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Clast shape and textural associations in peperite as a guide to
hydromagmatic interactions: Late Permian basaltic and basaltic
andesite examples from Kiama, Australia

Introduction

Interaction between magma or lava and wet unconsolidated sediment is common in
environments where sedimentation accompanies volcanism, especially in subaqueous
settings where large volumes of magma are emplaced sub-seafloor as syn-sedimentary
intrusions. A variety of processes and products attributable to magma-wet sediment
interaction have been recorded, including intrusive pillows (Snyder and Fraser 1963a,b;
Kano 1991), effusive magma-sediment slurries (Lawson 1972, Leat and Thompson
1988, Sanders and Johnston 1989), and peperite (Fisher 1960, Schmincke 1967,
Williams and McBirney 1979, Brooks et al. 1982, Kokelaar 1982, Busby-Spera and
White 1987, Brooks 1995). Peperite is a genetic term for a rock formed by the mixing of
magma or lava with wet sediment. Peperite occurs at contacts between intrusions and the
host sediment (Hanson and Schweickert 1982, Branney and Suthren 1988), along basal
contacts of lavas (Schmincke 1967) or surrounds burrowing parts of lavas. Here 1
describe peperite and related structures in basaltic and basaltic andesite lavas and syn-
sedimentary intrusions from the Late Permian Broughton Formation, Kiama, New South
Wales. Because of continuous coastal exposure at this locality it has been possible to

interpret from field observations the significance of textures and structures in peperite.

Peperite is useful for demonstrating contemporaneous volcanism and sedimentation, and
because it preserves evidence of progressive stages in hydrovolcanic interactions (non-
explosive mixing, steam explosions). Busby-Spera and White (1987) identified two
textural types of peperite: in blocky peperite, clasts derived from the magma have
polyhedral blocky shapes and commonly fit together like a jigsaw puzzle, whereas in
globular peperite, juvenile clasts are bulbous. In this study variations in clast shapes and
interrelationships are interpreted in terms of changing hydrovolcanic interactions during
magma-sediment mixing. In particular, the role of host-sediment properties In
determining peperite type is assessed and associations between peperitic, autoclastic and
coherent facies are examined.

Terminology and description of peperite

Peperite can be identified, described and interpreted on the basis of (1} igneous clast
shape; (2) fabric; and (3) location with respect to the margin of an igneous body. Clast
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shapes described in this study are present in many other examples of peperite (e.g.
Busby-Spera and White 1987, Branney and Suthren 1988, Hanson 1991, Hanson and
Wilson 1993, McPhie 1993, Rawlings 1993, Brooks 1995). Important insights into
hydromagmatism, and intrusive and mixing processes might be gained from the
investigation of the complex relationships between different clast types and textural
associations, so it is important that complexities are recorded. Peperite consisting of one
clast type is termed blocky, globular, ragged or platy peperite following on from Busby-
Spera and White (1987). Peperite containing a high proportion of clasts from more than
one textural group is here classified as mixed peperite and the clast shapes indicated (e.g.
mixed ragged-globular peperite). In peperite with a closely packed fabric (Hanson and
Wilson 1993), sediment fills joints and fractures that define pseudo-pillows (Watanabe
and Katsui 1976; Yamagishi 1987, 1991), and columns and polyhedral joint blocks
(Brooks et al., 1982) in the coherent facies. Peperite with dispersed fabric (Hanson and
Wilson 1993) is a sediment matrix-rich breccia with clasts and tongues of the igneous
component. Peperite occurs at the margins of lavas and intrusions and is present as pods,
sheets and dykes in massive coherent facies within the interior of the units.

Geological Setting

Peperite examined in coastal exposures at Kiama, New South Wales occurs in the upper
part of the Late Permian Broughton Formation. The Broughton Formation and overlying
coal-bearing Pheasants Nest Formation form part of a conformable regressive

sedimentary succession within the Permo-Triassic Sydney Basin (Cas and Bull 1993).

The Broughton Formation and the lower part of the Pheasants Nest Formation include
both sedimentary and volcanic facies associations (Raam 1969). The sedimentary facies
association is dominated by thin to thickly bedded immature sandstone, pebbie
conglomerate and mudstone of volcanic provenance, and occurs as four intervening units
between volcanic facies of the Broughton Formation. Units are interpreted as high-
density turbidity current and tractional current deposits emplaced in a storm- and tide-
dominated, shallow marine environment (Bull and Cas 1989). Dropstones within the
lower part of the Broughton Formation suggest that periodic coastal sea ice and/or
icebergs were present during deposition. Dips of bedding rarely exceed 2°. The volcanic
facies association comprises nine shoshonitic basaltic to basaltic andesite lavas and syn-
sedimentary intrusions, previously termed latites, and associated autoclastic breccia and
peperite (Carr 1985). Three of the lowermost members of Broughton Formation are
relevant to this study. They are, from oldest to youngest, the Blow Hole Latite Member,
the Kiama Sandstone Member and the Bumbo Latite Member (Fig. 1). The Blow Hole
Latite Member is holocrystalline and porphyritic, containing euhedral to subhedral
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plagioclase and pyroxene phenocrysts, and chloritic pseudomorphs of olivine
phenocrysts, in a fine-grained pilotaxitic groundmass. The groundmass consists of
plagioclase microlites, pyroxene microlites, chlorite, an unidentified opaque phase
(magnetite?), and interstitial potassium feldspar. The petrography of the Bumbo Latite
Member is similar, although olivine phenocrysts are absent and the groundmass is finer
grained. Volcanic and sedimentary facies associations are well exposed in coastal cliffs at

Kiama. However, outcrop inland is restricted to quarries and road cuts.

Contact Relationships

The Blow Hole Latite Member is a 50 m thick basaltic andesite sheet which was initially
interpreted as a fripartite intrusion (Raam 1964). However, Bull and Cas (1989)
considered that only the middle unit of the sheet was partly intrusive, and regarded it as a
lava which locally burrowed into wet sediment. This study demonstrates that the Blow
Hole Latite Member can be divided into two flow units with peperitic contacts suggesting
their intrusion into wet unconsolidated sediments. A thin, poorly exposed horizon of
bedded sandstone (Rifle Range Tuff Member, Raam 1964) exposed at Rifle Range Point
(Fig. 1) separates the upper and lower flow units. The middle flow unit proposed by
previous authors is a peperitic facies of the lower flow unit. The upper and lower units
are interpreted as syn-sedimentary intrusions, due to the volume and extent of peperite
development. However, critical facies relationships required to discount a burrowing

flow are absent due to poor exposure inland.

The Bumbo Latite is a 150 m thick massive, columnar jointed basalt sheet above the
Kiama Sandstone Member (Fig. 1). The base of the member is locally peperitic and the
upper contact was not examined in this study. The Bumbo Latite also has been

interpreted as a tri-composite extrusion (Bowman 1974).

At map scale the sheets are broadly concordant with bedding in the enclosing sedimentary
rocks. However, at outcrop scale contacts vary from relatively planar to complex and
highly irregular. Unmixed lower contacts vary from smooth to undulating with 10-20 cm
amplitude load casts of coherent basaltic andesite separated by flames of sandstone.
Underlying sedimentary rocks are relatively undisturbed except for minor soft-sediment
deformation attributable to the loading effect of the sheets.
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Figure 1. Geology of the Permian Broughton Formation at Kiama, showing complex relationships
between peperite, hyaloclastite and coherent facies in the Blow Hole and Bumbo Latite Members.
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Facies of the Blow Hole and Bumbo Latite Members

Coherent Facies

Regular, well developed, wide (to 1 m) columnar joints characterise the massive interiors
of the Bumbo and Blow Hole Latite Members. In places (e.g. Kaleula Point) column
faces are dissected by interconnected, broadly curved tortoise shell joints which, in three
dimensions, define equant polyhedral blocks. More often columns are cut by less regular,
curved and planar joints. Column axes are generally subvertical and perpendicular to
sheet margins. However, along contacts with some dyke-like peperitic domains in the
Blow Hole Latite Member, column axes are subhorizontal at contacts, but progressively
steepen and become subvertical a few metres into massive basaltic andesite (Fig. 2, 3A).
Along the top of peperite dykes, columns are subvertical, but are cut at right angles by
concentric joints spaced a few 10' s of centimetres apart (Fig. 2). Concentric joints mirror
the upper margin of the peperite domains, forming a wavy pattern where peperite dykes

are closely spaced.

Figure 2. Cartoon illustrating the facies and facies relationships of lower flow unit in the Blow Hole
Latite intrusion. I — columnar jointed coherent facies; 2 — blocky jointed coherent facies with pseudo-
lobes and pseudo-pillows; 3 —dispersed peperite facies; 4 — dispersed peperite in the interior of the sheet;
5— closely-packed peperite; 6 — hyaloclastite; 7 — undisturbed sediment.

Near contacts with sedimentary facies or peperitic zones, columnar joints merge into a
several metre wide interval of blocky jointing. Widely spaced, smoothly curved,
intersecting joints outline polyhedral blocks, 2-6 metres in length (pseudo-pillows,
Watanabe and Katsui 1976; Yamagishi 1987, 1991), many of which are internally

jointed. Joints are progressively more closely spaced within a metre or two of contacts



Appendix A 6.

(cf. Brooks et al., 1982) dissecting the rock into small blocks, 5 to 30 ¢cm across. Some
blocks are defined by intersecting radial and concentric joints which diverge outward
from small (20-30 cm) discontinuous apophysis-like tongues of peperite (Fig. 3B).
Blocky jointed basalt or basaltic andesite is in direct contact with peperite along part or all

of some contacts and elsewhere grades into hyaloclastite.

Locally in the Blow Hole Latite Member, subvertical platy joints form an intervening zone
between columnar jointed and blocky jointed coherent facies. Platy joints are laterally
continuous, spaced up to 1.5 metres apart, dissected by crude blocky jointing, and
conform to contacts with peperitic and blocky jointed domains. Subhorizontal joints up to
10" s of metres in length form bifurcating networks in both platy- and blocky-jointed

domains.

Hyaloclastite Facies

Exposures of hyaloclastite are monomictic and characterised by jigsaw-fit of polyhedral
blocky and cuneiform clasts separated by minor amounts of finely comminuted magmatic
rock. In the Blow Hole Latite Member, in situ hyaloclastite may be the brecciated
equivalent of large parts of the coherent facies or form a narrow selvedge between blocky
jointed coherent facies and peperite. Often, clasts decrease in size approaching peperitic

contacts and some fractures have been invaded by sediment, forming peperite.

At Blow Hole Point, small pods of hyaloclastite are enclosed by massive columnar and
blocky jointed basaltic andesite. Almost continuous outcrop between Blow Hole Point,
Black Beach and Pheasant Point (Fig. 1) provides a section through the outer interior to
the margin of the upper Blow Hole Latite Member, and suggests that it is a sill. The
hyaloclastite facies can be regarded as an intermediate facies between the massive
columnar- and blocky-jointed coherent facies and marginal peperite. Features which
characterise this transition are, from the margin inward, a rapid decrease in peperite to
hyaloclastite, reduction in the degree of brecciation, and replacement of blocky jointing by

columnar jointing as the major joint style.

Closely-packed peperite

Peperite with closely-packed fabric occurs only within the interior of the Blow Hole Latite
Member. Blocky jointed coherent facies merge into domains of closely-packed peperite
where sediment is present between widely spaced, smoothly curved, intersecting joints
which define polyhedrally jointed blocks (Fig. 2). More continuous sediment-filled
subhorizontal joints, up to 30 m in length, outline pseudo-pillows (Fig. 3C). Pseudo-
pillows are dissected by internal joints, which are free of sediment, or else separated by a
thin or thick infill of sediment (cf. Yamagishi et al. 1989). Basaltic andesite in the interior
and margins of pseudo-pillows is texturally equivalent to that of the massive facies.



