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Clast shape and textural associations in peperite as a guide to
hydromagmatic interactions: Late Permian basaltic and basaltic

andesite examples from Kiama, Australia

Introduction

Interaction between magma or lava and wet unconsolidated sediment is common in

environments where sedimentation accompanies volcanism, especially in subaqueous

settings where large volumes of magma are emplaced sub-seafloor as syn-sedimentary

intrusions. A variety of processes and products attributable to magma-wet sediment

interaction have been recorded, including intrusive pillows (Snyder and Fraser 1963a,b;

Kano 1991), effusive magma-sediment slurries (Lawson 1972, Leat and Thompson

1988, Sanders and Johnston 1989), and peperite (Fisher 1960, Schmincke 1967,

Williarns and McBirney 1979, Brooks et al. 1982, Kokelaar 1982, Busby-Spera and

White 1987, Brooks 1995). Peperite is a genetic term for a rock formed by the mixing of

magma or lava with wet sediment. Peperite occurs at contacts between intrusions and the

host sediment (Hanson and Schweickert 1982, Branney and Suthren 1988), along basal

contacts of lavas (Schmincke 1967) or surrounds burrowing parts of lavas. Here I

describe peperite and related structures in basaltic and basaltic andesite lavas and syn­

sedimentary intrusions from the Late Permian Broughton Formation, Kiama, New South

Wales. Because of continuous coastal exposure at this locality it has been possible to

interpret from field observations the significance of textures and structures in peperite.

Peperite is useful for demonstrating contemporaneous volcanism and sedimentation, and

because it preserves evidence of progressive stages in hydrovolcanic interactions (non­

explosive mixing, steam explosions). Busby-Spera and White (1987) identified two

textural types of peperite: in blocky peperite, dasts derived from the magma have

polyhedral blocky shapes and commonly fit together like a jigsaw puzzle, whereas in

globular peperite, juvenile dasts are bulbous. In this study variations in dast shapes and

interrelationships are interpreted in terms of changing hydrovolcanic interactions during

magma-sediment mixing. In particular, the role of host-sediment properties in

determining peperite type is assessed and associations between peperitic, autoclastic and

coherent facies are examined.

Terminology and description of peperite

Peperite can be identified, described and interpreted on the basis of (I) igneous dast

shape; (2) fabric; and (3) location with respect to the margin of an igneous body. Clast
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shapes described in this study are present in many other examples of peperite (e.g.

Busby-Spera and White 1987, Branney and Suthren 1988, Hanson 1991, Hanson and

Wilson 1993, McPhie 1993, Rawlings 1993, Brooks 1995). Important insights into

hydromagmatism, and intrusive and mixing processes might be gained from the

investigation of the complex relationships between different clast types and textural

associations, so it is important that complexities are recorded. Peperite consisting of one

clast type is termed blocky, globular, ragged or platy peperite following on from Busby­

Spera and White (1987). Peperite containing a high proportion of clasts from more than

one textural group is here classified as mixed peperite and the clast shapes indicated (e.g.

mixed ragged-globular peperite). In peperite with a closely packed fabric (Hanson and

Wilson 1993), sediment fills joints and fractures that define pseudo-pillows (Watanabe

and Katsui 1976; Yamagishi 1987, 1991), and columns and polyhedral joint blocks

(Brooks et aI., 1982) in the coherent facies. Peperite with dispersed fabric (Hanson and

Wilson 1993) is a sediment matrix-rich breccia with clasts and tongues of the igneous

component. Peperite occurs at the margins of lavas and intrusions and is present as pods,

sheets and dykes in massive coherent facies within the interior of the units.

Geological Setting

Peperite examined in coastal exposures at Kiama, New South Wales occurs in the upper

part of the Late Permian Broughton Formation. The Broughton Formation and overlying

coal-bearing Pheasants Nest Formation form part of a conformable regressive

sedimentary succession within the Permo-Triassic Sydney Basin (Cas and Bull 1993).

The Broughton Formation and the lower part of the Pheasants Nest Formation include

both sedimentary and volcanic facies associations (Raam 1969). The sedimentary facies

association is dominated by thin to thickly bedded immature sandstone, pebble

conglomerate and mudstone of volcanic provenance, and occurs as four intervening units

between volcanic facies of the Broughton Formation. Units are interpreted as high­

density turbidity current and tractional current deposits emplaced in a storm- and tide­

dominated, shallow marine environment (Bull and Cas 1989). Dropstones within the

lower part of the Broughton Formation suggest that periodic coastal sea ice and/or

icebergs were present during deposition. Dips of bedding rarely exceed 2°. The volcanic

facies association comprises nine shoshonitic basaltic to basaltic andesite lavas and syn­

sedimentary intrusions, previously termed latites, and associated autoclastic breccia and

peperite (Carr 1985). Three of the lowermost members of Broughton Formation are

relevant to this study. They are, from oldest to youngest, the Blow Hole Latite Member,

the Kiama Sandstone Member and the Bumbo Latite Member (Fig. 1). The Blow Hole

Latite Member is holocrystalline and pOlphyritic, containing euhedral to subhedral
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plagioclase and pyroxene phenocrysts, and chloritic pseudomorphs of olivine

phenocrysts, in a fine-grained pilotaxitic groundmass. The groundmass consists of

plagioclase microlites, pyroxene microlites, chlorite, an unidentified opaque phase

(magnetite?), and interstitial potassium feldspar. The petrography of the Bumbo Latite

Member is similar, although olivine phenocrysts are absent and the groundmass is finer

grained. Volcanic and sedimentary facies associations are well exposed in coastal cliffs at

Kiama. However, outcrop inland is restricted to quarries and road cuts.

Contact Relationships

The Blow Hole Latite Member is a 50 m thick basaltic andesite sheet which was initially

interpreted as a tripartite intrusion (Raam 1964). However, Bull and Cas (1989)

considered that only the middle unit of the sheet was partly intrusive, and regarded it as a

lava which locally burrowed into wet sediment. This study demonstrates that the Blow

Hole Latite Member can be divided into two flow units with peperitic contacts suggesting

their intrusion into wet unconsolidated sediments. A thin, poorly exposed horizon of

bedded sandstone (Rifle Range Tuff Member, Raam 1964) exposed at Rifle Range Point

(Fig. I) separates the upper and lower flow units. The middle flow unit proposed by

previous authors is a peperitic facies of the lower flow unit. The upper and lower units

are interpreted as syn-sedimentary intrusions, due to the volume and extent of peperite

development. However, critical facies relationships required to discount a burrowing

flow are absent due to poor exposure inland.

The Bumbo Latite is a 150 m thick massive, columnar jointed basalt sheet above the

Kiama Sandstone Member (Fig. I). The base of the member is locally peperitic and the

upper contact was not examined in this study. The Bumbo Latite also has been

interpreted as a tri-composite extrusion (Bowman 1974).

At map scale the sheets are broadly concordant with bedding in the enclosing sedimentary

rocks. However, at outcrop scale contacts vary from relatively planar to complex and

highly irregular. Unmixed lower contacts vary from smooth to undulating with 10-20 cm

amplitude load casts of coherent basaltic andesite separated by flames of sandstone.

Underlying sedimentary rocks are relatively undisturbed except for minor soft-sediment

deformation attributable to the loading effect of the sheets.
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Figure I. Geology of the Permian Broughton Formation at Kiama, showing complex relationships
between peperite, hyaloclastite and coherent facies in the Blow Hole and Bumbo Latite Members.
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Facies of the Blow Hole and Bumbo Latite Members

Coherent Facies

Regular, well developed, wide (to 1 m) columnar joints characterise the massive interiors

of the Bumbo and Blow Hole Latite Members. In places (e.g. Kaleula Point) column

faces are dissected by interconnected, broadly curved tortoise shell joints which, in three

dimensions, define equant polyhedral blocks. More often columns are cut by less regular,

curved and planar joints. Column axes are generally subvertical and perpendicular to

sheet margins. However, along contacts with some dyke-like peperitic domains in the

Blow Hole Latite Member, column axes are subhorizontal at contacts, but progressively

steepen and become subvertical a few metres into massive basaltic andesite (Fig. 2, 3A).

Along the top of peperite dykes, columns are subvertical, but are cut at right angles by

concentric joints spaced a few 10' s of centimetres apart (Fig. 2). Concentric joints mirror

the upper margin of the peperite domains, forming a wavy pattem where peperite dykes

are closely spaced.
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Figure 2. Cartoon illustrating the facies and facies relationships of lower flow unit in the Blow Hole
Latite intrusion. I - columnar jointed coherent facies; 2 - blocky jointed coherent facies with pseudo­
lobes and pseudo-pillows; 3 --<lispersed peperite facies; 4 - dispersed peperite in the interior of the sheet;
5- closely-packed peperite; 6 - hyaloclastite; 7 - undisturbed sediment.

Near contacts with sedimentary facies or peperitic zones, columnar joints merge into a

several metre wide interval of blocky jointing. Widely spaced, smoothly curved,

intersecting joints outline polyhedral blocks, 2-6 metres in length (pseudo-pillows,

Watanabe and Katsui 1976; Yarnagishi 1987, 1991), many of which are internally

jointed. Joints are progressively more closely spaced within a metre or two of contacts
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(cf. Brooks et aI., 1982) dissecting the rock into small blocks, 5 to 30 cm across. Some

blocks are defined by intersecting radial and concentric joints which diverge outward

from small (20-30 cm) discontinuous apophysis-like tongues of peperite (Fig. 3B).

Blocky jointed basalt or basaltic andesite is in direct contact with peperite along part or all

of some contacts and elsewhere grades into hyaloclastite.

Locally in the Blow Hole Latite Member, subvertical platy joints form an intervening zone

between columnar jointed and blocky jointed coherent facies. Platy joints are laterally

continuous, spaced up to ].5 metres apart, dissected by crude blocky jointing, and

conform to contacts with peperitic and blocky jointed domains. Subhorizontal joints up to

10' s of metres in length form bifurcating networks in both platy- and blocky-jointed

domains.

Hyaloclastite Facies

Exposures of hyaloclastite are monornictic and characterised by jigsaw-fit of polyhedral

blocky and cuneiform clasts separated by minor amounts of finely comminuted magmatic

rock. In the Blow Hole Latite Member, in situ hyaloclastite may be the brecciated

equivalent of large parts of the coherent facies or form a narrow selvedge between blocky

jointed coherent facies and peperite. Often, clasts decrease in size approaching peperitic

contacts and some fractures have been invaded by sediment, forming peperite.

At Blow Hole Point, small pods of hyaloclastite are enclosed by massive columnar and

blocky jointed basaltic andesite. Almost continuous outcrop between Blow Hole Point,

Black Beach and Pheasant Point (Fig. 1) provides a section through the outer interior to

the margin of the upper Blow Hole Latite Member, and suggests that it is a sill. The

hyaloclastite facies can be regarded as an intermediate facies between the massive

columnar- and blocky-jointed coherent facies and marginal peperite. Features which

characterise this transition are, from the margin inward, a rapid decrease in peperite to

hyaloclastite, reduction in the degree of brecciation, and replacement of blocky jointing by

columnar jointing as the major joint style.

Closely-packed peperite

Peperite with closely-packed fabric occurs only within the interior of the Blow Hole Latite

Member. Blocky jointed coherent facies merge into domains of closely-packed peperite

where sediment is present between widely spaced, smoothly curved, intersecting joints

which define polyhedrally jointed blocks (Fig. 2). More continuous sediment-filled

subhorizontal joints, up to 30 m in length, outline pseudo-pillows (Fig. 3C). Pseudo­

pillows are dissected by internal joints, which are free of sediment, or else separated by a

thin or thick infill of sediment (cf. Yamagishi et al. 1989). Basaltic andesite in the interior

and margins of pseudo-pillows is texturally equivalent to that of the massive facies.



