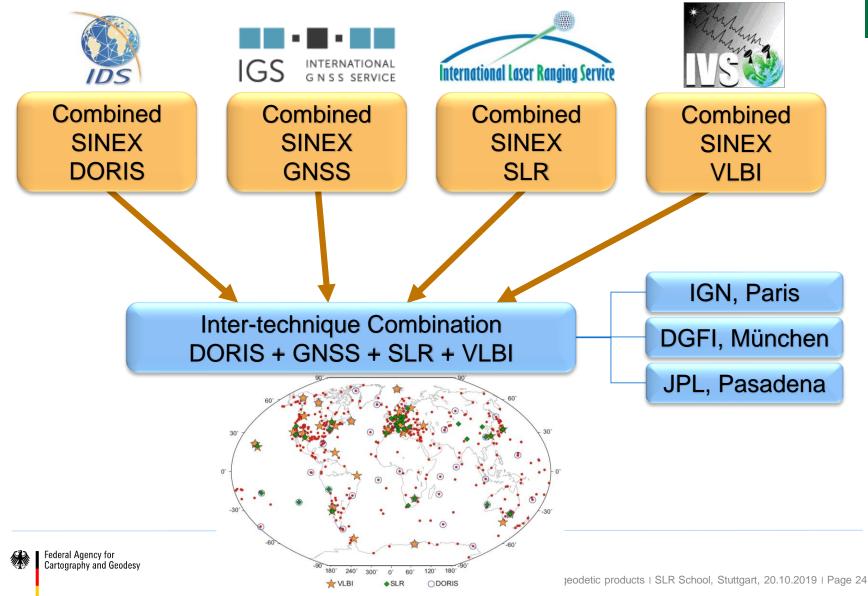
ILRS DAILY Solution Series: Polar motion

Polar motion w.r.t. IERS Bulletin A

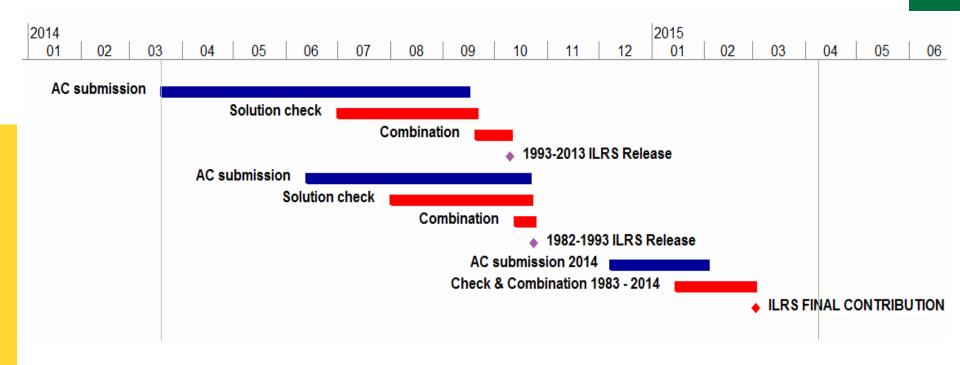


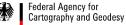
Thank you for your kind attention!

Contact:


Federal Agency for Cartography and Geodesy Section G1 Richard-Strauss-Allee 11 60598 Frankfurt, Germany

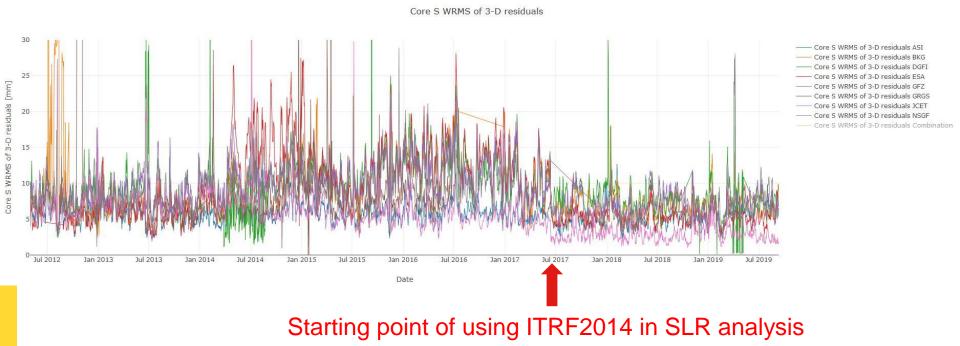
contact person: Dr. Daniela Thaller daniela.thaller@bkg.bund.de www.bkg.bund.de Tel. +49 (0) 69 6333-273



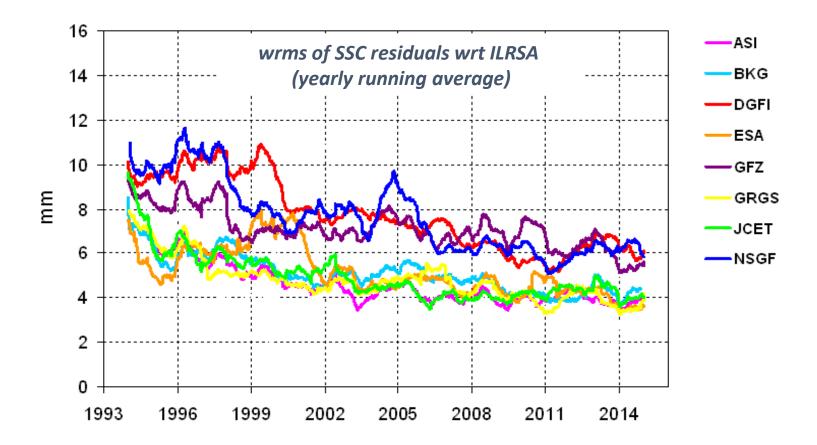


Current ITRF approach

ITRF2014 generation: ILRS Time Line


ILRS Analysis Centers: Organization

- The organization and exchange between the ILRS Analysis and Combination Centers is done within the "ILRS Analysis Standing Committee" (formerly "Analysis Working Group")
 - Define the guidelines for product generation
 - Define next steps forward by organizing Pilot Projects
- Led by the 2 Analysis Coordinators:
 - Erricos Pavlis (JCET, US)
 - Cinzia Luceri (ASI, Italy)
- Meeting usually twice per year (EGU in April; ILRS Workshop in Oct/Nov)
- Participation is open for any interested people



SLR data analysis: DAILY solution series

Global 3-D WRMS w.r.t. actually used ITRF (using "Core Sites"): 5 - 10 mm

Consistency between AC contributions