Figure 3.

Outcrop features of the Blow Hole Latite Member (A-D, F) and Bumbo Latite Member
(E).

(A) Transition from blocky jointing (b) to columnar jointing (c) passing out from the
margin of a dyke-like body of dispersed peperite within the interior of the intrusion (p).
Columns are sub-horizontal at the contact with the dyke but progressively steepen and
become subvertical. Pack for scale. Marsden Head.

(B) Lobate incursions (arrow) of peperite (p) into blocky jointed coherent facies (b).
Within the coherent facies, trails of ellipsoidal vesicles conform to the shape of some parts
of the contact. Scale 10 cm Jong. Kendalls Point.

(C) Closely-packed peperite showing progressive dismembering of coherent basalt into
pseudo-pillows (p). Sediment fills fractures between subhorizontal fractures (arrow) and
fractures in pseudo-pillows. Kaleula Head.

(D) Cross section through lobes (1) dissected by incipient columnar and blocky jointing
and partially enclosed in altered dispersed peperite (p). Clasts in the breccia and adjacent to
lobe margins display jigsaw-fit texture demonstrating that the lobe and breccia are
cogenetic. Marsden Head.

(E) Detailed drawing from photograph. Type D lobes (1) enclosed in cogenetic peperite
have altered margins (a) and unaltered jointed (j) and cores (u). Parts of some lobe
margins are strongly vesicular (v). Peperite with vesicular clasts (vp) contrasts with
peperite-dominated by poorly vesicular polyhedral blocky clasts (bp). Scale 10 cm long.
Bombo Point.

(F) Lamination (arrow) and concentration of lithic clasts (I} on the ?lee side of a juvenile
clast (j) derived from the walls of the enclosing sheet fracture in closely-packed peperite.
Juvenile clast is 2.5 cm long. Kaleula Head.
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However, along some contacts with sediment less than a millimetre of the groundmass is

black in colour and charged with a fine unidentified opaque phase.

Subhorizontal fractures in closely-packed peperite are filled with up to 10 cm of siltstone
to sandstone. However, thicknesses of sediment vary considerably along their length.
Towards fracture terminations, infills decrease to a sub-millimetre film which is present
along the whole length of the fracture, or else fractures are sediment free. In some cases,
segments or the terminations of subhorizontal fractures comprise stacked sets of
interconnected, sediment-filled, en-echelon fractures. Similar, but subvertical en-echelon
fractures characterise some outcrops of the polyhedrally jointed coherent facies. En-
echelon fractures are interpreted as tensile fractures formed by non-rotational, dilational
strain during the invasion of overpressured sediment (cf. Beach 1975, Francis 1982).
The surfaces of subhorizontal fractures are sharp, but have an irregular form which
reflects smali-scale steps in the direction of fracture propagation and incomplete
exfoliation of incipient clasts from some walls. Platy clasts (cf. Brooks 1995} liberated
from fracture surfaces form jigsaw-fit aggregates separated by minor amounts of
sediment matrix. Apophyses of sediment extend a few centimetres in from some sheet

fracture walls and locally have formed peperite comprising globular-shaped clasts.

Close to domains of dispersed peperite, outlines of pseudo-pillows are masked as the
proportion of sediment-filled fractures increases. Remmnants of large pseudo-pillows
enclose multiple smaller pseudo-pillows which, with increasing brecciation, disintegrate
into aggregates of blocky to ellipsoidal clasts separated by sediment matrix. Wedge-
shaped, sediment filled fractures penetrate the pseudo-pillows. The largest fractures are
over 1 m in length and, where closely spaced, generate complex serrated margins to
pseudo-pillows. Thinner wedges extending in from the surfaces of larger fractures locally

merge, outlining platy clasts surrounded by sediment.

At Marsden Head, well developed, subvertical columnar joints, cut at right angles by
subhorizontal joints, extend upward from a subhorizontal sheet-like body of dispersed
peperite in the interior of the sheet. An irregular, roughly ellipsoidal section of columnar
jointing, 10 m wide and 5 m high, that occurs 1m above the peperite is dissected by
blocky joints and sediment-filled fractures. Ghosts of former columnar joints are visible
towards the centre of the zone, but are best observed along gradational contacts with
intact columnar jointed basaltic andesite. Domains of blocky jointed basaltic andesite are
dissected by fine sediment-filled fractures that are connected to the underlying peperite by
a network of sediment veins (cf. Brooks et al., 1982). Some veins follow the margins of
column faces, but most form bifurcating networks within the blocky jointed interiors of

remnant columns. Farther to the south, sediment fills the space between some column
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faces. Relationships at these two localities suggest that columnar jointing was initiated

synchronous with peperite formation.

Dispersed Peperite

Peperite with dispersed fabric passes into massive blocky jointed coherent facies, or
grades through an intervening zone of closely-packed peperite as the proportion of
sedimentary matrix between clasts decreases. Contacts with the enclosing facies are
highly irregular.

Dispersed peperite occurs from the base to top of the Blow Hole Latite and does not
appear to be restricted to a specific level. In map view, this facies forms elliptical pods
and interconnected peperite tongues, a few metres wide and up to 10 m long, isolated in
blocky jointed coherent facies. Tongues separate lobe-like, blocky jointed, coherent
domains which extend in from the surrounding coherent facies. In cross-section, dyke-
like bodies, irregular branching networks, and sheets of peperite are surrounded by
coherent facies or extend up from the base of the sheets to more than 10 m into coherent
facies. Pods and tongues of peperite apparently isolated within coherent facies are
interpreted as cross-sections through dykes (cf. Brooks et al., 1982). However, others
are evidently rootless and direct connections to the enclosing sedimentary package are not
apparent. Elliptical domains of coherent basalt or basaltic andesite partially or completely
enclosed in peperite resemble cross-sections through lava-lobes (Figs. 3D, 4, 5A-B).

Most peperitic domains include poorly- and strongly-vesicular parts, resulting in apparent
polymictic breccias in which pods and fingers of contrasting vesicularity are juxtaposed.
Clasts contain a uniform to heterogeneous distribution of vesicles ranging from 0.1 to 3.5
cm in diameter, and vary from non-vesicular to containing around 15% vesicles; some are
nearly scoriaceous. At the margins of some poorly vesicular coherent facies, a coherent
vesicular rind passes out into peperite comprising vesicular clasts (Fig. 4), demonstrating
that the facies are cogenetic. Along some contacts within the Blow Hole Latite Member,
lobate apophyses of peperite (10-20 cm across) comprising vesicular clasts are enclosed
in weakly-vesicular coherent facies (Fig. 3B). Aligned ellipsoidal vesicles in the weakly-
vesicular coherent basalt-andesite mirror the broad shape of some of these contacts. In
many apophyses, sediment is concentrated at the top of the structure, possibly trapped
there as expanded pore water cooled, preventing further advance into the still plastic
basaltic andesite. Clasts associated with vesicular domains have fluidal and
globular shapes although some clasts in poorly vesicular domains also have these shapes.
In some outcrops (e.g. Kendalls Point, Marsden Head), in situ hyaloclastite at the
margins of the coherent facies passes into dispersed peperite containing jigsaw-fit
aggregates of polyhedral blocky clasts. Within the peperite, groups of poorly vesicular
clasts with jigsaw-fit texture are enclosed by areas where clast rotation and separation are
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evident. In some exposures (e.g. Kendalls Point), wide (5-40 cm) subhorizontal
sediment-filled fractures can be traced through the breccia. Fracture walls are irregular

and stepped.

Occurrences of dispersed peperite at the margins of the Blow Hole and Bumbo Latite
Members consistently have a dispersed fabric. This is best illustrated along the contact
between the Bumbo Latite Member and the underlying Kiama Sandstone Member at
Bombo Point. Vesicular domains occur as small pods in coherent poorly vesicular basalt
and as peperite which encloses small lobe-like bodies of poorly vesicular basalt up to 0.8
m in length (Figs. 3E, 5D). Away from contacts, there is a transition from tube-vesicles
to round and ellipsoidal vesicles in coherent vesicular basalt. Margins of large lobes and
all of the smallest lobes are light green in colour and altered, whereas lobe interiors are
black and unaltered. Lobe-like bodies show progressive disintegration into jigsaw-fit
aggregates of blocky clasts. Jigsaw-fit texture is poorly preserved in peperite containing
vesicular clasts, Contacts between poorly- and strongly-vesicular domains are mostly
sharp. However, mixing of vesicular and non-vesicular clast types has locally generated
texturally complex peperite. Sandstone containing juvenile vesicular clasts fills some
fractures in the poorly vesicular lobe-like bodies, so that the lobes appear to intrude

earlier, texturally distinct peperite.

The upper contact of the upper Blow Hole Latite Member is extensively exposed on the
shore platform at Pheasants Point. Pods, tongues and sheets of massive to blocky jointed
basaltic andesite up to 5 m in length are enclosed in cogenetic peperite (Fig. 5C). Parts of
some tongues are cut by wide to narrow sediment-filled fractures which dissect them into
smaller bodies and irregular blocks with jigsaw-fit geometry. Small digitate apophyses of
basaltic andesite up to 5 cm in length extend out from lobe margins. In detail, much of the
peperite consists of interconnected, bulbous, entrail-like domains of basaltic andesite
which are separated by sediment, but which can be traced back to coherent facies of the
lobes. Peperite at the margins of some lobes encloses pods comprising clasts which are
more vesicular and/or have different shapes, and are separated by greater amounts of
sediment. Bedding in sandstone above the contact zone is undisturbed, in contrast to the

near complete destruction of bedding in the peperitic facies.

Lobes

Lobe-like bodies of coherent basalt and basaltic andesite are isolated in the peperite or
connected to coherent facies by wide stems of the same composition. On the basis of size,
shape and relationships with associated peperite, lobes are divided into four types; A to D
(Fig. 5). Pepertte in the interior of the sheets incorporates types A-D, whereas peperite at
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Figure 4. Simplified field sketch of textures and structures in dispersed peperite at Kendalls Point. 1—
coherent basaltic andesite dissected by widely spaced curved joints; 2— equant joint blocks; 3—lobe-like
coherent domain; 4—vesicular coherent basaltic-andesite; 5— peperite (polyhedral blocky clasts); 6—
peperite (polyhedral and irregular blocky clasts); 7— peperite (irregular blocky clasts).

contacts with then enclosing sediments contains only types C and D. In peperitic facies of

the Bumbo Latite Member, only type D lobes have been recognised.

Type A lobes — are elliptical- to pendant-shaped when viewed in cross-section (Figs.
3D, 5A), and tongue -shaped to elliptical in map view. They are up to 25 m in length and
20 m wide. Lobe interiors are unaltered and dissected by intersecting polyhedral joints, or
polyhedral-jointed basaltic andesite encloses an inner zone of incipient radial columnar
jointing. Pale green, in situ hyaloclastite (+ peperite) forms a selvedge along segments of
some lobe margins. Parts of some margins are vesicular and grade out into peperite
comprising vesicular clasts. Rarely, vesicular pods to 15 cm wide occur in the lobes.
Lobe interiors are penetrated by sediment-filled fractures. Fractures are planar along
contacts with poorly vesicular domains, but have more irregular shapes when cutting

numerous vesicles.