Figure 3.

Outcrop features of the Blow Hole Latite Member (A-D, F) and Bumbo Latite Member
(E).

(A) Transition from blocky jointing (b) to columnar jointing (c) passing out from the
margin of a dyke-like body of dispersed peperite within the interior of the intrusion (p).
Columns are sub-horizontal at the contact with the dyke but progressively steepen and
become subverticaI. Pack for scale. Marsden Head.

(B) Lobate incursions (arrow) of peperite (p) into blocky jointed coherent facies (b).
Within the coherent facies, trails of ellipsoidal vesicles conform to the shape of some parts
of the contact. Scale 10 cm long. KendalIs Point.

(C) Closely-packed peperite showing progressive dismembering of coherent basalt into
pseudo-pillows (p). Sediment fills fractures between subhorizontal fractures (arrow) and
fractures in pseudo-pillows. KaIeula Head.

(D) Cross section through lobes (I) dissected by incipient columnar and blocky jointing
and partially enclosed in altered dispersed peperite (p). CIasts in the breccia and adjacent to
lobe margins display jigsaw-fit texture demonstrating that the lobe and breccia are
cogenetic. Marsden Head.

(E) Detailed drawing from photograph. Type D lobes (I) enclosed in cogenetic peperite
have altered margins (a) and unaltered jointed (j) and cores (u). Parts of some lobe
margins are strongly vesicular (v). Peperite with vesicular c1asts (vp) contrasts with
peperite-dominated by poorly vesicular polyhedral blocky c1asts (bp). Scale 10 cm long.
Bombo Point.

(F) Lamination (arrow) and concentration of lithic c1asts (I) on the ?lee side of a juvenile
c1ast (j) derived from the walls of the enclosing sheet fracture in closely-packed peperite.
Juvenile c1ast is 2.5 cm long. Kaleula Head.
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However, along some contacts with sediment less than a millimetre of the groundmass is

black in colour and charged with a fine unidentified opaque phase.

Subhorizontal fractures in closely-packed peperite are filled with up to 10 cm of siltstone

to sandstone. However, thicknesses of sediment vary considerably along their length.

Towards fracture terminations, infills decrease to a sub-millimetre film which is present

along the whole length of the fracture, or else fractures are sediment free. In some cases,

segments or the terminations of subhorizontal fractures comprise stacked sets of

interconnected, sediment-filled, en-echelon fractures. Similar, but subvertical en-echelon

fractures characterise some outcrops of the polyhedrally jointed coherent facies. En­

echelon fractures are interpreted as tensile fractures formed by non-rotational, dilational

strain during the invasion of overpressured sediment (cf. Beach 1975, Francis 1982).

The surfaces of subhorizontal fractures are sharp, but have an irregular form which

reflects small-scale steps in the direction of fracture propagation and incomplete

exfoliation of incipient clasts from some walls. Platy clasts (cf. Brooks 1995) liberated

from fracture surfaces form jigsaw-fit aggregates separated by minor amounts of

sediment matrix. Apophyses of sediment extend a few centimetres in from some sheet

fracture walls and locally have formed peperite comprising globular-shaped clasts.

Close to domains of dispersed peperite, outlines of pseudo-pillows are masked as the

proportion of sediment-filled fractures increases. Remnants of large pseudo-pillows

enclose multiple smaller pseudo-pillows which, with increasing brecciation, disintegrate

into aggregates of blocky to ellipsoidal clasts separated by sediment matrix. Wedge­

shaped, sediment filled fractures penetrate the pseudo-pillows. The largest fractures are

over I m in length and, where closely spaced, generate complex serrated margins to

pseudo-pillows. Thinner wedges extending in from the surfaces of larger fractures locally

merge, outlining platy clasts surrounded by sediment.

At Marsden Head, well developed, subvertical columnar joints, cut at right angles by

subhorizontal joints, extend upward from a subhorizontal sheet-like body of dispersed

peperite in the interior of the sheet. An irregular, roughly ellipsoidal section of columnar

jointing, 10 m wide and 5 m high, that occurs Im above the peperite is dissected by

blocky joints and sediment-filled fractures. Ghosts of former columnar joints are visible

towards the centre of the zone, but are best observed along gradational contacts with

intact columnar jointed basaltic andesite. Domains of blocky jointed basaltic andesite are

dissected by fine sediment-filled fractures that are connected to the underlying peperite by

a network of sediment veins (cf. Brooks et aI., 1982). Some veins follow the margins of

column faces, but most form bifurcating networks within the blocky jointed interiors of

remnant columns. Farther to the south, sediment fills the space between some column
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faces. Relationships at these two localities suggest that columnar jointing was initiated

synchronous with peperite fonnation.

Dispersed Peperite

Peperite with dispersed fabric passes into massive blocky jointed coherent facies, or

grades through an intervening zone of closely-packed peperite as the proportion of

sedimentary matrix between clasts decreases. Contacts with the enclosing facies are

highly irregular.

Dispersed peperite occurs from the base to top of the Blow Hole Latite and does not

appear to be restricted to a specific level. In map view, this facies forms elliptical pods

and interconnected peperite tongues, a few metres wide and up to 10 m long, isolated in

blocky jointed coherent facies. Tongues separate lobe-like, blocky jointed, coherent

domains which extend in from the surrounding coherent facies. In cross-section, dyke­

like bodies, irregulal" branching networks, and sheets of peperite are surrounded by

coherent facies or extend up from the base of the sheets to more than 10 m into coherent

facies. Pods and tongues of peperite apparently isolated within coherent facies are

interpreted as cross-sections through dykes (cf. Brooks et al., 1982). However, others

are evidently rootless and direct connections to the enclosing sedimentary package are not

apparent. Elliptical domains of coherent basalt or basaltic andesite partially or completely

enclosed in peperite resemble cross-sections through lava-lobes (Figs. 3D, 4, 5A-B).

Most peperitic domains include poorly- and strongly-vesicular parts, resulting in apparent

polymictic breccias in which pods and fingers of contrasting vesicularity are juxtaposed.

Clasts contain a uniform to heterogeneous distribution of vesicles ranging from 0.1 to 3.5

cm in diameter, and vary from non-vesicular to containing around 15% vesicles; some are

nearly scoriaceous. At the margins of some poorly vesicular coherent facies, a coherent

vesicular rind passes out into peperite comprising vesicular clasts (Fig. 4), demonstrating

that the facies are cogenetic. Along some contacts within the Blow Hole Latite Member,

lobate apophyses of peperite (10-20 cm across) comprising vesicular clasts are enclosed

in weakly-vesicular coherent facies (Fig. 3B). Aligned ellipsoidal vesicles in the weakly­

vesicular coherent basalt-andesite mirror the broad shape of some of these contacts. In

many apophyses, sediment is concentrated at the top of the structure, possibly trapped

there as expanded pore water cooled, preventing further advance into the still plastic

basaltic andesite. Clasts associated with vesicular domains have fluidal and

globular shapes although some clasts in poorly vesicular domains also have these shapes.

In some outcrops (e.g. Kendalls Point, Marsden Head), in situ hyaloclastite at the

margins of the coherent facies passes into dispersed peperite containing jigsaw-fit

aggregates of polyhedral b10cky clasts. Within the peperite, groups of poorly vesicular

clasts with jigsaw-fit texture are enclosed by areas where clast rotation and separation are
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evident. In some exposures (e.g. Kendalls Point), wide (5-40 cm) subhorizontal

sediment-filled fractures can be traced through the breccia. Fracture walls are irregular

and stepped.

Occurrences of dispersed peperite at the margins of the Blow Hole and Bumbo Latite

Members consistently have a dispersed fabric. This is best illustrated along the contact

between the Bumbo Latite Member and the underlying Kiama Sandstone Member at

Bombo Point. Vesicular domains occur as small pods in coherent poorly vesicular basalt

and as peperite which encloses small lobe-like bodies of poorly vesicular basalt up to 0.8

m in length (Figs. 3E, 5D). Away from contacts, there is a transition from tube-vesicles

to round and ellipsoidal vesicles in coherent vesicular basalt. Margins of large lobes and

all of the smallest lobes are light green in colour and altered, whereas lobe interiors are

black and unaltered. Lobe-like bodies show progressive disintegration into jigsaw-fit

aggregates of blocky clasts. Jigsaw-fit texture is poorly preserved in peperite containing

vesicular clasts. Contacts between poorly- and strongly-vesicular domains are mostly

sharp. However, mixing of vesicular and non-vesicular clast types has locally generated

texturally complex peperite. Sandstone containing juvenile vesicular clasts fills some

fractures in the poorly vesicular lobe-like bodies, so that the lobes appear to intrude

earlier, texturally distinct peperite.

The upper contact of the upper Blow Hole Latite Member is extensively exposed on the

shore platform at Pheasants Point. Pods, tongues and sheets of massive to blocky jointed

basaltic andesite up to 5 m in length are enclosed in cogenetic peperite (Fig. 5e). Parts of

some tongues are cut by wide to narrow sediment-filled fractures which dissect them into

smaller bodies and irregular blocks with jigsaw-fit geometry. Small digitate apophyses of

basaltic andesite up to 5 cm in length extend out from lobe margins. In detail, much of the

peperite consists of interconnected, bulbous, entrail-like domains of basaltic andesite

which are separated by sediment, but which can be traced back to coherent facies of the

lobes. Peperite at the margins of some lobes encloses pods comprising clasts which are

more vesicular and/or have different shapes, and are separated by greater amounts of

sediment. Bedding in sandstone above the contact zone is undisturbed, in contrast to the

near complete destruction of bedding in the peperitic facies.

Lobes

Lobe-like bodies of coherent basalt and basaltic andesite are isolated in the peperite or

connected to coherent facies by wide stems of the same composition. On the basis of size,

shape and relationships with associated peperite, lobes are divided into four types; A to D

(Fig. 5). Peperite in the interior of the sheets incorporates types A-D, whereas peperite at
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Figure 4. Simplified field sketch of textures and structures in dispersed peperite at Kendalls Point. 1­
coherent basaltic andesire dissected by widely spaced curved joints; 2- equant joint blocks; 3-lobe-like
coherent domain; 4--vesicular coherent basaltic-andesite; 5- peperite (polyhedral blocky clasts); 6­
peperite (polyhedral and irregular blocky clasts); 7- peperite (irregular blocky clasts).

contacts with then enclosing sediments contains only types C and D. In peperitic facies of

the Bumbo Latite Member, only type D lobes have been recognised.

Type A lobes - are elliptical- to pendant-shaped when viewed in cross-section (Figs.

3D, SA), and tongue -shaped to elliptical in map view. They are up to 25 m in length and

20 m wide. Lobe interiors are unaltered and dissected by intersecting polyhedral joints, or

polyhedral-jointed basaltic andesite encloses an inner zone of incipient radial columnar

jointing. Pale green, in situ hyaloclastite (± peperite) fonns a selvedge along segments of

some lobe margins. Parts of some margins are vesicular and grade out into peperite

comprising vesicular clasts. Rarely, vesicular pods to 15 cm wide occur in the lobes.

Lobe interiors are penetrated by sediment-filled fractures. Fractures are planar along

contacts with poorly vesicular domains, but have more irregular shapes when cutting

numerous vesicles.