Type B lobes — Fractures at the margins of the type B lobes are penetrated by sediment,
whereas lobe interiors are sediment-free (Fig. 5B). Sediment-filled fractures cut across
some larger lobes producing trains of progressively smaller remnant coherent domains,
which become more widely spaced as larger segments of the lobes are brecciated. Jigsaw-
fit aggregates of clasts separated by sediment outline former large lobes which have
undergone complete brecciation. Clasts become smaller and separated by greater amounts
of sediment forming a matrix between the lobes. Slight modification of jigsaw-fit textures
by rotation and separation of clasts, to complete loss of jigsaw-fit texture is widespread in
the matrix.
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Figure 5. Field sketches of lobes formed by incomplete brecciation in peperite facies of the Blow Hole
Latite (A-C) and dispersed peperite facies of the Bumbo Latite (D). A— Cross section of a type A lobe;
Kaleula Head. B— Plan view of a type B lobe in peperite displaying in situ and clast-rotated textures;
Marsden Head. C— Type C lobe gradational into peperite containing clasts varying from poorly to
strongly vesicular and from blocky to globular in shape; Pheasant Point, D— Type D lobes enveloped by
an altered margin and enclosed in peperite containing domains of poorly and strongly vesicular clasts.
Coherent facies show an equivalent range in vesicularity to clasts in peperite. Bumbo Point.

Type C lobes — Type C lobes characterise the peperitic upper margin of the upper Blow
Hole Latite Member. Sheets of relatively coherent jointed basaltic andesite enclose pods
and large domains of peperite (e.g. Marsden Head). Qutlines of lobes become distinct as
the proportion of peperite increases, enclosing relic pods of polyhedrally jointed basaltic
andesite to 1 metre in size (Fig. 5C). Sediment-filled fractures dissect large lobes into
groups of blocky clasts and small lobes which are separated by sediment matrix-rich
domains. Clasts fit together along some margins but others have moved following
fragmentation. Variation in clast shapes and vesicularity produces texturally complex
peperite.

Type D lobes — Within some peperitic domains, poorly vesicular coherent basalt or
basaltic andesite is interleaved with strongly vesicular intervals to 1m across (Fig. SD). In
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strongly vesicular domains, there is a gradation between coherent basalt or basaltic
andesite, hyaloclastite and sediment matrix-rich and sediment matrix-poor peperite. All
facies contain isolated pods and finger-like protrusions of poorly vesicular coherent or
polyhedrally jointed basaltic andesite (Figs. 3E, 5D). Those pods and fingers in peperitic
domains resemble concentric pillows (cf. Yamagishi 1987) and small pillow lobes. Some
lobes are enveloped by a hyaloclastite (+ peperite) sheath comprising poorly vesicular
blocky clasts. Similar clasts are isolated in the surrounding peperite which is dominated

by vesicular clasts.

Clast types and shapes

Peperite contains igneous clasts that can be divided into six main textural types on the

basis of clast shape and relationships between clasts (Fig. 6).

Globular clasts — Globular clasts have bulbous, globular shapes (“entrail globular”
clasts) or are roughly equant but are bound by finely digitate, fluidal margins (“equant
globular” clasts). There is a progression in clast shapes between entrail- and equant-
globular. In detail, most “clasts” are conmected by fluidally-shaped stems a few
millimetres to several centimetres wide; they are incipient clasts formed through

fragmentation mechanisms which did not go to completion.

Entrail globular

Interconnected incipient clasts with rounded globular shapes form complex branching
entrail-like interdigitations with sediment (Fig. 6A). Digits terminate in the surrounding
sediment or connect small subrounded patches of relatively coherent igneous component.
The patches are up to several tens of centimetres across and many contain small,
centimetre-sized blebs of sediment. Pinching off of branches along the bifurcating digits
has delivered discrete clasts to the surrounding sediment. Only a thin film of homogenised
sediment separates some clasts from their parent digit, whereas others are surrounded by

large amounts of sediment.

Equant globular

In peperite comprising equant globular clasts there is less disruption of the igneous
component as incipient clasts are larger and interpenetration with sediment is largely
restricted to their margins (Fig. 6B). Incipient clasts are cut by bifurcating sinuous seams
of sediment which propagate in from clast margins or outward from the interior. Other
clast margins are planar and have sharp or finely serrated margins which imply that they

are quench fractures.
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Mesoblocky clasts — Mesoblocky clasts are an important but relatively minor component
of some vesicular and poorly vesicular closely-packed and dispersed peperite facies.
Along margins of mesoblocky domains, jagged sediment-filled fractures dissect the
igneous component, defining progressively smaller fragments. Remnant finger-like
projections of coherent and in situ fragmented igneous component extend out from
margins of the coherent facies into clouds of mesoblocky fragments (Fig. 6C). Fragments
are angular with finely serrate margins, and are mostly 1-5 mm across. Adjacent to
fingers, many fragments display jigsaw-fit texture and are separated by only small
amounts of sediment. Jigsaw-fit texture is absent in sediment matrix-rich breccia only a
small distance into the breccia. Large clasts with shapes similar to mesoblocky clasts are

an important component of incompletely fragmented domains.

Polyhedral blocky clasts — Polyhedral blocky clasts have angular, blocky and cuneiform
shapes bounded by curviplanar margins (Fig. 6D). In some outcrops, broadly curved
first-order fractures outline large blocky clasts which are dissected by second-order
fractures into jigsaw-fit aggregates of progressively smaller polyhedral blocky clasts.
Jigsaw-fit textures are disturbed in some parts of the breccia. Disturbance produces
results which range from the slight modification of jigsaw-fit, by rotation and translation

of fragments, to large scale separation of clasts.

Irregular blocky clasts — Strongly vesicular domains of dispersed peperite are
characterised by a high proportion of clasts with irregular blocky shapes. Clasts are
equant in shape, but bound by irregular to feathered margins which are in part the former
walls of vesicles (Fig. 6E). Strongly vesicular clasts are bound mostly by vesicle walls
and have feathered terminations. Highly irregular clast margins reflect rapid changes in
the direction of fractures as they cut vesicles. Along contacts with coherent vesicular
domains, clasts commonly display jigsaw-fit texture. Jigsaw-fit texture is lost as more

sediment separates clasts.

Platy clasts — Platy clasts (Brooks 1995) are common in both closely-packed and
dispersed peperite facies but are the principal clast type of closely-packed peperite. Platy
clasts are several times longer than they are wide and show planar or irregular margins.
They reflect the propagation of planar sediment-filled fractures (e.g. sheet, en-echelon)

within relatively coherent facies.

Some clasts in peperite are bound by both globular to spongy margins and sharp planar-
curviplanar margins, so that they do not fall into any one of the main textural groups (Fig.
6F).



Figure 6.
Clast types in peperite associated with the Blow Hole and Bumbo Latite Members.

(A) Discrete and interconnected incipient clasts with entrail globular shapes (light)
enclosing and enclosed by sandstone (s).

(B) Incipient equant globular clasts with bulbous digitate margins invaded by thin
finidally-shaped sediment seams (arrow).

(C) Finger-like projection of basaltic andesite (f) showing progressive disintegration into
mesoblocky fragments with finely serrate margins. Jigsaw-fit between fragments (arrow)
is lost as sediment (s) penetrates fractures.

(D) In this example of polyhedral blocky peperite, clasts are separated by small amounts of
sandstone matrix (s). Groups of clasts with jigsaw-fit contrast with domains where clasts
have rotated and moved (arrow).

{E) Irregular blocky clasts bound by margins which are in part the former walls of vesicles
(arrow) and enclosed in sandstone (s).

(F) In this domain of dispersed peperite, margins of clasts vary from planar-curviplanar to
delicately fluidal (skeletal/spongy). These clasts imply a change in fragmentation
mechanism during magma-sediment interaction.






Appendix A 16.

blocky jointed Q\A blocky jointed

< a\[ \mesoblocky
T clasts

equant globular

incipient clasts entrail globular

incipient clasts

blocky jointed blocky jointed

polyhedral polyhedral

btocky ' % blocky

s clasts : e/ -y clasts

<:=7 % g &
(59 Sq J vesicular
CI? %‘UG/ % b clast
9 irregular rotated
,‘-\\’_. < blocky clasts

Figure 7. Associations of different clast shapes in peperitic domains. A— Peperite consisting entirely of
discrete and incipient clasts with equant globular shapes. B— Textural association involving clasts with
mesoblocky and entrail globular shapes. C— Transition from blocky jointed facies into peperite with
zones of polyhedral blocky clasts and irregular blocky clasts. D— Blocky-jointed coherent and
hyaloclastite facies pass into polyhedral blocky peperite with in situ and clast-rotated texture. No scale is
implied as the relative proportion and extent of each textural zone varies considerably.

Textural associations

The foregoing discussion highlights the wide variation in clast types in peperite. The
distribution of clast types is not random. Textural zones are defined here as a domain of
one clast type in hyaloclastite or peperite, Peperite may consist entirely of one textural
zone or of multiple textural zones, arranged geometrically in recurrent textural
associations. Variation in vesicularity is a principal determinant of clast types and textural
associations. In closely-packed peperite, the magmatic component is consistently poorly
vesicular, observed clast types are restricted to platy, globular and mesoblocky types, and
textural associations are less diverse. Only short segments of a few fractures have
mesoblocky and globular textures. In dispersed peperite, four principal associations have
been recognised: (1) blocky jointed - equant globular; (2) blocky jointed - mesoblocky -
entrail globular; (3) polyhedral blocky - irregular blocky; and (4) hyaloclastite -
polyhedral blocky (Fig. 7).
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Sediment matrix

Sediment forms the matrix to clasts, partially surrounds incipient clasts, and fills fractures
and joints. The three principal sediment types, from most to least abundant, are: reddish-
brown sandstone and minor siltstone, yellow-brown sandstone and granular to pebbly
sandstone. Wisps and laminae of one grain size are enclosed by sediment of another grain
size. Discontinuous planar- and rare cross-lamination are common to all peperitic facies,
but best developed and most continuous in sediment-filled subhorizontal fractures in
closely-packed peperite facies. Within the fractures, lamination is broadly concordant to
walls but Jocally terminates against steps in the fractures. At one locality, laminae partially
mantle a clast-supported lens of well-rounded granules which are concentrated on the 7lee
side of a juvenile clast derived from the walls of the sheet fracture (Fig. 3F).
Concentration of lithic clasts and fines depletion are interpreted to reflect local turbulence
as fluids (water and steam) and sediment streamed through the fracture. Similarly,
elutriation of fine sediment from some parts of the peperite is suggested by their sediment
matrix-poor, clast-supported, but disrupted character. In some of these cases, wide
subhorizontal fractures in blocky jointed coherent facies have sediment-poor, juvenile
clast-supported breccia at their bases and sediment-rich upper parts which support large
juvenile clasts. The distribution of sediment and juvenile clasts is similar to reverse

coarse-tail grading.

Discussion

Emplacement and cooling

Contraction that accompanied cooling of the Bumbo and Blow Hole Latite sheets
produced a variety of joint styles which are zonally arranged relative to peperitic and
sedimentary facies, and record unequal rates of cooling. There is a transition from
columnar jointed facies, through blocky jointed facies, into hyaloclastite along contacts
with the enclosing sediments and/or peperite.

Columnar joints developed as intersecting contraction cracks nucleated within the blocky
jointed zone and migrated towards the interior of the sheets, perpendicular to surfaces of
equal tensile stress (Spry 1962, Long and Wood 1986). The pattern of columnar jointing
suggests that, in most domains, surfaces of equal stress were parallel to isothermal
surfaces at the contacts of the sheets, and columns formed perpendicular to both. Cooling
of the igneous component along contacts with some dyke-like peperitic domains produced
a distinctive style of columnar jointing. Initially, colummns formed perpendicular to
subvertical isothermal surfaces at the dyke margin but progressively steepened away from
the dykes under a greater influence of isothermal surfaces parallel to sheet margins.
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Sediment fills the space between some columns and other columns are dissected by
blocky joints filled with sediment. These relationships suggest that columnar joints acted
as pathways for the infiltration of wet sediment into the interior of the sheets. In blocky
jointed zones, similar fractures may have provided access for fluids (+ sediment) to move
in and fragment the margins of the sheets (cf. Watanabe and Katsui 1976, Yamagishi
1987, 1991, Yamagishi and Goto 1992). The inward progression from blocky jointing to
pseudo-pillow structure reflects a decrease in the degree of fragmentation and decrease in
the cooling rate. In places, blocky jointed coherent facies developed along peperitic
contacts, but more often, blocky jointing formed in a distinct zone inward from the
hyaloclastite zone. In the hyalociastite zone, quench fractures dissected joint blocks into
jigsaw-fit aggregates of polyhedral blocky clasts (cf. Dimroth et al. 1978, Yamagishi
1979).

Vesiculation

Vesicle distributions in the Bumbo and Blow Hole Latite sheets are interpreted to reflect
both primary magmatic vesiculation and vesiculation due to injection of steam from
external water prior to complete solidification (cf. Fuller 1931, Waters 1960, Macdonald
1972, Walker 1987). Vesicles in poorly vesicular, coherent and peperitic facies probably
reflect degassing of primary magmatic volatiles. Strongly vesicular zones are sparse,
invariably associated with peperite and are localised and discontinuous. Isolated strongly
vesicular pods in otherwise dense, massive, poorly vesicular basalt and basaltic andesite
have not been observed (cf. Dimroth et al. 1978, Sahagian et al. 1989, McMillan et al.
1987, 1989). The association of peperite and domains of strong vesicularity suggest that
the lava incorporated limited amounts of steam from the wet sediment in the initial stages
of peperite formation (cf. Smedes 1956). Vesicular domains are interpreted as a form of
vesicle cylinder. Wet sediment was heated and pore water vaporised as it moved into the
magmatic component in dispersed peperite. A vesicular front may have propagated out
into the magmatic component as sediment entered peperitic domains. Vesiculation was
complete prior to brecciation, as sediment-filled fractures cut across vesicles and no clasts
are zoned with respect to vesicularity. Vesiculation of fracture walls in closely-packed
peperite did not occur, as the sediment was partially dewatered or the fluid was not
vaporised, or the magmatic component had cooled sufficiently to resist vesiculation, or
the lava had already degassed. Fraser (1976) attributes vesicle cylinders (2-20 cm across)
in high-alamina basalts of the Cascade Mountains and Modoc Plateau to segregation of
bubbles and residual melt into regularly spaced vertical cylinders. Although this
mechanism cannot be discounted, the association of peperite and strong vesicularity in the

Bumbo and Blow Hole Latite sheets favours the interpretation of vesiculation by steam.

Stress waves generated by high-pressure vaporisation of pore water at the melt-sediment

interface can induce vesiculation of the melt (Wohletz 1983). Steam explosions are
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interpreted to have played a minor role in generating peperite in the Blow Hole and
Bumbo Latite Members, suggesting that stress wave induced vesiculation was
insignificant.

Relatively few vesicles are filled with sediment, even in nearly scoriaceous peperite facies
of the Bumbo and Blow Hole Latite Members (cf. Branney and Suthren 1988, Brooks et
al. 1982). This may reflect a lack of interconnection between vesicles or that particles
were too large to move through interconnections.

Lobes

Lobe types A-D lobes may simply be isolated coherent patches within otherwise strongly
brecciated material. Alternatively, they could be interpreted as fractured and dismembered
lava Iobes, extruded into and partially or completely enclosed by their own or earlier
peperite and hyaloclastite. Along some contacts, coherent facies pass through peperite
containing jigsaw-fit clasts into Iobes, demonstrating that type A-D lobes have formed
through incomplete brecciation of coherent facies. Along contacts and in peperite where
jigsaw-fit textures are not preserved, formation of lobes through extrusion/intrusion
cannot be discounted. Type D lobes formed as vesicular pods in the sheet fragmented and
mixed with sediment, leaving poorly vesicular domains. Complete loss of jigsaw-fit
texture is widespread in the breccia surrounding type D lobes, so that they appear to
invade earlier peperite. However, poorly vesicular coherent facies along the margins of
peperitic facies enclose strongly vesicular pods which are coherent analogues of the

matrix to type D lobes in peperite.

Fluidisation of the host sediment

The ability of sediment to penetrate even the finest fractures and large spaces in the
interior of the basalt-andesite sheets to distances of tens of metres from the base, indicates
that the sediment was highly mobile during peperite formation. Kokelaar (1982) ascribed
similar features in peperitic facies of Ordovician andesitic and rhyolitic sills from Scotland
and Wales to fluidisation of sediment by heating of pore water at sediment-magma
contacts. In the present case, water at contacts was vaporised and some sediment injected
up into the sheets, forming domains of peperite. Injection was driven by the relatively
low density of the fluid-sediment mix compared with the magma and undisturbed
sediment, and possibly by fluid over-pressure. The density inversion requires a
disturbance to initiate flow of the low density layer, so that vapour expansion driven by
the transition of water to steam may be more important, at least initially. The fluid-
sediment slurries may have moved along fractures formed by contraction and/or
quenching, or as propagating sediment dykes. Vesiculation of the magma by steam
preceded the formation of peperite by mixing with the fluidised sediment. Some parts of
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the surrounding magma remained sufficiently plastic to deform around mushroom-shaped

tongues of sediment which penetrated up from contacts with peperitic domains.

Irregularities, fractures or peperitic domains at the margins of the sheets may have been
preferred sites for the injection of fluid-sediment slurries (cf. Brooks 1995). Invasion of
the sediment was probably vigorous but was not obviously explosive as jigsaw-fit
textures between clasts and incipient clast are widely preserved, and contacts between
vesicular and non-vesicular peperite are sharp with little mixing of clast types. Also,
igneous clasts in the peperite commonly have bulbous, feathered or irregular outlines,

rather than the angular blocky shapes typical of phreatomagmatic brecciation.

Remnant sedimentary lamination in sediment filling space between clasts in peperite has
been described by many authors (e.g. Hanson and Wilson 1993, Kokelaar 1982,
Branney and Suthren 1988, Hanson 1991, Brooks 1995). In the present case, wisps,
seams or planar and cross laminae of one grain size are enclosed in, or alternate with,
sediment of another grain size, producing extremely complex relationships in some cases.
Lamination could be interpreted as: (i) relic primary bedding rotated and disrupted during
intrusion; (ii) laminated sediment which infiltrated from above; or (iii) non-primary
lamination. Structures are often subhorizontal, consistent with regional bedding, but are
interpreted as non-primary sedimentary lamination because: (1) lamination is well
developed within peperite facies completely enclosed by massive coherent lava; (2)
lamination filling fractures in closely-packed peperite is parallel to fracture walls and
could only be introduced along the length of the fractures (up to 30 m) through
fluidisation; (3) structures in the sediment (e.g. cross lamination and lithic lenses in
closely-packed peperite; reverse coarse-tail grading) are not consistent with washing-in
processes. Layering reflects the repeated streaming of highly mobile sediment through
fractures, and the intrusion of initial fracture- or space-filling sediment by coarser grain
sizes. Vapour pressure was building, equilibrating and waning rapidly and unevenly in
the invading sediment as it streamed to fill propagating fractures and open spaces. Rapid
changes in sediment paths, superposition of sediments with different grains during the
merging of fractures, and propagation of fractures at different rates all may have all been

important in affecting vapour pressure and generating layering.

Relative timing

Figure 8 illustrates the relative timing of development of textures and structures in the
Blow Hole and Bumbo Latite Members. Degassing of the sheets occurred both during
emplacement, as evidenced by elongate vesicles, and after flow ceased, as indicated by
spherical vesicles. Formation of vesicle cylinders clearly must have occurred while the
sheets were still ductile, but probably after emplacement. Mixing of the lava and fluidised
sediment formed domains of dispersed peperite. The general restriction of hyaloclastite



Appendix A 21.

and blocky jointed facies to the margins of peperitic domains suggests that fractures
developed concurrent with peperite in these domains. Columnar joints developed over a
large part of the cooling history. Incipient columns dissected by blocky joints formed
early concurrent with peperite. Long, well developed columnar joints in the massive
interior of the sheets reflect slow cooling, largely following fragmentation and peperite
formation. Sediment penetrating columnar joints at the base of the Blow Hole Latite
Member, and filling brittle (en-echelon) fractures, suggest that sediment was moving
through the sheet even in the late part of the cooling history.

Mechanisms of brecciation

The shape of clasts and contacts between sediment and the igneous component in peperite
is a guide to fragmentation processes. Experimental and theoretical studies of magma-
water interaction (e.g. Sheridan and Wohletz 1983, Wohletz 1986, Kokelaar 1986) have
produced textures, structures and clasts with shapes which are similar to those observed
in peperite, suggesting the mechanisms of magma-water interaction and magma-water-
sediment interaction may be similar. Four primary clast forming processes are currently
recognised to occur during magma-water interaction; magmatic explosivity, steam
explosivity, cooling-contraction granulation, and dynamic stressing (e.g. Wohletz 1983,
Kokelaar 1986). Steam explosivity is divisible into contact-surface interaction and bulk
interaction {Kokelaar 1986).

flow foliation —
vesiculation 1 ——

vesiculation 2

peperite

subhorizontal jointing —

blocky jointing _—
concentric jointing _

radial columnar joints e —

columnar jointing
alteration _—

time

Figure 8. Relative timing of development of textures and structures in the Blow Hole and Bumbo Latite
Members. Exsolution of magmatic volatiles (vesiculation 1) was probably initiated in the vent and
continued through vesiculation by heating of pore water during interaction between magma and wet
sediment (vesiculation 2).
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Peperite comprising globular clasts indicates that non-explosive, contact-surface
interaction and bulk interaction are probably important in the formation of peperite. Good
evidence for contact-surface interaction is seen where tongues and apophyses of the
igneous component transect undisturbed laminated or bedded host sediment, implying the
passive removal of sediment during emplacement (cf. Branney and Suthren 1988). This
was achieved by film boiling of pore water (Leidenfrost effect; Mills 1984), causing
fluidisation of sediment at the magma-sediment interface. Sediment is displaced along and
away from the contact zone until cooling below a critical temperature (Leidenfrost
temperature) causes steam to condense and the sediment to be deposited. Oscillations in
the vapour film can distort the magma surface into delicate bulbous fluidal shapes which
detach, generating small fluidally-shaped fragments (Sheridan and Wohletz 1983,
Wohletz 1986). Vapour films insulated the magma from direct contact with sediment and
suppressing both steam explosions and quench fragmentation.