Type B lobes - Fractures at the margins of the type B lobes are penetrated by sediment,

whereas lobe interiors are sediment-free (Fig. SB). Sediment-filled fractures cut across

some larger lobes producing trains of progressively smaller remnant coherent domains,

which become more widely spaced as larger segments of the lobes are brecciated. Jigsaw­

fit aggregates of clasts separated by sediment outline former large lobes which have

undergone complete brecciation. Clasts become smaller and separated by greater amounts

of sediment forming a matrix between the lobes. Slight modification of jigsaw-fit textures

by rotation and separation of clasts, to complete loss of jigsaw-fit texture is widespread in

the matrix.
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Figure 5. Field sketches of lobes formed by incomplete brecciation in peperite facies of the Blow Hole
LatHe (A-C) and dispersed peperite facies of the Bumbo Latite (D). A- Cross section of a type A lobe;
Kaleula Head. B- Plan view of a type B lobe in peperite displaying in situ and clast-rotated textures;
Marsden Head. C- Type C lobe gradational into peperite containing clasts varying from poorly to
strongly vesicular and from blocky to globular in shape; Pheasant Point. D- Type D lobes enveloped by
an altered margin and enclosed in peperite containing domains of poorly and strongly vesicular clasts.
Coherent facies show an equivalent range in vesicularity to clasts in peperite. Bumbo Point.

Type C lobes - Type C lobes characterise the peperitic upper margin of the upper Blow

Hole Latite Member. Sheets of relatively coherent jointed basaltic andesite enclose pods

and large domains of peperite (e.g. Marsden Head). Outlines of lobes become distinct as

the proportion of peperite increases, enclosing relic pods of polyhedrally jointed basaltic

andesite to I metre in size (Fig. SC). Sediment-filled fractures dissect large lobes into

groups of blocky clasts and small lobes which are separated by sediment matrix-rich

domains. Clasts fit together along some margins but others have moved following

fragmentation. Variation in clast shapes and vesicularity produces texturally complex

peperite.

Type D lobes - Within some peperitic domains, poorly vesicular coherent basalt or

basaltic andesite is interleaved with strongly vesicular intervals to Im across (Fig. SD). In
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strongly vesicular domains, there is a gradation between coherent basalt or basaltic

andesite, hyaloclastite and sediment matrix-rich and sediment matrix-poor peperite. All

facies contain isolated pods and finger-like protrusions of poorly vesicular coherent or

polyhedrally jointed basaltic andesite (Figs. 3E, SD). Those pods and fingers in peperitic

domains resemble concentric pillows (cf. Yamagishi 1987) and small pillow lobes. Some

lobes are enveloped by a hyaloclastite (± peperite) sheath comprising poorly vesicular

blocky clasts. Similar clasts are isolated in the surrounding peperite which is dominated

by vesicular c1asts.

Clast types and shapes

Peperite contains igneous clasts that can be divided into six main textural types on the

basis of clast shape and relationships between clasts (Fig. 6).

Globular c1asts - Globular c1asts have bulbous, globular shapes ("entrail globular"

clasts) or are roughly equant but are bound by finely digitate, fluidal margins ("equant

globular" clasts). There is a progression in clast shapes between entrail- and equant­

globular. In detail, most "clasts" are connected by fluidally-shaped stems a few

millimetres to several centimetres wide; they are incipient clasts formed through

fragmentation mechanisms which did not go to completion.

Entrail globular

Interconnected incipient c1asts with rounded globular shapes form complex branching

entrail-like interdigitations with sediment (Fig. 6A). Digits temainate in the surrounding

sediment or connect small subrounded patches of relatively coherent igneous component.

The patches are up to several tens of centimetres across and many contain small,

centimetre-sized blebs of sediment. Pinching off of branches along the bifurcating digits

has delivered discrete clasts to the surrounding sediment. Only a thin film of homogenised

sediment separates some c1asts from their parent digit, whereas others are surrounded by

large amounts of sediment.

Equant globular

In peperite comprising equant globular clasts there is less disruption of the igneous

component as incipient c1asts are larger and interpenetration with sediment is largely

restricted to their margins (Fig. 6B). Incipient clasts are cut by bifurcating sinuous seams

of sediment which propagate in from c1ast margins or outward from the interior. Other

c1ast margins are planar and have sharp or finely serrated margins which imply that they

are quench fractures.
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Mesoblocky clasts - Mesoblocky clasts are an important but relatively minor component

of some vesicular and poorly vesicular closely-packed and dispersed peperite facies.

Along margins of mesoblocky domains, jagged sediment-filled fractures dissect the

igneous component, defining progressively smaller fragments. Remnant finger-like

projections of coherent and in situ fragmented igneous component extend out from

margins of the coherent facies into clouds of mesoblocky fragments (Fig. 6C). Fragments

are angular with finely serrate margins, and are mostly 1-5 mm across. Adjacent to

fingers, many fragments display jigsaw-fit texture and are separated by only small

amounts of sediment. Jigsaw-fit texture is absent in sediment matrix-rich breccia only a

small distance into the breccia. Large clasts with shapes similar to mesoblocky clasts are

an important component of incompletely fragmented domains.

Polyhedral blocky clasts - Polyhedral blocky c1asts have angular, blocky and cuneiform

shapes bounded by curviplanar margins (Fig. 6D). In some outcrops, broadly curved

first-order fractures outline large blocky clasts which are dissected by second-order

fractures into jigsaw-fit aggregates of progressively smaller polyhedral blocky clasts.

Jigsaw-fit textures are disturbed in some parts of the breccia. Disturbance produces

results which range from the slight modification of jigsaw-fit, by rotation and translation

of fragments, to large scale separation of c1asts.

Irregular blocky c1asts - Strongly vesicular domains of dispersed peperite are

characterised by a high proportion of clasts with irregular blocky shapes. CIasts are

equant in shape, but bound by irregular to feathered margins which are in part the former

walls of vesicles (Fig. 6E). Strongly vesicular clasts are bound mostly by vesicle walls

and have feathered terminations. Highly irregular clast margins reflect rapid changes in

the direction of fractures as they cut vesicles. Along contacts with coherent vesicular

domains, c1asts commonly display jigsaw-fit texture. Jigsaw-fit texture is lost as more

sediment separates clasts.

Platy clasts - Platy c1asts (Brooks 1995) are common in both closely-packed and

dispersed peperite facies but are the principal clast type of closely-packed peperite. Platy

dasts are several times longer than they are wide and show planar or irregular margins.

They reflect the propagation of planar sediment-filled fractures (e.g. sheet, en-echelon)

within relatively coherent facies.

Some c1asts in peperite are bound by both globular to spongy margins and sharp planar­

curviplanar margins, so that they do not fall into anyone of the main textural groups (Fig.

6F).



Figure 6.

Clast types in peperite associated with the Blow Hole and Bumbo Latite Members.

(A) Discrete and interconnected incipient clasts with entrail globular shapes (light)
enclosing and enclosed by sandstone (s).

(B) Incipient equant globular clasts with bulbous digitate margins invaded by thin
fluidally-shaped sediment seams (arrow).

(C) Finger-like projection of basaltic andesite (f) showing progressive disintegration into
mesoblocky fragments with finely serrate margins. Jigsaw-fit between fragments (arrow)
is lost as sediment (s) penetrates fractures.

(D) In this example of polyhedral blocky peperite, clasts are separated by small amounts of
sandstone matrix (s). Groups of clasts with jigsaw-fit contrast with domains where clasts
have rotated and moved (arrow).

(E) IlTegular blocky clasts bound by margins which are in part the former walls of vesicles
(arrow) and enclosed in sandstone (s).

(F) In this domain of dispersed peperite, margins of clasts vary from planar-curviplanar to
delicately fluidal (skeletal/spongy). These clasts imply a change in fragmentation
mechanism during magma-sediment interaction.
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entrail globular
incipient clasts

Figure 7. Associations of different clast shapes in peperitic domains. A- Peperite consisting entirely of
discrete and incipient c1asts with equant globular shapes. B- Textural association involving c1asts with
mesoblocky and entrail globular shapes. C- Transition from blocky jointed facies into peperite with
zones of polyhedral blocky c1asts and irregular blocky c1asts. D- Blocky-jointed coherent and
hyaloclastite facies pass into polyhedral blocky peperite with in situ and c1ast-rotated texture. No scale is
implied as the relative proportion and extent of each textural zone varies considerably.

Textural associations

The foregoing discussion highlights the wide variation in clast types in peperite. The

distribution of clast types is not random. Textural zones are defined here as a domain of

one clast type in hyaloclastite or peperite. Peperite may consist entirely of one textural

zone or of multiple textural zones, arranged geometrically in recurrent textural

associations. Variation in vesicularity is a principal determinant of clast types and textural

associations. In closely-packed peperite, the magmatic component is consistently poorly

vesicular, observed clast types are restricted to platy, globular and mesoblocky types, and

textural associations are less diverse. Only short segments of a few fractures have

mesoblocky and globular textures. In dispersed peperite, four principal associations have

been recognised: (1) blocky jointed .. equant globular; (2) blocky jointed .. mesoblocky ­

entrail globular; (3) polyhedral blocky .. irregular blocky; and (4) hyaloclastite ..

polyhedral blocky (Fig. 7).
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Sediment matrix

Sediment forms the matrix to clasts, partially surrounds incipient clasts, and fills fractures

and joints. The three principal sediment types, from most to least abundant, are: reddish­

brown sandstone and minor siltstone, yellow-brown sandstone and granular to pebbly

sandstone. Wisps and laminae of one grain size are enclosed by sediment of another grain

size. Discontinuous planar- and rare cross-lamination are common to all peperitic facies,

but best developed and most continuous in sediment-filled subhorizontal fractures in

closely-packed peperite facies. Within the fractures, lamination is broadly concordant to

walls but locally terminates against steps in the fractures. At one locality, laminae partially

mantle a clast-supported lens of well-rounded granules which are concentrated on the ?lee

side of a juvenile clast derived from the walls of the sheet fracture (Fig. 3F).

Concentration of lithic clasts and fines depletion are interpreted to reflect local turbulence

as fluids (water and steam) and sediment streamed through the fracture. Similarly,

elutriation of fine sediment from some parts of the peperite is suggested by their sediment

matrix-poor, clast-supported, but disrupted character. In some of these cases, wide

subhorizontal fractures in blocky jointed coherent facies have sediment-poor, juvenile

clast-supported breccia at their bases and sediment-rich upper parts which support large

juvenile clasts. The distribution of sediment and juvenile clasts is similar to reverse

coarse-tail grading.

Discussion

Emplacement and cooling

Contraction that accompanied cooling of the Bumbo and Blow Hole Latite sheets

produced a variety of joint styles which are zonally arranged relative to peperitic and

sedimentary facies, and record unequal rates of cooling. There is a transition from

columnar jointed facies, through blocky jointed facies, into hyaloclastite along contacts

with the enclosing sediments and/or peperite.