A case for bulk interaction in peperite formation is suggested where pods and seams of
sediment are enclosed in the igneous component or occur between incipient clasts (cf.
Kokelaar 1986, Branney and Suthren 1988, Brooks 1995). The main clast-forming
process is the tearing-apart of the igneous component around invading and expanding
steam-sediment slurries. Propagation of sediment seams promotes the disintegration of
relatively coherent igneous material into progressively smaller clasts. Initially only a thin
film of sediment, a few millimeires or centimetres wide, fills the seams. Walls of clasts
are progressively wedged apart as sediment penetrates the seams. Vaporisation of pore
water may have generated pressure waves causing disintegration of the magma. Kokelaar
(1986) suggests that heat exchange between the magma and sediment through convective
heat transfer may be more important than by direct contact mixing during bulk interaction.
However, fluidally-shaped margins to incipient clasts with entrail and equant globular
shapes suggest that direct contact mixing is in some cases important, and implies that bulk
interaction and contact-surface interaction have combined to fragment the magma.
Conductive heat transfer, a function of surface area and time of heat transfer, may
increase as margins are ‘“roughened” and the melt fragmented by contact-surface
interaction, but will be limited by the insulating effects of a continuous vapour film.
Concurrent bulk- and contact-surface-interaction combined to fragment the greatest
percentage of the Blow Hole Latite Member.

In examples of peperite comprising ragged clasts, higher yield strengths at the strain rates
which accompanied fragmentation are suggested by finely serrated, ragged clast margins.
Again, bulk interaction during magma-sediment interaction may be indicated by textures
in these domains. However, clasts with ragged shapes formed during bulk interaction

(e.g. Branney and Suthren 1988) are similar to those produced by dynamic stressing.
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Dynamic stress fragmentation is ascribed to brecciation of the chilled parts of lavas or

intrusions by the continued movement of fluid magma in the interior.

In peperite comprising polyhedral blocky clasts, fractures define equant blocks, whereas
platy clasts form by intersecting subparallel planar fractures and more widely spaced short
cross fractures (cf. Brooks 1995). Clast shapes reflect different local stress fields, and
may represent end members of a spectrum of clast shapes formed by quenching. Small
scale changes in the direction of propagation of quench fractures in response to internal
heterogeneities in the igneous component (e.g. phenocrysts) form jagged blocky/platy
clasts bounded by serrated margins rather than sharp planar and curviplanar margins
characteristic of polyhedral blocky clasts and some platy clasts (cf. Brooks 1995).

It remains unclear what the mechanism of formation of mesoblocky clasts was. Brittle
failure may have resulted from propagation of stress waves through the melt in response
to the collapse or explosive expansion of vapour films (cf. Wohletz 1983), or through
cooling-contraction granulation. Turbulent mixing following quenching of the resulting
fragments promoted the movement of fragments out of the zone of interaction and loss of
Jjigsaw-fit texture.

Vesicles strongly influence the character of peperite formed when magma or lava invades
wet, unconsolidated sediment. Fractures which cut across vesicles generate irregular
blocky clasts with margins which are in part the former walls of vesicles. Vesiculation
which occurs concurrent with fragmentation is likely to play a more active role in
determining clast shape, but will be limited because bubbles will be entrapped as cooling
proceeds and viscosity increases. An insulating sheath of vapour which forms at the
contact between the magma and enclosing wet sediment may allow some bubbles to reach
the magma-sediment interface (Mills 1984). Vapour bubbles which reach, form at, or
penetrate the melt-film interface will probably interact with it, creating local pressure
gradients which will influence vapour flow and hence also the shape of the contact

surface and clasts.

Textural associations: evidence for controls on peperite formation

Textural associations of more than two clast types, and individual clasts with both
bulbous and planar margins, imply a change in fragmentation mechanism. In many cases,
initial magma fragmentation and mixing with sediment is thought to have resulted mainly
from the tearing apart of the magma (bulk interaction) and shaping of the magma-
sediment interface into fluidal globular shapes by contact-surface interaction. In other
cases, globular surfaces and clasts developed first. Planar fractures reflect fragmentation
by cooling-contraction granulation and/or by propagating stress waves. Planar fractures
which cut across and displace fluidal globular surfaces in the igneous component formed
later (cf. Goto and McPhie 1996). The relationship between some planar fractures and
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globular surfaces is ambiguous and both may have formed simultaneously with viscosity
and/or temperature being the control.

Bulk physical properties, such as the density and viscosity of the magma and sediment
will in part control their behaviour during interaction. Difficulties in determining the
physical properties driving transitions in fragmentation mechanism result from the
complex and rapidly changing states of the components. For example, the magmatic
component will become more viscous with time, and steam together with volatiles can
promote multi-stage vesiculation of the melt. The sediment may be progressively
dewatered during interaction, with intergranular fluids ranging in temperature from cold
to boiling or superheated steam. Also, the host sediment is itself a many-phase system.

Busby-Spera and White (1987) concluded that host sediment properties strongly
influence magma-sediment interaction, and hence the shapes of clasts. They suggest that
fluidal globular peperite is more likely to develop in fine-grained, well sorted, loesely
packed sediment, as it is more easily fluidised and vapour films can be maintained at the
melt-sediment interface. Coarser, poorly sorted sediment is associated with blocky-
shaped clasts (blocky peperite) at Punta China, Baja, California. In these, greater
permeability was interpreted to inhibit the development of vapour films, and only a small
percentage of the sediment grain size is amenable to fluidisation. In the absence of
insulating vapour films, quench fragmentation and steam explosions are the main
fragmentation processes. At Kiama, different clast types occur within sediment of
constant grain size (Fig. 6F). Similarly, clasts with the same shape occur in sediment
with different grain sizes. These examples suggest that factors other than sediment grain
size are also important in determining fragment shape (cf. Goto and McPhie 1996).
However, sediment surrounding clasts in peperite represents the final grain size
distribution at the time of fragmentation and not necessarily that which was present at the
time of fragmentation.

Fragmentation processes are complexly dependent on external confining pressure. In
cases where the lithostatic and hydrostatic pressure exceed the critical pressure (about
31.2 Mpa for seawater; Kokelaar 1982), the degree of expansion of heated pore water is
impeded, steam explosions are suppressed and fluidisation may be inhibited. At lower
confining pressures steam may expand explosively. The character of peperite examined in
this study suggests that confining pressures were insufficient to suppress fluidisation of
the host sediment along magma-sediment contacts or to prevent vesiculation of the
magma, but large enough to inhibit steam explosivity.

Experimental and theoretical studies (Sheridan and Wohletz 1981, 1983; Wohletz 1983,
1986) suggest that changes in the water/magma ratio may lead to changes in eruption
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style. In peperite, it is possible that both short and long term variations in water (and
sediment)-melt ratios may be responsible for the changing fragmentation mechanisms,
and so clast shapes. Direct application of results from experimental and theoretical studies
of magma-water interaction to magma-slurry systems involving peperite is probably not
possible. Also, changes in the water/melt ratio may occur due to varying volume rate of
magma or sediment supply and fluxing of sediment with varying pore water contents

during fragmentation.

Viscosity reduces growth rates of instabilities at the magma-sediment interface (Wohletz
1986), so that high viscosity magmas may mix more slowly with sediment than would
low viscosity magmas. One might expect clasts with fluidally-shaped margins to be more
common in peperite involving magma of mafic rather than silicic composition. The
spectrum of clast shapes recognised in peperite span magma compositions ranging from
basaltic to rhyolitic, suggesting that this may not be the case. However, changes in the
rheological behaviour of a given magma from ductile to brittle, most likely in response
decreasing viscosity, are clearly important in cases where peperite contains single clasts
bound by both globular and planar surfaces. Planar fractures displace fluidal globular
surfaces suggesting that they formed later. During the globular clast-forming stage, the
magma had a relatively low viscosity and sediment was displaced by fluidisation. Planar
and curviplanar fractures formed as the magma became more viscous, most likely in
respohse to decreasing temperature and/or the breakdown of insulating vapour films at the
magma-sediment interface (cf. Goto and McPhie 1996}

Viscosity profiles in some lavas and intrusions are likely to be complex, varying in
response to, for example, pulsatory flow or intrusion (cf. Goto and McPhie 1996), and
differing volatile contents, crystallinity and temperature. If magma rheology fluctuates
then different parts of an intrusion or lava may be associated with peperite with different
clast types and/or textural associations. Fluidal contacts and clasts will be generated early
or in domains where the magma temperature is highest and viscosity is at a minimum.
Continued flow will stress those parts that have already begun to cool and solidify,
promoting brittle disintegration along contraction fractures, and clasts with blocky or
ragged shapes are more likely to form. Also, if wet sediment injects the magma in pulses,
then magma rheology at the time or site of interaction might fluctuate and different clasts

form.

Conclusions

Peperites associated with basaltic to basaltic andesite lavas and intrusions in the Late
Permian Broughton Formation, Kiama, New South Wales have been described on the
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basis of (1) igneous clast shape; (2) fabric; and (3) location with respect to the margins of
the lava or intrusion. The complexities of peperite, in terms of clast types and their
relative abundances and distribution, as well as textures and structures in the host
sediment, indicate that a spectrum of fragmentation and mixing processes may occur

together and thus interact.

Examples of peperite with more than one clast type, involving magma of the same
composition and sediment of constant grain size, are common. In many examples,
globular surfaces formed during an early, low viscosity phase of magma emplacement
into wet sediment. Planar and curviplanar fractures truncate some fluidal surfaces
suggesting that these, at least in part, formed slightly later as the magma became more
viscous {cooler) and/or vapour films at the magma-sediment interface broke down (cf.
Goto and McPhie 1996).

The intimate mixing of magma and wet sediment recorded by peperite is commonly a
precursory step towards explosive hydromagmatism. At Kiama, peperite has developed
by one or a combination of (1) non-explosive oscillation of vapour films at the magma-
sediment interface (contact-surface interaction); (2) non-explosive expansion of pore
water following enclosure of sediment in the magma or entrapment of sediment at the
magma-sediment contacts (bulk interaction), (3) cooling-contraction granuiation; and (4)
brecciation of the chilled parts of an intrusion-extrusion by flow of the hotter interior

(dynamic stressing).

Fluidisation of the host sediment during mixing with the melt is common to peperite
involving clasts from all of the textural groups. Lamination in sediment within peperite
can include remnants of original stratification {(e.g. Kokelaar 1982} and layering formed
by the streaming of fluid-sediment slurries through fractures and between clasts.
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Appendix B

Geological cross-sections for the Highway-Reward deposit
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Appendix C

Summary graphic lithological logs

HMO 36 REM 142

HMO 39 REM 147
HMO 40 REM 148
HMO 52 REM 551
HMO 60 REM 558
HMO 86 REM 560
HMO 89 REM 600
REM 113 REW 800
REM 116 REW 801
REM 118 REW 803 -
REM 122 REW 804
REM 123 REW 805
REM 128 REW 807

REM 132 REW 809



Lithology

A > Unaltered andesite
-
|: /\ ) Dacite
!
N T Rhvoli
o yolite
:: i Rhyodacite
~ Flow banding
=
O Perlite
N Non-stratified monomictic breccia
— (hyaioclastite)
9 Siltstone seams in coherent facies
U—-F. Siltstone-matrix-poor breceia (peperite)
;;9— Siltstone-matrix-rich breccia (peperite)
A Stratified monomictic breccia-sandstone
£ (resedimented hyaloclastite)
: ; Stratified polymictic breccia-sandstone
Crystal-vitric sandstone
Alteration
Clay
Sericite

Sericite-quartz
Quartz-sericite

Quartz + pyrite
Sericite-quartz-chlorite
Sericite-chlorite

Chlorite

F>Q

O&F

Crystal-pumice breccia-
sandstone

Crystal-lithic breccia-
sandstone

Pumice breccia

Siltstone

Massive pyrite-
chalcopyritetsphalerite

Semi-massive pyrite-
chalcopynitetsphalerite

Massive/banded pyrite-
sphaleritetbarite

Stringer veins

Intensely altered volcanic

Feldspar-bearing

Feldspar > quartz voleaniclastic
unit

Quartz & feldspar

Fault

Chlorite-sericite

Chlorite-sericite-quartz

Albite/K-feldspar-
sericife-quartz-chlorite

Hematitexquartz
Hematitetsericite+chlorite
Chlorite (4 sericite)-carbonate

Sericite-carbonate



Facies codes for alteration in velcanic rocks

{(a) Phase(s)

» mineralogical and textural changes accompany hydrothermal alteration. Each alteration
mineral can be referred to as a phase.