Columnar joints developed as intersecting contraction cracks nucleated within the blocky

jointed zone and migrated towards the interior of the sheets, perpendicular to surfaces of

equal tensile stress (Spry 1962, Long and Wood 1986). The pattern of columnar jointing

suggests that, in most domains, surfaces of equal stress were parallel to isothermal

surfaces at the contacts of the sheets, and columns formed perpendicular to both. Cooling

of the igneous component along contacts with some dyke-like peperitic domains produced

a distinctive style of columnar jointing. Initially, columns formed perpendicular to

subvertical isothermal surfaces at the dyke margin but progressively steepened away from

the dykes under a greater influence of isothermal surfaces parallel to sheet margins.
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Sediment fills the space between some columns and other columns are dissected by

blocky joints filled with sediment. These relationships suggest that columnar joints acted

as pathways for the infiltration of wet sediment into the interior of the sheets. In blocky

jointed zones, similar fractures may have provided access for fluids (± sediment) to move

in and fragment the margins of the sheets (cf. Watanabe and Katsui 1976, Yamagishi

1987, 1991, Yamagishi and Goto 1992). The inward progression from blocky jointing to

pseudo-pillow structure reflects a decrease in the degree of fragmentation and decrease in

the cooling rate. In places, blocky jointed coherent facies developed along peperitic

contacts, but more often, blocky jointing formed in a distinct zone inward from the

hyaloclastite zone. In the hyaloclastite zone, quench fractures dissected joint blocks into

jigsaw-fit aggregates of polyhedral blocky c1asts (cf. Dimroth et aI. 1978, Yamagishi

1979).

Vesiculation

Vesicle distributions in the Bumbo and Blow Hole Latite sheets are interpreted to reflect

both primary magmatic vesiculation and vesiculation due to injection of steam from

external water prior to complete solidification (cf. Fuller 1931, Waters 1960, Macdonald

1972, Walker 1987). Vesicles in poorly vesicular, coherent and peperitic facies probably

reflect degassing of primary magmatic volatiles. Strongly vesicular zones are sparse,

invariably associated with peperite and are localised and discontinuous. Isolated strongly

vesicular pods in otherwise dense, massive, poorly vesicular basalt and basaltic andesite

have not been observed (cf. Dimroth et al. 1978, Sahagian et aI. 1989, McMillan et al.

1987, 1989). The association of peperite and domains of strong vesicularity suggest that

the lava incorporated limited amounts of steam from the wet sediment in the initial stages

of peperite formation (cf. Smedes 1956). Vesicular domains are interpreted as a form of

vesicle cylinder. Wet sediment was heated and pore water vaporised as it moved into the

magmatic component in dispersed peperite. A vesicular front may have propagated out

into the magmatic component as sediment entered peperitic domains. Vesiculation was

complete prior to brecciation, as sediment-filled fractures cut across vesicles and no c1asts

are zoned with respect to vesicularity. Vesiculation of fracture walls in closely-packed

peperite did not occur, as the sediment was partially dewatered or the fluid was not

vaporised, or the magmatic component had cooled sufficiently to resist vesiculation, or

the lava had already degassed. Fraser (1976) attributes vesicle cylinders (2-20 cm across)

in high-alumina basalts of the Cascade Mountains and Modoc Plateau to segregation of

bubbles and residual melt into regularly spaced vertical cylinders. Although this

mechanism cannot be discounted, the association of peperite and strong vesicularity in the

Bumbo and Blow Hole Latite sheets favours the interpretation of vesiculation by steam.

Stress waves generated by high-pressure vaporisation of pore water at the melt-sediment

interface can induce vesiculation of the melt (Wohletz 1983). Steam explosions are
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interpreted to have played a minor role in generating peperite in the Blow Hole and

Bumbo Latite Members, suggesting that stress wave induced vesiculation was

insignificant.

Relatively few vesicles are filled with sediment, even in nearly scoriaceous peperite facies

of the Bumbo and Blow Hole Latite Members (cf. Branney and Suthren 1988, Brooks et

al. 1982). This may reflect a lack of interconnection between vesicles or that particles

were too large to move through interconnections.

Lobes

Lobe types A-D lobes may simply be isolated coherent patches within otherwise strongly

brecciated material. Alternatively, they could be interpreted as fractured and dismembered

lava lobes, extruded into and partially or completely enclosed by their own or earlier

peperite and hyaloclastite. Along some contacts, coherent facies pass through peperite

containing jigsaw-fit clasts into lobes, demonstrating that type A-D lobes have formed

through incomplete brecciation of coherent facies. Along contacts and in peperite where

jigsaw-fit textures are not preserved, formation of lobes through extrusion/intrusion

cannot be discounted. Type D lobes formed as vesicular pods in the sheet fragmented and

mixed with sediment, leaving poorly vesicular domains. Complete loss of jigsaw-fit

texture is widespread in the breccia surrounding type D lobes, so that they appear to

invade earlier peperite. However, poorly vesicular coherent facies along the margins of

peperitic facies enclose strongly vesicular pods which are coherent analogues of the

matrix to type D lobes in peperite.

Fluidisation ofthe host sediment

The ability of secliment to penetrate even the finest fractures and large spaces in the

interior of the basalt-andesite sheets to distances of tens of metres from the base, indicates

that the sediment was highly mobile during peperite formation. Kokelaar (1982) ascribed

similar features in peperitic facies of Ordovician andesitic and rhyoJitic sills from Scotland

and Wales to fluidisation of sediment by heating of pore water at sediment-magma

contacts. In the present case, water at contacts was vaporised and some sediment injected

up into the sheets, forming domains of peperite. Injection was driven by the relatively

low density of the fluid-sediment mix compared with the magma and undisturbed

sediment, and possibly by fluid over-pressure. The density inversion requires a

disturbance to initiate flow of the low density layer, so that vapour expansion driven by

the transition of water to steam may be more important, at least initially. The fluid­

sediment slurries may have moved along fractures formed by contraction and/or

quenching, or as propagating sediment dykes. Vesiculation of the magma by steam

preceded the formation of peperite by mixing with the fluidised sediment. Some parts of
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the surrounding magma remained sufficiently plastic to deform around mushroom-shaped

tongues of sediment which penetrated up from contacts with peperitic domains.

Irregularities, fractures or peperitic domains at the margins of the sheets may have been

preferred sites for the injection of fluid-sediment slurries (cf. Brooks 1995). Invasion of

the sediment was probably vigorous but was not obviously explosive as jigsaw-fit

textures between clasts and incipient clast are widely preserved, and contacts between

vesicular and non-vesicular peperite are sharp with little mixing of clast types. Also,

igneous clasts in the peperite commonly have bulbous, feathered or irregular outlines,

rather than the angular blocky shapes typical of phreatomagmatic brecciation.

Remnant sedimentary lamination in sediment filling space between clasts in peperite has

been described by many authors (e.g. Hanson and Wilson 1993, Kokelaar 1982,

Branney and Suthren 1988, Hanson 1991, Brooks 1995). In the present case, wisps,

seams or planar and cross laminae of one grain size are enclosed in, or alternate with,

sediment of another grain size, producing extremely complex relationships in some cases.

Lamination could be interpreted as: (i) relic primary bedding rotated and distupted during

intrusion; (ii) laminated sediment which infiltrated from above; or (iii) non-primary

lamination. Structures are often subhorizontal, consistent with regional bedding, but are

interpreted as non-primary sedimentary lamination because: Cl) lamination is well

developed within peperite facies completely enclosed by massive coherent lava; (2)

lamination filling fractures in closely-packed peperite is parallel to fracture walls and

could only be introduced along the length of the fractures (up to 30 m) through

fluidisation; (3) stluctures in the sediment (e.g. cross lamination and lithic lenses in

closely-packed peperite; reverse coarse-tail grading) are not consistent with washing-in

processes. Layering reflects the repeated streaming of highly mobile sediment through

fractures, and the intrusion of initial fracture- or space-filling sediment by coarser grain

sizes. Vapour pressure was building, equilibrating and waning rapidly and unevenly in

the invading sediment as it streamed to fill propagating fractures and open spaces. Rapid

changes in sediment paths, superposition of sediments with different grains during the

merging of fractures, and propagation of fractures at different rates all may have all been

important in affecting vapour pressure and generating layering.

Relative timing

Figure 8 illustrates the relative timing of development of textures and structures in the

Blow Hole and Bumbo Latite Members. Degassing of the sheets occurred both during

emplacement, as evidenced by elongate vesicles, and after flow ceased, as indicated by

spherical vesicles. Formation of vesicle cylinders clearly must have occurred while the

sheets were still ductile, but probably after emplacement. Mixing of the lava and fluidised

sediment formed domains of dispersed peperite. The general restriction of hyaloclastite
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and blocky jointed facies to the margins of peperitic domains suggests that fractures

developed concurrent with peperite in these domains. Columnar joints developed over a

large part of the cooling history. Incipient columns dissected by blocky joints formed

early concurrent with peperite. Long, well developed columnar joints in the massive

interior of the sheets reflect slow cooling, largely following fragmentation and peperite

formation. Sediment penetrating columnar joints at the base of the Blow Hole Latite

Member, and filling brittle (en-echelon) fractures, suggest that sediment was moving

through the sheet even in the late part of the cooling history.

Mechanisms ofbrecciation

The shape of clasts and contacts between sediment and the igneous component in peperite

is a guide to fragmentation processes. Experimental and theoretical studies of magma­

water interaction (e.g. Sheridan and WohIetz 1983, WohIetz 1986, Kokelaar 1986) have

produced textures, structures and clasts with shapes which are similar to those observed

in peperite, suggesting the mechanisms of magma-water interaction and magma-water­

sediment interaction may be similar. Four primary clast forming processes are currently

recognised to occur during magma-water interaction; magmatic explosivity, steam

explosivity, cooling-contraction granulation, and dynamic stressing (e.g. WohIetz 1983,

Kokelaar 1986). Steam explosivity is divisible into contact-surface interaction and bulk

interaction (Kokelaar 1986).

flow foliation

vesiculation 1

vesiculation 2

peperite

subhorizontal jointlng

blocky lointing

concentric jointing

radial columnar joints

columnar jointing

alteration

time .....
~

Figure 8. Relative timing of development of textures and structures in the Blow Hole and Bumbo Latite
Members. Exsolution of magmatic volatiles (vesiculation 1) was probably initiated in the vent and
continued through vesiculation by heating of pore water during interaction between magma and wet
sediment (vesiculation 2).
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Peperite compnsmg globular clasts indicates that non-explosive, contact-surface

interaction and bulk interaction are probably important in the fonnation of peperite. Good

evidence for contact-surface interaction is seen where tongues and apophyses of the

igneous component transect undisturbed laminated or bedded host sediment, implying the

passive removal of sediment during emplacement (cf. Branney and Suthren 1988). This

was achieved by film boiling of pore water (Leidenfrost effect; Mills 1984), causing

Huidisation of sediment at the magma-sediment interface. Sediment is displaced along and

away from the contact zone until cooling below a critical temperature (Leidenfrost

temperature) causes steam to condense and the sediment to be deposited. Oscillations in

the vapour film can distort the magma smface into delicate bulbous Huidal shapes which

detach, generating small fluidally-shaped fragments (Sheridan and Wohletz 1983,

Wohletz 1986). Vapour films insulated the magma from direct contact with sediment and

suppressing both steam explosions and quench fragmentation.

A case for bulk interaction in peperite fonnation is suggested where pods and seams of

sediment are enclosed in the igneous component or occur between incipient clasts (cf.

Kokelaar 1986, Branney and Suthren 1988, Brooks 1995). The main clast-fonning

process is the tearing-apart of the igneous component around invading and expanding

steam-sediment slurries. Propagation of sediment seams promotes the disintegration of

relatively coherent igneous material into progressively smaller clasts. Initially only a thin

film of sediment, a few millimetres or centimetres wide, fills the seams. Walls of clasts

are progressively wedged apalt as sediment penetrates the seams. Vaporisation of pore

water may have generated pressure waves causing disintegration of the magma. Kokelaar

(1986) suggests that heat exchange between the magma and sediment through convective

heat transfer may be more important than by direct contact mixing during bulk interaction.

However, fluidally-shaped margins to incipient clasts with entrail and equant globular

shapes suggest that direct contact mixing is in some cases important, and implies that bulk

interaction and contact-surface interaction have combined to fragment the magma.

Conductive heat transfer, a function of surface area and time of heat transfer, may

increase as margins al·e "roughened" and the melt fragmented by contact-surface

interaction, but will be limited by the insulating effects of a continuous vapour film.

Concurrent bulk-and contact-surface-interaction combined to fragment the greatest

percentage of the Blow Hole Latite Member.

In examples of peperite comprising ragged clasts, higher yield strengths at the strain rates

which accompanied fragmentation are suggested by finely serrated, ragged clast margins.

Again, bulk interaction during magma-sediment interaction may be indicated by textures

in these domains. However, clasts with ragged shapes fonned during bulk interaction

(e.g. Branney and Suthren 1988) are similar to those produced by dynamic stressing.
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Dynamic stress fragmentation is ascribed to brecciation of the chilled parts of Javas or

intrusions by the continued movement of fluid magma in the interior.

In peperite comprising polyhedral blocky clasts, fractures define equant blocks, whereas

platy clasts form by intersecting subparallel planar fractures and more widely spaced short

cross fractures (cf. Brooks 1995). Clast shapes reflect different local stress fields, and

may represent end members of a spectrum of clast shapes formed by quenching. Small

scale changes in the direction of propagation of quench fractures in response to internal

heterogeneities in the igneous component (e.g. phenocrysts) form jagged blocky/platy

clasts bounded by serrated margins rather than sharp planar and curviplanar margins

characteristic of polyhedral blocky clasts and some platy clasts (cf. Brooks 1995).

It remains unclear what the mechanism of formation of mesobJocky clasts was. Brittle

failure may have resulted from propagation of stress waves through the melt in response

to the collapse or explosive expansion of vapour films (cf. Wohletz 1983), or through

cooling-contraction granulation. Turbulent mixing following quenching of the resulting

fragments promoted the movement of fragments out of the zone of interaction and loss of

jigsaw-fit texture.

Vesicles strongly influence the character of peperite formed when magma or lava invades

wet, unconsolidated sediment. Fractures which cut across vesicles generate irregular

blocky clasts with margins which are in part the former walls of vesicles. Vesiculation

which occurs concurrent with fragmentation is likely to play a more active role in

determining clast shape, but will be limited because bubbles will be entrapped as cooling

proceeds and viscosity increases. An insulating sheath of vapour which forms at the

contact between the magma and enclosing wet sediment may allow some bubbles to reach

the magma-sediment interface (Mills 1984). Vapour bubbles which reach, form at, or

penetrate the melt-film interface will probably interact with it, creating local pressure

gradients which will influence vapour flow and hence also the shape of the contact

surface and clasts.

Textural associations: evidence for controls on peperite formation

Textural associations of more than two clast types, and individual clasts with both

bulbous and planar margins, imply a change in fragmentation mechanism. In many cases,

initial magma fragmentation and mixing with sediment is thought to have resulted mainly

from the tearing apart of the magma (bulk interaction) and shaping of the magma­

sediment interface into fluidal globular shapes by contact-surface interaction. In other

cases, globular surfaces and clasts developed first. Planar fractures reflect fragmentation

by cooling-contraction granulation and/or by propagating stress waves. Planar fractures

which cut across and displace fluidal globular surfaces in the igneous component formed

later (cf. Goto and McPhie 1996). The relationship between some planar fractures and
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globular surfaces is ambiguous and both may have formed simultaneously with viscosity

and/or temperature being the control.

Bulk physical properties, such as the density and viscosity of the magma and sediment

will in part control their behaviour during interaction. Difficulties in determining the

physical properties driving transitions in fragmentation mechanism result from the

complex and rapidly changing states of the components. For example, the magmatic

component will become more viscous with time, and steam together with volatiIes can

promote multi-stage vesiculation of the melt. The sediment may be progressively

dewatered during interaction, with intergranular fluids ranging in temperature from cold

to boiling or superheated steam. Also, the host sediment is itself a many-phase system.

Busby-Spera and White (1987) concluded that host sediment properties strongly

influence magma-sediment interaction, and hence the shapes of c1asts. They suggest that

fluidal globular peperite is more likely to develop in fine-grained, well sorted, loosely

packed sediment, as it is more easily fluidised and vapour films can be maintained at the

melt-sediment interface. Coarser, poorly sorted sediment is associated with blocky­

shaped clasts (blocky peperite) at Punta China, Baja, California. In these, greater

permeabil ity was interpreted to inhibit the development of vapour films, and only a small

percentage of the sediment grain size is amenable to fluidisation. In the absence of

insulating vapour films, quench fragmentation and steam explosions are the main

fragmentation processes. At Kiama, different clast types occur within sediment of

constant grain size (Fig. 6F). Similarly, c1asts with the same shape occur in sediment

with different grain sizes. These examples suggest that factors other than sediment grain

size are also important in determining fragment shape (cf. Goto and McPhie 1996).

However, sediment surrounding c1asts in peperite represents the final grain size

distribution at the time of fragmentation and not necessarily that which was present at the

time of fragmentation.

Fragmentation processes are complexly dependent on external confining pressure. In

cases where the lithostatic and hydrostatic pressure exceed the ctitical pressure (about

31.2 Mpa for seawater; Kokelaar 1982), the degree of expansion of heated pore water is

impeded, steam explosions are suppressed and fluidisation may be inhibited. At lower

confining pressures steam may expand explosively. The character of peperite examined in

this study suggests that confining pressures were insufficient to suppress fluidisation of

the host sediment along magma-sediment contacts or to prevent vesiculation of the

magma, but large enough to inhibit steam explosivity.

Experimental and theoretical studies (Sheridan and Wohletz 1981, 1983; Wohletz 1983,

1986) suggest that changes in the water/magma ratio may lead to changes in eruption
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style. In peperite, it is possible that both short and long tenn variations in water (and

sediment)-melt ratios may be responsible for the changing fragmentation mechanisms,

and so clast shapes. Direct application of results from experimental and theoretical studies

of magma-water interaction to magma-slurry systems involving peperite is probably not

possible. Also, changes in the water/melt ratio may occur due to varying volume rate of

magma or sediment supply and fluxing of sediment with varying pore water contents

during fragmentation.

Viscosity reduces growth rates of instabilities at the magma-sediment interface (Wohletz

1986), so that high viscosity magmas may mix more slowly with sediment than would

low viscosity magmas. One might expect clasts with fluidally-shaped margins to be more

common in peperite involving magma of mafic rather than silicic composition. The

spectrum of clast shapes recognised in peperite span magma compositions ranging from

basaltic to rhyolitic, suggesting that this may not be the case. However, changes in the

rheological behaviour of a given magma from ductile to brittle, most likely in response

decreasing viscosity, are clearly important in cases where peperite contains single clasts

bound by both globular and planar surfaces. Planar fractures displace fluidal globular

surfaces suggesting that they fonned later. During the globular clast-forming stage, the

magma had a relatively low viscosity and sediment was displaced by fluidisation. Planar

and curviplanar fractures formed as the magma became more viscous, most likely in

response to decreasing temperature and/or the breakdown of insulating vapour films at the

magma-sediment interface (cf. Goto and McPhie 1996)

Viscosity profiles in some lavas and intrusions are likely to be complex, varying in

response to, for example, pulsatory flow or intrusion (cf. Goto and McPhie 1996), and

differing volatile contents, crystallinity and temperature. If magma rheology fluctuates

then different parts of an intrusion or lava may be associated with peperite with different

clast types and/or textural associations. Fluidal contacts and clasts will be generated early

or in domains where the magma temperature is highest and viscosity is at a minimum.

Continued flow will stress those parts that have already begun to cool and solidify,

promoting brittle disintegration along contraction fractures, and clasts with blocky or

ragged shapes are more likely to fonn. Also, if wet sediment injects the magma in pulses,

then magma rheology at the time or site of interaction might fluctuate and different clasts

form.

Conclusions

Peperites associated with basaltic to basaltic andesite lavas and intrusions in the Late

Permian Broughton Formation, Kiama, New South Wales have been described on the
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basis of (I) igneous clast shape; (2) fabric; and (3) location with respect to the margins of

the lava or intrusion. The complexities of peperite, in terms of clast types and their

relative abundances and distribution, as well as textures and structures in the host

sediment, indicate that a spectrum of fragmentation and mixing processes may occur

together and thus interact.

Examples of peperite with more than one clast type, involving magma of the same

composition and sediment of constant grain size, are common. In many examples,

globular surfaces formed during an early, low viscosity phase of magma emplacement

into wet sediment. Planar and curviplanar fractures truncate some fluidal surfaces

suggesting that these, at least in part, formed slightly later as the magma became more

viscous (cooler) and/or vapour films at the magma-sediment interface broke down (cf.

Goto and McPhie 1996).

The intimate mixing of magma and wet sediment recorded by peperite is commonly a

precursory step towards explosive hydromagmatism. At Kiama, peperite has developed

by one or a combination of (I) non-explosive oscillation of vapour films at the magma­

sediment interface (contact-surface interaction); (2) non-explosive expansion of pore

water following enclosure of sediment in the magma or entrapment of sediment at the

magma-sediment contacts (bulk interaction), (3) cooling-contraction granulation; and (4)

brecciation of the chilled parts of an intrusion-extmsion by flow of the hotter interior

(dynamic stressing).

Fluidisation of the host sediment during mixing with the melt is common to peperite

involving clasts from all of the textural groups. Lamination in sediment within peperite

can include remnants of original stratification (e.g. Kokelaar 1982) and layering formed

by the streaming of fluid-sediment slurries through fractures and between clasts.
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Appendix C

Summary graphic lithological logs

HM036

HM039

HM040

HM052

HM060

HM086

HM089

REM 113

REM 116

REM 118

REM 122

REM 123

REM 128

REM 132

REM 142

REM 147

REM 148

REM 551

REM 558

REM 560

REM 600

REW800

REW801

REW803

REW804

REW805

REW807

REW809



Lithology

1-1 ~ I Unaltered andesite ~
Crystal-pumice breccia-

• <::::J sandstone

[] Dacite li:J Crystal-lithic breccia-
,. \ I !>: : sandstone

1'\ ~ I Rhyolite ~ Pumice breccia,y // :::

~ Rhyodacite Siltstone~ D..:::::;. -=- - -

~ Flow banding • Massive pyrite-
~ cbalcopyrite±sphalerite

~ Perlite ~
Semi-massive pYlite-
cha1copyrite±sphalerite

1t>~1
Non-stratified monomictic breccia D Massive/banded pyrite-
(byaJoclastite) sphalerite±barite

Iyl Siltstone seams in coherent facies [ill Stringer veins

I~I Siltstone-matrix-poor breccia (peperite) ~ Intensely altered volcanic

~ Siltstone-matrix-rich breccia (peperite) F Feldspar-bearing

I~~I
Stratified monomictic breccia-sandstone F>Q Feldspar> quartz volcaniclastic

(resedimented hyaloclastite) unit

[TI] Stratified polymictic breccia-sandstone Q&F Quartz & feldspar... ;.

LJ -F Fault.... Crystal-vitric sandstone

Alteration

D Clay D Chlorite-sericite
.,. ".

D Sericite D Chlorite-sericite-quartz

D Sericite-quartz D AlbiteIK-feldspar-
sericite-quartz-cblorite

D Quartz-sericite D Hematite±quartz

Quartz ± pyrite D Hematite±sericite±chlorite

D Sericite-quartz-cWorite D Cblorite (± sericite)-carbonate

D Sericite-chlorite D Sericite-carbonate

D Chlorite



Facies codes for alteration in volcanic rocks

(a) Phase(s)

• mineralogical and textural changes accompany hydrothermal alteration. Each alteration
mineral can be referred to as a phase.