» each alteration domain comprises an area of rock that is characterised by a particular
aiteration mineral assemblage or by different proportions of similar minerals (phases) in
similar mineral assemblages.

C - chlorite S - sericite

SI - quartz K - albite/K-feldspar
H - hematite CB - carbonate

PY - pyrite

e.g. SI-S quartz-sericite  (alteration domain comprising quartz and sericite)

(b) Relative abundance (phases - domains)

« the least abundant mineral within an alteration domain is presented on the right hand side
{RHS) and the most abundant mineral on the left hand side (LHS).

e.g. S-SI (sericite-quartz)  dominant phase - subordinate phase
* in a rock comprising two or more alteration domains, the phase(s) comprising the
dominant domain are presented on the LHS and those of the remaining domains on the
RHS in order of relative abundance

e.g. C/8-SI (chlorite & sericite-guartz domains) dominant - subordinate

{c) Intensity
« allocation of a number to describe the intensity of alteration within each domain
Weak (1-2) Moderate (3-4) Strong to intense {5-6)
veg C (strong chlorite alteration)
S-SI* (moderate sericite-quartz alteration)
(d) Controls/textures
The distribution of alteration minerals and domains can be controlled by the pre-alteration

texture or superimposed structures. Alternatively, the alteration phases/ domains can
generate a range of new textures and patterns in the rock.

X - crystal am - apparent matrix
mx - matrix ac - apparent clast
¢ -clasts mo - mottled
fr - fracture (perlite, quench) w - wash
hf - hydraulic fracture fi - fiamme
fb - flow banding k - fleck
sh - shear ] - spoftty
v - vein pt - patchy
d - disseminated
ceg. Cps (strong pervasive chlorite alteration)

*ec.g. Cp’/SIF  (strong pervasive chlorite alteration and moderate, fracture-
controlled guartz alteration)
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Appendix D

Geochemical analyses of lavas and intrusions

Appendix D1 Mount Windsor Formation
Appendix D2 Trooper Creek Formation
Appendix D3 Trooper Creek Formation
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Appendix E

Geochemical analyses of ironstones

Appendix E1 XRD analyses for massive ironstone
Appendix E2 Major, trace and REE analyses
Appendix E3 Calculations for isocon plots



Appendix E1: XRD analyses for massive ironstone

Sample Quartz Hematite
95-130 95 5
95-150 85 15
95-316B 85 15
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Appendix E3: Caleculations for isocon plots

Trooper Creek prospect - massive ironstone

Element| least altered altered} ratio rank

{wt%)}| Cofi) 308| C{i) 210+276 alt./l.a n{i) F{i} Csfi) m] m{ave)| CA{i}
8i 70.65 81.605 1.155 1 0.01 1.16 1221.62

Fe 4.18 15.84 3.780 2 0.48 7.56 0.09]4225.55

Cr 0.0007 0.000565 0.807 3| 4285.71 2.42 823.53

Cu 0.0022 0.004085 1.861 4| 1818.18 7.45 2028.77

Nb 0.0011 0.000145 0.132 5] 4545.45 0,66 0.13 50.83

Zn 0.0074 0.001445 0.185 6 810.81 .17 Ma(%) | 123.43

Fb 0.0015 0.00084 0.560 7| A666.57 3.82 1044.2| 540.75

Y 0.0032 0.000385 6.120 8| 2500.00 0.96 0.12 37.66

Sr 0.0162 0.00057 0.035 9 555.58 0.32 -59.74

Ab 0.0099 0.000215 0.022 10| 1010.10 0.22 -758.15

Mn 0.12 0.0865 0.542 11 91.67 5.86 519.77

Zr 0.0162 0.001065 0.066 12 740.74 0.79 0.07 -24.78

Na 2.92 0 0.000 13 4.45 0.00 -100.00

Mg 1.38 0.355 0.257 14 10.14 3.60 194.34

Ca 1.15 0.23 0.200 i5 13.04 3.00 128.84

Al 13.84 0.68 6.048 16 1.16 0.76 0.05 -45.44

P 0.11 0.03 0.273 17 154.55 4.64 212.05

K 3.73 0.04 0011 18 4.83 0.19 -B7.73

Ti 0.49 0.035 0.071 19 38.78 1.36 0.07 -18.27

Ba 0.0851 0.01047 0.123 20 235.02 2.48 40.77

Trooper Creek prospect - tuffaceous ironstone
Element| least altered aliered| ratio rank

{wt%)| Cofi) 308 C{l) 275 alt./l.a n(i} F() Cs(i) m| m{ave)l CA(D)
Si 70.65 62.7 0.887 1 0.01 0.89 i165.5

Fe 4.19 25.85 6.169 2 0.48 12.34 0.3343] 1745.6

Cr 0.0007 0.00086 1.371 3] 4285.71 4.11 310.28

Cu 0.0022 0.00571 2.595 4] 1818.18 10.38 676.45

Nb 0.0011 0.00039 0.355 5| 4545.45 1.77 06.35 G6.0655

Zn 0.0074 0.0073 0.886 6 810.81 5.82 Ma(%) ] 195.12

Pb 0.0015 0.00182 1.213 7| 4666.67 8.49 199.16} 262.98

Y 0.0032 0.00084 0.263 8| 2500.00 2.10 0.28 -21.47

Sr 0.0162 0.00268 0.165 9 555.56 1.49 -50.51

Rb 0.0088 0.00075 0.078 10{ 1010.10 0.76 -77.34

Mn 012 0.1 0.833 11 91.67 9.17 149.3

2r 0.0162 0.00544 0.336 12] 740.74 4.03 0.34 0.4584

Na 2.92 0.88 0.301 13 4.45 3.92 -9.842

Mg 1.38 2.37 1.717 14 i0.14 24.04 413.77

Ca 1.15 0.11 0.086 15 i3.04 .43 -71.38

Al 13.84 4.86 0.351 16 1.18 5.62 0.35 5.0516

P 0.1 0.04 0.364 17 154.55 6.18 B.7852

K 3.73 0.12 0.032 18 4.83 0.58 -80.38

Ti 0.49 0.18 0.367 19 38.78 6.98 0.37 9.8962

Ba 0.0851 0.0475 0.558 20} 235.02 11.16 66.981




Appendix E3: Calculations for isocon plots

Trooper Creek prospect - stromatolitic ironstone

Element | lzast altered altered ratio rank
{wt%) | Co(i} 308 C(i} 200 alt./La n(i) F(i) Cs(i) m m{ave) | CA{i)
Si 70.65 88.31 1.250 1 0.01 1.25 362.97
Fe 4.19 6.82] 1.828 2 0.48 3.26 0.27 | 502.87
Cr 0.0007 0.00071 1.014 3 4285.71 3.04 275.68
Cu 0.0022 0.00185| o0.841 4 1818.18 3.36 211.46
Nb 0.0011 0.00043( 0.391 5 4545.45 1.95 0.39 44.79
Zn 0.0074 0.00092| o0.124 6 810.81 Q.75 Ma(s) | -53.95
FPb 0.0015 0.00211 1,407 7 4666.67 9.85 270.38 | 421.01
Y 0.0032 0.00118| 0.369 8 2500.00 2.95 0.37 36.58
Sr 0.0162 0.00551| 0.340 9 555.56 3.06 25.98
RBb 0.0089 0.00128( 0.129 10 010,10 i.29 «52.11
Mn 0.12 0.05| 0.417 11 91.87 4.58 54.33
Zr 0.0162 0.00405{ 0.250 12 740.74 3.00 .25 -7.40
Na 2.92 0.63] 0.216 13 4.45 2.80 -24.09
Mg 1.38 0.17] 0.123 14 10.14 1.72 -54.37
Ca 1.15 0.3] 0.261 15 13.04 3.91 -3.38
Al 13.84 2.45] 0.177 16 1.16 2.83 0.18 -34.43
P 0.11 0.04; 0.364 17 154.55 6.18 34.69
K 3.73 0.34} 0.091 18 4.83 1.64 -66.24
Ti 0.49 0.08| 0.163 i9 38.78 3.10 0.16 -39.53
Ba 0.0851 0.0138| d0.162 20 235.02 3.24 -39.94
Trooper Creek prospect - hematite-altered pumice breccia
Element | least altered aktered ratio rank
(wt%) | Cofi) 308 c(i) 274 alt./l.a n(i) F(i} Cs(i) m miave) | CA()
Si 70.65 57.34 0.812 1 0.01% 0.81 -31.13
Fe 4.19 17.05 4.069 2 0.48 g.14 1.1785 | 245.28
Cr 0.0007 0.00055 0.786 3 4285.71 2.36 -33.33
Cu 0.0022 0.00062 0.282 4 1818.18 1.13 -76.09
Nb 0.0011 0.00141 1.282 5 4545.45 6.41 1.28 8.7649
Zn 0.0074 0.01441 1.847 6 810.81 11.68 Ma(%) { 65.232
Pb 0.0015 0.00485 3.233 7 4666.67 22.63 -15.15 | 174.35
Y 0.0032 0.0034 1.063 8 2500.00 8.50 1.06 -9.845
Sr 0.0162 0.00284 0.175 9 555.566 1.58 -85.12
Rl 0.0099 0.02096 2.117 10 1010.10 21.17 79.646
Mn 0.12 0.04 0.333 11 91.67 3.67 -71.72
Zr 0.0162 0.01816 1.121 12 740.74 13.45 1.12 -4.882
Na 2.82 0.44 0,151 13 4.45 1.96 -87.21
Mg 1.38 2.28 i.652 14 10.14 23.13 40.19
Ca 1.15 0.18 0.157 15 13.04 2.35 -86.72
Al 13.84 13.54 0.978 16 1.16 15.65 0.98 -16.99
P 0.11 0.04 0.364 17 154.55 6.18 -69.14
K 3.73 4.76 1.276 18 4.83 22.97 8.2831
Ti 0.49 0.71 1.449 19 38.78 27.53 1.45 22.949
Ba 0.0851 0.0414 0.486 20 235.02 9.73 -68.72




Appendix E3: Calculations for isocon plots

Trooper Creek prospect - massive ironstone

Element] least altered altered| ratio rank

{wt%)} Coff) 308 C{i) 205+273 altJ/l.a n(i} F(i) Csli) m| mave) CA(})
Si 70.65 70.67 1.000 1 0.01 1.00 588.7901