• each alteration domain comprises an area of rock that is characterised by a particular
alteration mineral assemblage or by different proportions of similar minerals (phases) in
similar mineral assemblages.

C - chlorite
SI - quartz
H - hematite
Py - pyrite

e.g. SI-S quartz-sericite

S - sericite
K - albite/K-feldspar
CB - carbonate

(alteration domain comprising quartz and sericite)

(b) Relative abundance (phases - domains)

• the least abundant mineral within an alteration domain is presented on the right hand side
(RHS) and the most abundant mineral on the left hand side (LHS).

e.g. S-SI (sericite-quartz) dominant phase - subordinate phase

• in a rock comprising two or more alteration domains, the phase(s) comprising the
dominant domain are presented on the LHS and those of the remaining domains on the
RHS in order of relative abundance

e.g. C / S-SI (chlorite & sericite-quartz domains)

(c) Intensity

dominant - subordinate

• allocation of a number to describe the intensity of alteration within each domain

Weak (1-2) Moderate (3-4) Strong to intense (5-6)

• e.g. C' (strong chlorite alteration)
S-SI' (moderate sericite-quartz alteration)

(d) Controls/textures

The distribution of alteration minerals and domains can be controlled by the pre-alteration
texture or superimposed structures. Alternatively, the alteration phases/ domains can
generate a range of new textures and patterns in the rock.

x - crystal am - apparent matrix
fiX - matrix ac - apparent clast
c - clasts mo - mottled
fr - fracture (perlite, quench) w - wash
hf - hydraulic fracture fi - fiamme
fb - flow banding k - fleck
sh - shear s - spotty
v - vein pt - patchy
d - disseminated

• e.g. Cp'

• e.g. Cp' / SIf'

(strong pervasive chlorite alteration)

(strong pervasive chlorite alteration and moderate, fracture­
controlled quartz alteration)
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Appendix D

Geochemical analyses of lavas and intrusions

Appendix D 1 Mount Windsor Formation

Appendix D2 Trooper Creek Formation

Appendix D3 Trooper Creek Formation
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Appendix E

Geochemical analyses of ironstones

Appendix El XRD analyses for massive ironstone

Appendix E2 Major, trace and REE analyses

Appendix E3 Calculations for isocon plots



Appendix E1: XRD analyses for massive ironstone

Sample Ouartz Hematite
95-130 95 5
95-150 85 15

95-316B 85 15
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Appendix E3: Calculations for isocon plots

Trooper Creek prospect - massive ironstone

Element least altered altered ratio rank

(wt% Ca(i) 308 C(I) 210+276 alt.ll.a n(f F(f Cs(i m m(ave CAm

s 70.65 81.605 1. 155 1 0,01 1.16 1221.62

Fe 4.19 15.84 3.780 2 0.48 7.56 0.09 4225.55

Cr 0.0007 0.000565 0.807 3 4285.71 2.42 823.53

OJ 0.0022 0.004095 1.861 • 1818.18 7.45 2029.77

Nb 0.0011 0.000145 0.132 5 4545.45 0.66 0.13 50.83
Zn 0.007' 0.001445 0.195 6 810.81 1.17 Ma(%) 123,43

Pb 0.0015 0.00084 0.560 7 4666.67 3.92 1044.2 540.75

Y 0.0032 0.000385 0.120 8 2500.00 0.96 0.12 37.66
Sr 0.0162 0.00057 0.035 9 555.56 0.32 -59.74

Ab 0.0099 0.000215 0.022 10 1010.10 0.22 -75.15

Mn 0.12 0.065 0.542 11 91.67 5.96 519.77

Zr 0.0162 0.001065 0.066 12 740.74 0.79 0.07 -24.78

Na 2.92 0 0.000 13 4.45 0.00 -100.00

Mn 1.38 0.355 0.257 14 10.14 3.60 194.34

ca 1 .15 0.23 0.200 15 13.04 3.00 128.84

Al 13.84 0.66 0.048 16 1.16 0.76 0.05 -45.44

P 0.11 0.03 0.273 17 154.55 4.64 212.05

K 3.73 0.04 0.011 18 4.83 0.19 ·87.73
Ti 0.49 0.035 0.071 19 38.78 1.36 0.07 -18.27

Ba 0.0851 0.01047 0.123 20 235.02 2.46 40.77

Trooper Creek prospect - tuffaceous ironstone

Element least altered altered ratio rank

(wt% Co(i) 308 C(I) 275 alt.lI.a nil Fli Csli m m(ave CA(f)

S 70.65 62.7 0.887 1 0.01 0.89 165.5

Fe 4.19 25.85 6.169 2 0.48 12.34 0.3343 1745.6

Cr 0.0007 0.00096 1.371 3 4285.71 4.11 310.28

OJ 0,0022 0.00571 2.595 4 1818.18 10.38 676.45

Nb 0.0011 0.00039 0.355 5 4545.45 1.77 0.35 6.0655

Zn 0.0074 0.0073 0.986 6 810,81 5.92 Ma(%) 195.12

Pb 0.0015 0.00182 1.213 7 4666.67 8.49 199.16 262.98

Y 0.0032 0.00084 0.263 8 2500.00 2.10 0.26 -21.47

Sr 0.0162 0.00268 0.165 9 555.56 1.49 -50.51

Ab 0.0099 0,00075 0.076 10 1010.10 0.76 -77.34

Mo 0.12 0.1 0.833 11 91.67 9.17 149.3

Zr 0.0162 0.00544 0.336 12 740.74 4.03 0.34 0.4584
Na 2.92 0.88 0.301 13 4.45 3.92 ·9.842

Ma 1.38 2.37 1.717 14 10.14 24.04 413.77

ca 1. 15 0.11 0.096 15 13.04 1.43 -71.38

AI 13.84 4.86 0.351 16 1.16 5.62 0.35 5.0516

P 0.11 0.04 0.364 17 154.55 6.18 8.7852

K 3.73 0.12 0.032 1 8 4.83 0.58 -90.38

Ti 0.49 0.18 0.367 1 9 38.78 6.98 0.37 9.8952

Ba 0.0851 0.0475 0.558 20 235.02 11. 16 66.981



Appendix E3: Calculations for isocon plots

Trooper Creek prospect - stromatolitic ironstone

Element least altered altered ratio rank
(wt%) cam 308 cm 200 alt./I.a n(l) FIi\ CS(I) m m{ave) CA(I)

Si 70.65 88.31 1.250 1 0.01 1.25 362.97
Fe 4.19 6.82 1.628 2 0.48 3.26 0.27 502.87
Cr 0.0007 0.00071 1.014 3 4285.71 3.04 275.68
DJ 0.0022 0.00185 0.841 4 1818.18 3.36 211.46
Nb 0.0011 0.00043 0.391 5 4545.45 1.95 0.39 44.79
Zn 0.0074 0.00092 0.124 6 810.81 0.75 Mal%\ -53.95

Pb 0.0015 0.00211 1.407 7 4666.67 9.85 270.38 421.01

Y 0.0032 0.00118 0.369 8 2500.00 2.95 0.37 36.58
Sr 0.0162 0.00551 0.340 9 555.56 3.06 25.98

Ab 0.0099 0.00128 0.129 10 1010.10 1.29 -52.11
Mo 0.12 0.05 0.417 11 91.67 4.58 54.33
Zr 0.0162 0.00405 0.250 12 740.74 3.00 0.25 -7.40

Na 2.92 0.63 0.216 13 4.45 2.80 -20.09
Ma 1.38 0.17 0.123 14 10.14 1.72 -54.37

ca 1.15 0.3 0.261 15 13.04 3.91 -3.38

AI 13.84 2.45 0.177 16 1.16 2.83 0.18 -34.43

P 0.11 0.04 0.364 17 154.55 6.18 34.69
K 3.73 0.34 0.091 1 8 4.83 1.64 -66.24

TI 0.49 0.08 0.163 1 9 38.78 3.10 0.16 -39.53
Ba 0.0851 0.0138 0.162 20 235.02 3.24 -39.94

Trooper Creek prospect - hematite-altered pumice breccia

Element least altered altered ratio rank
(wt%) corn 308 cm 274 alt./I.a nlll Fill csm m m(ave) CAIIl

Si 70.65 57.34 0.812 1 0.01 0.81 -31.13

Fe 4.19 17.05 4.069 2 0.48 8.14 1.1785 245.28

Cr 0.0007 0.00055 0.786 3 4285.71 2.36 -33.33
DJ 0.0022 0.00062 0.282 4 1818.18 1.13 -76.09

Nb 0.0011 0.00141 1.282 5 4545.45 6.41 1.28 8.7649
Zn 0.0074 0.01441 1.947 6 810.81 11.68 Mar%) 65.232

Pb 0.0015 0.00485 3.233 7 4666.67 22.63 -15.15 174.35

Y 0.0032 0.0034 1.063 8 2500.00 8.50 1.06 -9.845

Sr 0.0162 0.00284 0.175 9 555.56 1.58 -85.12

Ab 0.0099 0.02096 2.117 10 1010.10 21.17 79.646

Mn 0.12 0.04 0.333 11 91.67 3.67 -71.72

Zr 0.0162 0.01816 1. 121 12 740.74 13.45 1. 12 -4.882

Na 2.92 0.44 0.151 13 4.45 1.96 -87.21

Ma 1.38 2.28 1.652 14 10.14 23.13 40.19

ca 1.15 0.18 0.157 15 13.04 2.35 -86.72

AI 13.84 13.54 0.978 16 1.16 15.65 0.98 -16.99

P 0.11 0.04 0.364 17 154.55 6.18 -69.14

K 3.73 4.76 1.276 18 4.83 22.97 8.2831
Ti 0.49 0.71 1.449 19 38.78 27.53 1.45 22.949
Ba 0.0851 0.0414 0.486 20 235.02 9.73 -58.72



Appendix E3: Calculations for isocon plots

Trooper Creek prospect - massive ironstone

Element least altered altered ratio rank

lwt% cam 308 cm 206+273 alt./I.a nCi Fl' Cs(i m m(ave CAm
s 70.65 70.67 1.000 1 0.01 1.00 588.7901
Fe 4.19 24.935 5.951 2 0.48 11.90 0.14522 3997.881
Cr 0.0007 0.000625 0.893 3 4285.71 2.68 514.8171
eu 0.0022 0.001035 0.470 4 1818.18 1.88 223.9527
Nb 0.0011 0.000175 0.159 5 4545.45 0.80 0.16 9.549235
Zn 0.0074 0.00263 0.355 6 810.81 2.13 Ma(%) 144.7305
Ph 0.0015 0.0009 0.600 7 4666.67 4.20 568.60 313.1571

Y 0.0032 0.000645 0.202 8 2500.00 1.61 0.20 38.79497

Sr 0.0162 0.000465 0.029 9 555.56 0.26 -80.2348

Ab 0.0099 0.00221 0.223 10 1010.10 2.23 53.7167

Mn 0.12 0.06 0.500 11 91.67 5.50 244.2976

Zr 0.0162 0.001865 0.115 12 740.74 1.38 0.12 -20.7265

Na 2.92 0 0.000 13 4.45 0.00 -100

Ma 1.38 0.495 0.359 14 10.14 5.02 146.9961

ca 1. 15 0.11 0.096 15 13.04 1.43 -34.1344

AI 13.84 1.77 0.128 16 1. 16 2.05 0.13 -11.9354

P 0.11 0.025 0.227 17 154.55 3.86 56.49891

K 3.73 0.42 0.113 18 4.83 2.03 -22.4638

Ti 0.49 0.06 0.122 1 9 38.78 2.33 0.12 -15.6822

Ba 0.0851 0.029005 0.341 20 235.02 6.82 134.6969

Trooper Creek prospect - horizon 4

Element least altered altered ratio rank
(wt% Co(l) 308 cm 316B alt.ll.a n(i F(i Csll m m(ave CA(i)

S 70.65 90.9 1.287 1 0.01 1.29 0.0176 7195.31

Fe 4.19 7.47 1.783 2 0.48 3.57 10008.77

Cr 0.0007 0.00131 1.871 3 4285.71 5.61 10511.21
eu 0.0022 0.00036 0.164 4 1818.18 0.65 827.84

Nb 0.0011 0 0.000 5 4545.45 0.00 0.00 -100.00
Zn 0.0074 0 0.000 6 810.81 0.00 Ma(%\ -100.00
Ph 0.0015 0.00018 0.120 7 4666.67 0.84 5570.11 580.41

Y 0.0032 0.00011 0.034 8 2500.00 0.28 0.03 94.91

Sr 0.0162 0.00026 0.016 9 555.56 0.14 -9.00

Ab 0.0099 0 0.000 10 1010.10 0.00 -100.00

Mn 0.12 0.03 0.250 11 91.67 2.75 1317.53

Zr 0.0162 0.00015 0.009 12 740.74 0.11 0.01 -47.50

Na 2.92 0 0.000 13 4.45 0.00 -100.00

Ma 1.38 0.02 0.014 14 10.14 0.20 -17.82

ca 1.15 0.04 0.035 15 13.04 0.52 97.22
AI 13.84 0.09 0.007 16 1. 16 0.10 0.01 -63.13

P 0.11 0.02 0.182 17 154.55 3.09 930.93

K 3.73 0 0.000 1 8 4.83 0.00 -100.00

Ti 0.49 0.01 0.020 19 38.78 0.39 0.02 15.72

Ba 0.0851 0.00206 0.024 20 235.02 0.48 37.26



Appendix E3: Calculations for isocon plots

Trooper Creek prospect - western lenses (95-212, 214, 275)

Element least altered altered ratio rank
(wt% com 308 cm alt./I.a nil FII CS I m m(ave) CA(I)

Si 70.65 68.55 0.970 1 0.01 0.97 210.55
Fe 4.19 22.843916 5.452 2 0.48 10.90 0.3124 1644.99

Cr 0.0007 0.00082667 1. 181 3 4285.71 3.54 277.98
Qj 0.0022 0.00247333 1.124 4 1818.18 4.50 259.83

Nb 0.0011 0.00035333 0.321 5 4545.45 1.61 0.32 2.81
zn 0.0074 0.00119333 0.161 6 810.81 0.97 Ma{%) -48.39
Pb 0.0015 0.001 0.667 7 4666.67 4.67 220.06 113.38

Y 0.0032 0.00131 0.409 8 2500.00 3.28 0.41 31.03
Sr 0_0162 0.00150333 0.093 9 555.56 0.84 -70.30

Ab 0.0099 0.00240667 0.243 10 1010.10 2.43 -22.19

Mn 0_12 0.01666667 0.139 11 91.67 1.53 -55.55

Zr 0.0162 0.00406 0.251 12 740.74 3.01 0.25 -19.79

Na 2.92 0.012364 0.004 13 4.45 0.06 -98.64

Ma 1.38 0.16333333 0.118 14 10.14 1.66 -62.12

Ca 1.15 0.02333333 0.020 15 13.04 0.30 -93.51
AI 13.84 3.33333333 0.241 16 1. 16 3.85 0.24 -22.91

P 0.11 0.03333333 0.303 17 154.55 5.15 -3.01

K 3.73 0.49333333 0.132 18 4.83 2.38 -57.67

TI 0.49 0.16666667 0.340 19 38.78 6.46 0.34 8.87

Ba 0.0851 0.05955 0.700 20 235.02 14.00 123.97
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TEXTURAL EFFECTS OF DEVlTRIFICATION AND
HYDROTHERMAL ALTERATION IN SILICIC LAVAS AND
SHALLOW INTRUSIONS, MOUNT READ VOLCANICS (MRV),
CAMBRIAN, TASMANIA
DOYLE, M.G., C.O.D.E.S" University of Tasmania, Hobart,
Tasmania 7001, Australia, Alien R.L., Volcanic Resources, Bous de
Jongpark 41, 2283 TJ Rijswijk ZH, The Netherlands, and McPhie J.,
C.O.D.E.S., University of Tasmania, Hobart, Tasmania 7001,
Australia

Submarine silicic lava flows, domes and shallow intrusions in the
MRV comprise coherent , massive and flow banded lava,
hyaloclastite and autobreccia. Margins of lavas and intrusions were
formerly glassy whereas interiors varied from glassy to crystalline.
Perlitic fracturing, devitrification, and hydrothermal and diagenetic
alteration acted on primary volcanic textures to generate diverse
alteration textures, including false volcaniclastic textures, in the
originally glassy parts of the silicic lavas and intrusions.

Perlitic fracturing of glass commenced during cooling of the silicic
lavas and intrusions, generating pathways for migrating fluids.
Devitrification refers to the nucleation and growth of crystalline
minerals in glasses at subsolidus temperatures. "High" temperature
devitrification of glass accompanied emplacement, and generated
spherulites, Iithophysae, and micropoikilitic texture. "Low"
temperature devitrification of silicic glass to an assemblage of sericite,
chlorite, quartz and feldspar is attributed to interaction with syn­
volcanic hydrothermal fluids and early to late diagenetic fluids, and
can be referred to as hydrothermal and diagenetic alteration. The
textural effects of these alteration processes were strongly influenced
by the pre-existing texture which was created by eruption and primary
fragmentation, "high" temperature devitrification, and hydration.
Textures were either enhanced, modified or destroyed during "Iow"
temperature devitrification.

During lower greenschist facies metamorphism earlier mineral
assemblages were recrystallised or replaced by coarse metamorphic
minerals, overprinting or mimicking primary and alteration textures.

The outcome of this textural progression is that both coherent and
autoclastic facies of silicic lavas and shallow intrusions in the MWV
resemble matrix supported, monomict and polymict, welded and non­
welded volcaniclastic deposits.



Doyle MG, 1994. Facies architecture of a submarine felsic volcanic centre: Highway-Reward, Mount
Windsor Voleanics, Cambro-Ordovician, north Queensland. In Henderson RA and Davis BK, New
developments in geology and metallogeny: Northern Tasman Orogenic Zone: Economic Geology
Research Unit, Contribution 50: 149-150.

Facies architecture of a submarine felsic volcanic centre: Highway-Reward, Mount
Windsor Volcanics, Cambro-Ordovician, Northern Queensland

by

M.G. Doyle

Centre for Ore Deposit and Exploration Studies
University of Tasmania

Evaluating the prospectivity of ancient volcanic sequences for volcanic-hosted massive sulfide (VHMS)
deposits can be greatly enhanced by identifying original lithologies and emplacement processes (McPhie
et aI., 1993). In particular, distinguishing between syn-volcanic intrusions, lava flows, domes and
cryptodomes and between autoc1astic, resedimented volcaniclastic and epiclastic facies is critical in
recognising palaee-sea floor positions which are important sites for exhalative and shallow sub-surface
base metal sulfide accumulation in many VHMS systems. Detailed core logging and petrography of host
rocks to the Cu-Au-Pb-Zn Highway and Reward deposits have revealed the nature of volcanic processes
in a near vent, subaqueous (submarine), below-wave-base depositional environment.

The volcanic facies architecture at Highway and Reward ineludes the products of both intrabasinal and
basin margin or subaerial eruptions. Rhyolitic, rhyodacitic and dacitic lava domes, partly extrusive
cryptodomes, syn-sedimentary intrusions and associated in situ and resedimented autoclastic deposits are
from an intrabasinal source. Contact relationships and phenocryst mineralogy, size and percentages
indicate the presence of up to nine distinct porphyritic units within an area of approximately I x I x 0.5
km at Highway-Reward. Massive coherent and flow banded lava, hyaloclastite, autobreccia and peperite
are the main component facies of the porphyritic units. Peperites vary from sediment-matrix-supported
breccias in which porphyry elasts are sparse (dispersed peperite), through sediment-poor jigsaw-fit
aggregates of porphyry clasts (compact peperite), to relatively coherent porphyry enclosing isolated
stringers and/or globules of sediment. Porphyry clasts vary from blocky with curviplanar margins (blocky
peperite) to lenticular with ragged margins (ragged peperite), which may reflect, respectively, the relative
importance of cooling contraction granulation and dynamic stressing of chilled lava surfaces during
emplacement. The peperitic upper margins to many porphyry sheets demonstrate their intrusion into wet
unconsolidated sediments. The higb relative density of magma to wet sediment favoured emplacement as
syn-sedimentary intrusions rather than extrusions (cf. McBirney, 1963; Walker, 1989). Dewatering and
induration of the sediment pile by early syn-sedimentary intrusions may have favoured the subsequent
eruption of lava domes and partly emergent cryptodomes at Highway-Reward. The shape and distribution
of lava domes and cryptodomes was further influenced by the positions of previously or concurrently
emplaced porphyritic units, and possibly by syn-volcanic faults which may have acted as conduits for
magma. Because they are constructional, lava domes and cryptodomes influenced subsequent
volcanielastic sedimentation. Lava domes, cryptodomes and deposits of resedimented hyaloclastite
sourced from over-steepened dome margins are an important indicator of palaeo-sea floor positions.

Porphyries intruded or were overlain by a volcaniclastic and sedimentary facies association comprising
suspension-settled silts tone, graded turbiditic sandstone and thick mass-flow-emplaced pumiceous- and
crystal-rich sandstone-breccia. Pumiceous mass-flow deposits are emplaced rapidly in large volumes,
erupted infrequently and are widely distributed (McPhie & Allen, 1992), and so provide an important
framework for correlation within the Trooper Creek Formation at Highway-Reward. Quartz-feldspar and
feldspar only, pumiceous and crystal-rich sandstone-breccia units are non-welded, up to 65 m thick, and
normally graded with fine grained tops, and in some instances, polymict lithic-rich bases. Deposition
from high-concentration turbidity currents soureed from explosive eruptions at a subaerial or shallow
subaqueous basin margin centre is suggested.

Perlitic fracturing, devitrification, hydrothermal and diagenetic alteration have acted on originally glassy
parts of lavas and intrusions, and pumiceous breccias to generate diverse alteration textures, including
false volcaniclastie and welding textures. Alteration of lavas commenced during cooling from magmatic



temperatures (high temperature devitrification) generating spherulites, micropoikilitic texture and
lithophysae. Hydration of residual glass to form perlitic fractures supplemented fracture and matrix
permeability generated by autoclastic processes, both of which were important for migration of fluids
during hydrothermal and diagenetic alteration. Hydrothermal and diagenetic alteration were also
influenced by textural and compositional domains generated during high temperature devitrification.
Apparent polymict and mODamict volcaniclastic textures fonned during this textural progression further
evolved during greenschist facies metamorphism and tectonic deformation. Pumiceous breccias show the
textural effects of early polyphase diagenetic and syn-volcanic hydrothermal alteration. Initial
heterogeneous quartz-feldspar alteration replaced glassy vesicle walls of individual pumice shreds and
domains within breccias, thereby largely preserving non-welded tube-vesicle textures. Remaining pumice
clasts were phyllosilicate-altered and flattened by diagenetic compaction, resulting in false welding
textures. Intensely silicified pumice shreds isolated in chloritic domains resemble felsic volcanic lithic
fragments.