Fe 4.19 24.935 5.951 2 0.48 11.90 0.14522| 3997.884

Cr 0.0007 0.000625 0.883 3 4285.71 2.68 514.8171

[&]] 0.0022 0.001035 0.470 4} 1818.18 1.88 223.9527

Nb 00011 0.000175 0.1589 5} 4545.45 .80 0.16 9.649235

Zn 0.0074 0.00263 0.355 B 510.81 2.13 Ma(%) | 144.7305

Pb 0.0015 0.0009 0.600 7| 4666.67 4.20 588.60] 313.1571

Y 0.0032 0.000645 0.202 8| 2500.00 1.61 0.20 38.79497

Sr 0.0162 0.000465 0.029 9 555.566 0.26 -80.2348

Bb 0.0089 0.00221 0.223 10 1010.10 2.23 53.7167

Mn 0.12 0.06 ¢.500 11 91.67 5.50 244.2976

Zr 0.0162 0.001865 0.115 12 740.74 1.38 0.12 -20.7265

Na 2.92 0 04.000 13 4.45 0.00 -100

Mg 1.38 0.495 0.359 14 10.14 5.02 146.9961

Ca 1.15 0.11 0.096 15 13.04 1.43 -34.1344

Al 13.84 1.77 0.128 16 1.16 2.05 0.13 ~11.9354

P 0.11 0.025 0.227 17 154.558 3.86 56.49881

K 3.73 0.42 0.113 18 4.83 2.03 -22.4638

Ti 0.49 0.06 0.122 19 38.78 2.33 0.12 -15.6822

Ba 0.0851 0.029005 0.341 20 235.02 6.82 134.6969

Trooper Creek prospect - horizon 4
Element| least altered altered| ratio rank

{wt%)| Cofi} 308 C{i) 316B alt.f/l.a n(i} F(i) Cs(i) mi m(ave) CA{D)
Si 70.65 90.9 1.287 1 0.01 1.29 0.0176{ 7185.31

Fe 4.19 7.47 1.783 2 0.48 3.57 10008.77

Cr 0.0007 0.00131 1.871 3} 4285.71 5.61 10511.21

Cu 0.0022 0.00036 0.164 4] 1818.18 0.65 B827.84

Nb 0.0011 0 0.000 5| 4545.45 0.00 Q.00 -100.00

Zn 0.0074 0 0.000 6] 810.81 0.00 Ma{%) -100.00

Pb 0.0015 0.00018 0.120 7| 4666.87 0.84 5570.11 580.41

Y 0.0032 0.00011 0.034 8| 2500.00 0.28 0.03 84.91

Sr 0.0182 0.00026 0.018 9| 6555.56 0.14 -8.90

Rb 0.0099 ¢ 0.000 10| 3010.10 0.00 -100.00

Mn 0.12 0.03 0.250 11 91.67 2.75 1317.53

Zr 0.0162 0.00015 0.009 12 740.74 0.11 0.0t -47.50

Na 2.92 O 0.000 13 4.45 0.00 -100.00

Mg 1.38 0.62 0.014 14 10.14 .20 -17.82

Ca 1.15 0.04 0.035 15 13.04 0.52 97.22

Al 13.84 0.09 0.007 16 1.186 0.10 0.01 -63.13

P 0.11 0.02 0.182 17 154.55 3.09 930.93

K 3.73 0 0.000 18 4.83 0.00 -100.00

Ti 0.49 0.01 0.020 19 3B.78 0.39 0.02 i5.72

Ba 0.0851 0.00206 0.024 20| 235.02 0.48 37.26




Appendix E3: Calculations for isocon plots

Trooper Creek prospect - western lenses (95-212, 214, 275)

Element] least altered altered} ratio rank

{wi%)] Co(i) 308 Cli) att./l.a n(l) F{i} Cs{i) mi m{ave)] CA(l)
Si 70.65 68.55 0.970 1 0.01 0.97 210.55
Fe 4.19 22.843916 5.452 2 0.48 10.90 0.3124}1644.99
Cr 0.0007| 0.00082667 1.181 3] 4285.71 3.54 277.98
Cu 0.0022( 0.00247333 1.124 4] 1818.18 4.50 259.83
Nb 0.0011] 0.00035333 0.321 5] 4545.45 1.61 0.32 2.81
Zn 0.0074( 0.00119333 0.161 6] 810.81 0.97 Ma(%) | -48.39
Pb 0.0015 0.001 0.667 7] 4666.67 4.67 220.06} 113.38
Y 0.0032 0.00131 0.408 8] 2500.00 3.28 0.41 31.03
Sr 0.0162[ 0.00150333 0.093 9] 555.56 0.84 -70.30
R 0.0088] 0.00240667 0.243 10 1010.10 2.43 -22.1%
Mn 0.12] 0.01666667 0.139 11 91.67 1.53 -55.55
Zr 0.0162 0.00406 0.251 12 740.74 3.01 0.25 -19.78
Na 2.92 0.012364 0.004 13 4.45 0.06 -08.64
Mg 1.38] 0.16333333 0.118 14 10.i4 1.66 -62.12
Ca 1.15] 0.02333333 0.020 15 13.04 0.30 -93.51
Al 13.84] 3.33333333 0.241 16 .16 3.85 0.24 -22.91
P 0.11] 0.03333333 0.303 17 1654.55 5.15 ~-3.01
K 3.73| 0.48333333 0.132 18 4.83 2.38 -57.67
Ti 0.49| 0.16668667 0.340 19 358.78 6.46 0.34 B.87
Ba 0.0851 0.05955 0.700 20 235.02 14.C00 123.97
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TEXTURAL  EFFECTS OF DEVITRIFICATION AND
HYDROTHERMAL ALTERATION IN SILICIC LAVAS AND
SHALLOW INTRUSIONS, MOUNT READ VOLCANICS (MRYV),
CAMBRIAN, TASMANIA
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Submarine silicic lava flows, domes and shallow intrusions in the
MRV comprise coherent , massive and flow banded Ilava,
hyaloclastite and autobreccia. Margins of lavas and intrusions were
formerly glassy whereas interiors varied from glassy to crystalline.
Perlitic fracturing, devitrification, and hydrothermal and diagenetic
alteration acted on primary volcanic textures to generate diverse
alteration textures, including false volcaniclastic textures, in the
originally glassy parts of the silicic lavas and intrusions.

Perlitic fracturing of glass commenced during cooling of the silicic
lavas and intrusions, generating pathways for migrating fluids.
Devitrification refers to the nucleation and growth of crystalline
minerals in glasses at subsolidus temperatures. “High” temperature
devitrification of glass accompanied emplacement, and generated
spherulites, lithophysae, and micropoikilitic texture. ‘“Low”
temperature devitrification of silicic glass to an assemblage of sericite,
chlorite, quartz and feldspar is attributed to interaction with syn-
volcanic hydrothermal fluids and early to late diagenetic fluids, and
can be referred to as hydrothermal and diagenetic alteration. The
textural effects of these alteration processes were strongly influenced
by the pre-existing texture which was created by eruption and primary
fragmentation, “high” temperature devitrification, and hydration.
Textures were either enhanced, modified or destroyed during “low”
temperature devitrification.

During lower greenschist facies metamorphism earlier mineral
assemblages were recrystallised or replaced by coarse metamorphic
minerals, overprinting or mimicking primary and alteration textures.

The outcome of this textural progression is that both coherent and
autoclastic facies of silicic lavas and shallow intrusions in the MWV
resemble matrix supported, monomict and polymict, welded and non-
welded volcaniclastic deposits.
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Facies architecture of a submarine felsic volcanic centre: Highway-Reward, Mount
Windsor Volcanics, Cambro-Ordovician, Northern Queensland

by
M.G. Doyle

Centre for Ore Deposit and Exploration Studies
University of Tasmania

Evaluating the prospectivity of ancient volcanic sequences for volcanic-hosted massive sulfide (VHMS)
deposits can be greatly enhanced by identifying original lithologies and emplacement processes {McPhie
et al., 1993). In particular, distinguishing between syn-velcanic intrusions, lava flows, domes and
cryptodomes and between autoclastic, resedimented volcaniclastic and epiclastic facies is critical in
recognising palaeo-sea floor positions which are important sites for exhalative and shallow sub-surface
base metal sulfide accumulation in many VHMS systems. Detailed core logging and petrography of host
rocks to the Cu-Au-Pb-Zn Highway and Reward deposits have revealed the nature of volcanic processes
in a near vent, subaqueous (submarine), below-wave-base depositional environment.

The volcanic facies architecture at Highway and Reward includes the products of both intrabasinal and
basin margin or subaerial eruptions. Rhyolitic, rhyodacitic and dacitic lava domes, partly extrusive
cryptodomes, syn-sedimentary intrusions and associated in situ and resedimented autoclastic deposits are
from an intrabasinal source. Contact relationships and phenocryst mineralogy, size and percentages
indicate the presence of up to nine distinct porphyritic units within an area of approximately I x 1 x 0.5
km at Highway-Reward. Massive coherent and flow banded lava, hyaloclastite, autobreccia and peperite
are the main component facies of the porphyritic units. Peperites vary from sediment-matrix-supported
breccias in which porphyry clasts are sparse (dispersed peperite), through sediment-poor jigsaw-fit
aggregates of porphyry clasts (compact peperite), to relatively coherent porphyry enclosing isolated
stringers and/or globules of sediment. Porphyry clasts vary from blocky with curviplanar margins (blocky
peperite) to lenticular with ragged margins (ragged peperite), which may reflect, respectively, the relative
importance of cooling contraction granulation and dynamic stressing of chilled lava surfaces during
emplacement. The peperitic upper margins to many porphyry sheeis demonsirate their intrusion into wet
unconsolidated sediments. The high relative density of magma to wet sediment favoured emplacement as
syn-sedimentary intrusions rather than extrusions (cf. McBirney, 1963; Walker, 1989). Dewatering and
induration of the sediment pile by early syn-sedimentary intrusions may have favoured the subsequent
eruption of lava domes and partly emergent cryptodomes at Highway-Reward. The shape and distribution
of lava domes and cryptodomes was further influenced by the positions of previously or concurrently
emplaced porphyritic units, and possibly by syn-voleanic faults which may have acted as conduits for
magma. Because they are constructional, lava domes and cryptodomes influenced subsequent
volcaniclastic sedimentation. Lava domes, cryptodomes and deposits of resedimented hyaloclastite
sourced from over-steepened dome margins are an important indicator of palaco-sea floor positions.

Porphyries intruded or were overlain by a volcaniclastic and sedimentary facies association comprising
suspension-settled siltstone, graded turbiditic sandstone and thick mass-tflow-emplaced pumiceous- and
crystal-rich sandstone-breccia. Pumiceous mass-flow deposits are emplaced rapidly in large volumes,
erupted infrequently and are widely distributed (McPhie & Allen, 1992), and so provide an important
framework for correlation within the Trooper Creek Formation at Highway-Reward. Quartz-feldspar and
feldspar only, pumiceous and crystal-rich sandstone-breccia units are non-welded, up to 65 m thick, and
normally graded with fine grained tops, and in some instances, polymict lithic-rich bases. Deposition
from high-concentration turbidity currents sourced from explosive eruptions at a subaerial or shallow
subaqueous basin margin centre is suggested.

Perlitic fracturing, devitrification, hydrothermal and diagenetic alteration have acted on originally glassy
parts of lavas and intrusions, and pumiceous breccias to generate diverse alteration textures, including
false volcaniclastic and welding textures. Alteration of lavas commenced during cooling from magmatic



temperatures (high temperature devitrification) generating spherulites, micropoikilitic texture and
lithophysae. Hydration of residual glass to form perlitic fractures supplemented fracture and matrix
permeability generated by autoclastic processes, both of which were important for migration of fluids
during hydrothermal and diagenetic alteration. Hydrothermal and diagenetic alteration were also
influenced by textural and compositional domains generated during high temperature devitrification.
Apparent polymict and monomict volcaniclastic textures formed during this textural progression further
evolved during greenschist facies metamorphism and tectonic deformation. Pumiceous breccias show the
textural effects of early polyphase diagenetic and syn-volcanic hydrothermal alteration. Initial
heterogeneous quartz-feldspar alteration replaced glassy vesicle walls of individual pumice shreds and
domains within breccias, thereby largely preserving non-welded tube-vesicle textures. Remaining pumice
clasts were phyllosilicate-altered and flattened by diagenetic compaction, resulting in false welding
textures. Intensely silicified pumice shreds isolated in chloritic domains resemble felsic volcanic lithic
fragments.