The density and complexity of non-explosive, coherent, intrusive-extrusive units at Highway-Reward is
similar to that described by Horikoshi (1969) for Kuroko host sequences in the Miocene Kosaka
Formation of NE-Japan. Analogues of the initial, explosive, tuff cone forming eruptions at the "Kosaka
volcano" are not recorded in the stratigraphy at Highway-Reward, possibly reflecting differences in the
volatile content of erupted magma, and/or the external confining pressure (lithostatic and hydrostatic
pressure).
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A SILICIC SUBMARINE SYN-SEDIMENTARY INTRUSIVE ­
DOME - HYALOCLASTITE HOST SEQUENCE TO MASSIVE
SULFIDE MINERALISATION: MOUNT WINDSOR
VOLCANICS, CAMBRO-ORDOVICIAN, AUSTRALIA

DOYLE, M.G., and McPHIE, J., C.O.D.E.S., University of
Tasmania, Hobart, Tasmania 700 I, Australia.

The Cu-Au-Pb-Zn Highway and Reward massive sulfide deposits are
hosted by a silicic intrusive and volcanic sequence intercalated with
sedimentary facies that indicate a submarine, below-storm-wave-base
environment of deposition. Contact relationships and phenocryst
mineralogy, size and percentages indicate the presence of up to nine
distinct porphyritic units in an area of 1 x 1 x 0.5 km. The peperitic
upper margins to many porphyries demonstrate their intrusion into
wet unconsolidated-sediment. Syn-sedimentary intrusions, partly
emergent cryptodomes, lava domes, and associated in situ and
resedimented autoclastic deposits have been recognised. These are the
principal facies in the environment of mineralisation and represent a
proximal facies association from intrabasinal, intrusive/extrusive,
non-explosive magmatism. The shape, distribution and emplacement
mechanisms of porphyritic units were influenced by: (a) the relative
density of magma to wet sediment; (b) the positions of previously or
concurrently emplaced porphyries; and (c) possibly by syn-volcanic
faults which may have acted as conduits for magma. Lava domes,
partly emergent cryptodomes, and deposits of resedimented
hyaloclastite and peperite are important indicators of palaeo-sea-floor
positions at Highway-Reward. Sills and cryptodomes may have
influenced sea- floor topography and therefore sedimentation, but do
not mark sea-floor positions. Massive sulfide ores are primarily sub­
sea-floor syn-volcanic replacements of the host sedimentary rocks,
syn-sedimentary intrusions, lava domes, and autoclastic breccia.

Porphyries intruded or were overlain by a volcaniclastic and
sedimentary facies association comprising suspension-settled
siltstone, graded turbiditic sandstone and thick, non-welded pumice­
and crystal-rich sandstone-breccia. Pumiceous and crystal-rich
deposits record episodes of explosive silicic volcanism in an
extrabasinal or marginal basin environment, and were emplaced by
cold, water-supported, high-concentration turbidity currents.
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EVALUATION OF THE ROLE OF CAMBRIAN GRANITES IN THE GENESIS OF WORLD CLASS
VOLCANOGENIC-HOSTED MASSNE SULPHIDE DEPOSITS IN TASMANIA

Ross R. Large l , Mark Doyle l , David Cookel and Ollie Raymond2

ICODES Key Centre, Geology Dept., University of Tasmania, HOBART TAS 7005

2AGSO, GPO Box 378, CANBERRA ACT 2601

Summary - New data on the distribution, composition and alteration zonation of Cambrian granites in the
Mt. Read Volcanics provide evidence that there may have been a direct input of magmatic fluids during the
genesis of the copper-gold volcanogenic-hosted massive sulphide (VHMS) mineralisation in the Mt. Lyell
district.

INTRODUCTION

There has been considerable debate on the role of granitic magmas during the generation of volcanic hosted
massive sulphide deposits; are they simply heat engines driving seawater (e.g. Ohmoto & Rye 1974, and
Solomon 1976) or do they directly supply magmatic components to ore-forming solutions (e.g. Henley &
Thornley 1979, Stanton 1985)? Pioneering research by Solomon and his students in the Mount Read
Volcanics (e.g. Solomon 1976, Solomon 1981, Polya et al 1986 and Eastoe et. al. 1987) clearly
demonstrated a relationship between hydrothermal alteration and sulphur isotope zonation around the
granites, indicating that the granites acted as heaters for the ore-fanning convective fluid. In this paper we
provide evidence to suggest that the Cambrian granites may have also provided important metal
contributions to the ore-forming fluid, especially Fe, Cu, Au, P, F ± Ti and Zr

FACTORS LINKING THE CAMBRIAN GRANITES TO MINERALISATION

Distribution; Two narrow bodies of Cambrian granite (Murchison Granite and Darwin Granite) intrude the
eastern margin of the Central Volcanic Complex (CVC) in the Mt. Read Volcanics. Interpretations based
on magnetic and gravity data indicate that the two granite bodies form a semi-continuous narrow vertical
sheet of granite 65 km long and about 2 km wide. A series of copper-gold and basemetal prospects occur
along the margins ofthe granite sheet (e.g. Prince Darwin, lukes Pty., Lake Selina). The Mt. Lyell Cu­
Au VHMS deposits are located immediately west of the projected continuation of the subsurface granite.

Timing: Previous mapping by Corbett (1989) suggested that the Murchison granite intruded the Tyndal
Group volcanics (which unconformably overlie the CVC) and is therefore younger than the VHMS
deposits. However, later work (e.g. Corbett, 1992) has revised this interpretation, and recent dating by
Perkins and Walshe (1993) has confirmed that the Murchison granite has an age of SOl ± 5.7 Ma (Ar/Ar),
the same age as the host rocks to the massive sulphide deposits.

Composition: Both the Murchison and Darwin granites are high-K, magnetite series granites which show
anomalous enrichment in barium and potassium. The Murchison granite varies in composition from
granodiorite to granite (58 to 78% Si02; Abbott, J992), while the Darwin granite is composed of two

highly fractionated granite phases (74-78% Si02; lanes, J993). K20 varies up to 8.5% and Ba up to
3000 ppm; however, some of this enrichment is related to alteration.

Alteration: Well developed zones of hydrothermal alteration have been mapped around the margins of the
granites (e.g. Polya et. al J986, Eastoe et. al. 1987, Hunns J987, Doyle 1990). An extensive zone (ZJ)
of pink K-feldspar alteration extends from the outer part of the granites into the surrounding volcanics. An
overlapping shell (Z2) of chlorite ± pyrite ± magnetite alteration overprints and extends outwards from the

K-feldspar zone. Sericite-chlorite ± pyrite forms a distal alteration zone (Z3)' At both lukes Pty. and
Lake Selina, Cu ± Au mineralisation occurs in the chlorite ± pyrite ± magnetite zone (q).



Magnetite - apatite association: The strongest link between the granites and VHMS Cu-Au mineralisation
is provided by the common occurrence of magnetite - apatite - Cu ± Au vein style and disseminated
mineralisation both within the Z2 alteration halo of the granites and within the centre of the Prince Lyell
ore deposit in the Mt. Lyell VHMS district. A good linear correlation exists hetween Cu and P205' and

Fe and P205 both within the mineralised alteration halo of the granites and in the Prince Lyell ores.
Oxygen isotopes indicate that the magnetite veins within the granite halo and the Prince LyeIl deposit

have d l80 values that are consistent with a magmatic source (Doyle 1990, Raymond 1993). Apatite,
which is commonly intergrown with magnetite, pyrite and chalcopyrite, has consistently high FICl
ratios, with a mean of about 6 wt% F

RELATIONSHIP OF COPPER-GOLD TO LEAD-ZINC-COPPER VHMS DEPOSITS

The Mt. Lyell field contains both stringer-style copper-gold deposits such as Prince Lyell and separate
stratiform lead-zinc-copper deposits such as Comstock and Tasman & Crown Lyell Extended. Most
previous workers (e.g. Solomon 1976, and Walshe & Solomon 1981) consider that the Cu-Au and Pb-Zn­
Cu deposits formed as part of the same hydrothermal system; the Cu-Au stringer-style forming by
subsurface replacement and the Pb-Zn-Cu massive sulphides by contemporaneous seafloor exhalation.
Although our work suggests a source for Cu and Au from the Cambrian granites, the source for Pb, Zn,
Ag and S remains unresolved and may be either magmatic or related to seawater leaching.

CONCLUSIONS

Cambrian granites in the Mt. Read Volcanics form a thin linear discontinuous sheet 65 km long which is
spatially related to Cu-Au mineralisation, including the VHMS deposits at Mt. Lyell. The highly
fractionated, oxidised, magnetite series granites have overlapping alteration shells of K-feldspar, chlorite­
magnetite and sericite. Preliminary evidence suggests that the VHMS copper-gold mineralisation at Mt.
Lyell may be associated with fluids enriched in Fe-Cu-Au-P20S-F-Zr-Ti released directly from the granite

magma.
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Abstract

An analysis of the distribution. composition and aheration zonation of Cumbrian granites which intrude the Mt Read
Volcanics of western Tasmania provides evidence that there may have been a direct input of magmatic nuids containing Fe.
eu, All and P to form the copper-gold volcanic-hosted massive sulphide (VHMS) mineralisation in the Mt LyeJl district.

Interpretation of regional gravity and magnetic data indicates that a narro\v discontinuous body of Cambrian granite (2-4
km wide) extends along the eaS!ern margin of the Ml Read Volcanic belt for over 60 km. The Cambrian granites are altered
magnetite series types which show enrichment in barium and potassium. and concrast markedly with the fractionated ilmenite
series Devonian granites relnted to tin mineralisation elsewhere in the Dundas Trough.

Copper mineralisation occurs in a linear zone above the apex of the buried Cambrian granite body at the southern end of
the belt, from Mt Darwin to the Nit Lyell district over a strike length of 25 km. Gold and zinc mineralisation are
concentrated higher in the volcanic stratigrn.phy more distant from the granite. Overlapping zones of alteration extend from
the granite into the surrounding volcanic rocks. An inner zone of K-feldspar alteration is overprinted by chlorite alteration.
which passes outwards into sericite <llterurion. Magnetite ± pyrite ± chatcopyrite ± apatite mineralisation is concentrated in
the chlorite altera.tion zone as vejns and low grade disseminations. The Mt LyeU copper-gold stringer and disseminated
mineralisation is hosted in felsic volcanic rocks I to 2 km west of the interpreted buried granite position. Magnetite-apatite
± pyrite veins in the Prince Lyell deposit at Mt Lyell are very similar to the veins in the halo of the granite. further sOllth,
and provide evidence for magmatic tluid input during the formation of the copper-gold VHMS deposits.

A model involving deeply penetrating convective seawater, mixing with a magmatic fluid released from the Cambrian
granites. best explains the features of VHMS mineralisation in the Mt Lyell district.

1. Introduction

There has been considerable debate over the past

25 years on the role of granitic magmas during the

generation of volcanic-hosted massive sulphide

(VHMS) deposits. Some workers (e.g. Umbe and

Sate, 1978: Henley and Thornley. 1979; Sawkins
and Kowalik. 1981; and Stanton, 1985, Stanton,
1990) have argued for a direct input of volatiles and

metals from the magma to form the ore solutions,

while others (e.g. Kajiwara, 1973; Spoone.. and Fyfe.
1973; Ohmoro and Rye, 1974; Solomon. 1976; Large.
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