The density and complexity of non-explosive, coherent, intrusive-extrusive units at Highway-Reward is
similar to that described by Horikoshi (1969) for Kuroko host sequences in the Miocene Kosaka
Formation of NE-Japan. Analogues of the initial, explosive, tuff cone forming eruptions at the "Kosaka
volcano" are not recorded in the stratigraphy at Highway-Reward, possibly reflecting differences in the
volatile content of erupted magma, and/or the external confining pressure (lithostatic and hydrostatic
pressure).
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A SILICIC SUBMARINE SYN-SEDIMENTARY INTRUSIVE -
DOME - HYALOCLASTITE HOST SEQUENCE TO MASSIVE
SULFIDE MINERALISATION: MOQUNT WINDSOR
VOLCANICS, CAMBRO-ORDOVICIAN, AUSTRALIA
DOYLE. M.G., and McPHIE, J., C.O.D.E.S., University of
Tasmania, Hobart, Tasmania 7001, Australia.

The Cu-Au-Pb-Zn Highway and Reward massive sulfide deposits are
hosted by a silicic intrusive and volcanic sequence intercalated with
sedimentary facies that indicate a submarine, below-storm-wave-base
environment of deposition. Contact relationships and phenocryst
mineralogy, size and percentages indicate the presence of up to nine
distinct porphyritic units in an area of 1 x 1 x 0.5 km. The peperitic
upper margins to many porphyries demonstrate their intrusion into
wet unconsolidated-sediment. Syn-sedimentary intrusions, partly
emergent cryptodomes, lava domes, and associated in situ and
resedimented autoclastic deposits have been recognised. These are the
principal facies in the environment of mineralisation and represent a
proximal facies association from intrabasinal, intrusive/extrusive,
non-explosive magmatism. The shape, distribution and emplacement
mechanisms of porphyritic units were influenced by: (a) the relative
density of magma to wet sediment; (b) the positions of previously or
concurrently emplaced porphyries; and (c) possibly by syn-volcanic
faults which may have acted as conduits for magma. Lava domes,
partly emergent cryptodomes, and deposits of resedimented
hyaloclastite and peperite are important indicators of palaco-sea-floor
positions at Highway-Reward. Sills and cryptodomes may have
influenced sea- floor topography and therefore sedimentation, but do
not mark sea-floor positions. Massive sulfide ores are primarily sub-
sea-floor syn-volcanic replacements of the host sedimentary rocks,
syn-sedimentary intrusions, lava domes, and autoclastic breccia.

Porphyries intruded or were overlain by a volcaniclastic and
sedimentary facies association comprising suspension-settled
siltstone, graded turbiditic sandstone and thick, non-welded pumice-
and crystal-rich sandstone-breccia. Pumiceous and crystal-rich
deposits record episodes of explosive silicic volcanism in an
extrabasinal or marginal basin environment, and were emplaced by
cold, water-supported, high-concentration turbidity currents.
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EVALUATION OF THE ROLE OF CAMBRIAN GRANITES IN THE GENESIS OF WORLD CLASS
VOLCANOGENIC-HOSTED MASSIVE SULPHIDE DEPOSITS IN TASMANIA

Ross R. Largei, Mark Doylei, David Cooke! and Ollie Raymond2
lcODES Key Centre, Geology Dept., University of Tasmania, HOBART TAS 7005
2AGSO, GPO Box 378, CANBERRA ACT 2601

Summary - New data on the distribution, composition and alteration zonation of Cambrian granites in the
Mt. Read Volcanics provide evidence that there may have been a direct input of magmatic fluids during the
genesis of the copper-gold volcanogenic-hosted massive sulphide (VHMS) mineralisation in the Mt. Lyell
district,

INTRODUCTION

There has been considerable debate on the role of granitic magmas during the generation of volcanic hosted
massive sulphide deposits; are they simply heat engines driving seawater (e.g. Ohmoto & Rye 1974, and
Solomon 1976) or do they directly supply magmatic components to ore-forming solutions (e.g. Henley &
Thornley 1979, Stanton 1985)? Pioneering research by Solomon and his students in the Mount Read
Volcanics (e.g. Solomon 1976, Solomon 1981, Polya et al 1986 and Eastoe et. al. 1987) clearly
demonstrated a relationship between hydrothermal alteration and sulphur isotope zonation around the
granites, indicating that the granites acted as heaters for the ore-forming convective fluid. In this paper we
provide evidence to suggest that the Cambrian granites may have also provided important metal
contributions to the ore-forming fluid, especially Fe, Cu, Au, P, F £ Tt and Zr

FACTORS LINKING THE CAMBRIAN GRANITES TO MINERALISATICN

Distribution; Two narrow bodies of Cambrian granite (Murchison Granite and Darwin Granite) intrude the
eastern margin of the Central Volcanic Complex (CVC) in the Mt. Read Volcanics. Interpretations based
on magnetic and gravity data indicate that the two granite bodies form a semi-continuous narrow vertical
sheet of granite 65 ki long and about 2 kin wide. A series of copper-gold and basemetal prospects occur
along the margins of the granite sheet {e.g. Prince Darwin, Jukes Pty., Lake Selina). The Mt, Lyell Cu-
Au VHMS deposits are located immediately west of the projected continuation of the subsurface granite.

Timing: Previous mapping by Corbett (1989) suggested that the Murchison granite intruded the Tyndal
Group volcanics (which unconformably overlie the CVC) and is therefore younger than the VHMS
deposits. However, later work (e.g. Corbett, 1992) has revised this interpretation, and recent dating by
Perkins and Walshe (1993) has confirmed that the Murchison granite has an age of 501 £ 5.7 Ma {Ar/AD,
the same age as the host rocks to the massive sulphide deposits.

Composition: Both the Murchison and Darwin granites are high-K, magnetite series granites which show
anomalous enrichment in barium and potassivm. The Murchison granite varies in composition from
granodiorite to granite (58 to 78% SiOq; Abbott, 1992), while the Darwin granite is composed of two

highly fractionated granite phases (74-78% SiO9; Jones, 1993). KO varies up to 8.5% and Ba up to
3000 ppm; however, some of this enrichment is related to alteration.

Alteration: Well developed zones of hydrothermal alteration have been mapped around the margins of the
granites (e.g. Polya et, al 1986, Eastoe et. al. 1987, Hunns 1937, Doyle 1990). An extensive zone {Z)

of pink K-feldspar alteration extends from the outer part of the granites into the surrounding volcanics. An
overlapping shell (Z4) of chlorite = pyrite + magnetite alteration overprints and extends outwards from the

K-feldspar zone. Sericite-chlorite + pyrite forms a distal alteration zone (Z3). At both Jukes Pty. and
Lake Selina, Cu + Au mineralisation occurs in the chlorite  pyrite & magnetite zone (7).



Magnetite - apatite association: The strongest link between the granites and VHMS Cu-Au mineralisation
is provided by the common occurrence of magnetite - apatite - Cu + Au vein style and disseminated
mineralisation both within the Z2 alteration halo of the granites and within the centre of the Prince Lyell
ore deposit in the Mt. Lyell VHMS district. A good linear correlation exists between Cu and P5Os, and

Fe and PpO5 both within the mineralised alteration halo of the granites and in the Prince Lyell ores.
Oxygen isotopes indicate that the magnetite veins within the granite halo and the Prince Lyell deposit

have d180 values that are consistent with a magmatic source (Doyle 1990, Raymond [993). Apatite,
which is commonly intergrown with magnetite, pyrite and chalcopyrite, has consistently high F/Cl
ratios, with a mean of about 6 wt% F

RELATIONSHIP OF COPPER-GOLD TO LEAD-ZINC-COPPER VHMS DEPOSITS

The Mt. Lyell field contains both stringer-style copper-gold deposits such as Prince Lyell and separate
stratiform lead-zinc-copper deposits such as Comstock and Tasman & Crown Lyell Extended. Most
previous workers (e.g. Solomon 1976, and Walshe & Solomon 1981) consider that the Cu-Au and Pb-Zn-
Cu deposits formed as part of the same hydrothermal system; the Cu-Au stringer-style forming by
subsurface replacement and the Pb-Zn-Cu massive sulphides by contemporaneous seafloor exhalation.
Although our work suggests a source for Cu and Au from the Cambrian granites, the source for Pb, Zn,
Ag and S remains unresolved and may be either magmatic or related to seawater leaching.

CONCLUSIONS

Cambrian granites in the Mt. Read Volcanics form a thin linear discontinnous sheet 65 km long which is
spatially related to Cu-Au mineralisation, including the VHMS deposits at Mt. Lyell. The highly
fractionated, oxidised, magnetite series granites have overlapping alteration shells of K-feldspar, chlorite-
magnetite and sericite. Preliminary evidence suggests that the VHMS copper-gold mineralisation at Mt.
Lyell may be associated with fluids enriched in Fe-Cu-Au-Po05-F-Zr-Ti released directly from the granite

magma.
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Abstract

An analysis of the distribution, composition and alteration zonation of Cambrian granites which intrude the Mt Read
Volcanics of western Tasmania pravides evidence that there may have been a direct input of magmatic {luids containing Fe.
Cu, Au and P to form the copper~gold volcanic-hosted massive sulphide (VHMS) mineralisation in the Mt Lyell district.

Interpretation of regional gravity and magnetic data indicates that a narrow discontinuous body of Cambeian granite (2—-4
km wide) extends along the eastern margin of the Mt Read Volcanic belt for over 60 km. The Cambrian granites are altered
magnetite series types which show enrichment in barium and potassium. and contrast markedly with the fractionated ilmenite
series Devonian granites related to tin mineralisation elsewhere in the Dundas Trough.

Copper mineralisation occurs in a linear zone above the apex of the buried Cambrian granite body at the southern end of
the belt, from Mt Darwin to the Mt Lyell district over a strike length of 25 k. Gold and zinc mineralisation are
concentrated higher in the volcanic stratigraphy more distant from the granite. Overlapping zones of alteration extend from
the granite into the surrounding voleanic rocks. An inner zone of K-feldspar alteration is overprinted by chlorite alteration.
which passes outwards into sericite alteration. Magnetite & pyrite + chalcopyrite 4 apatite mineralisation is concentrated in
the chlorite alteration zone as veins and low grade disseminations. The Mt Lyell copper—gold stringer and disseminated
mineralisation is hosted in felsic volcanic rocks 1 to 2 km west of the interpreted buried granite position. Magnetite—apatite
+ pyrite veins in the Prince Lyell deposit at Mt Lyell are very similar to the veins in the halo of the granite. further south,
and provide evidence for magmatic fluid input during the formation of the copper—gold VHMS deposits.

A model involving deeply penetraling convective seawater, mixing with a magmatic fluid released from the Cambrian
granites. best explains the features of VHMS mireralisation in the Mt Lyell district,

1. Introduction

There has been considerable debate over the past
25 years on the role of granitic magmas during the
generation of volcanic-hosted massive sulphide
(VHMS) deposits. Some workers (e.g. Urabe and

Sato, 1978; Henley and Thornley, 1979; Sawkins
and Kowalik. [98[; and Stanton, [985, Stanton,
1990) have argued for a direct input of volatiles and
metals from the magma to form the ore seclutions,
while others (e.g. Kajiwara, 1973; Spooner and Fyfe,
1973; Olinoto and Rye, 1974; Solomon, 1976; Large,
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