APPENDIX 1

REFERENCES USED TO DEVELOP THE TRAMAN

NOTE: Although the following references were current when this TRAMAN was written, their continued currency cannot be assured. Therefore, you need to be sure that you are studying the latest revision.

Chapter 1

- Communication, TACAN, ADF Electronic Altimeter and IFF Systems, Navy Model F/TF-18A 160775 thru 161251, A1-F18AA-600-100, Naval Air Systems Command, Washington, D.C., 1 March 1980; Change 2, 15 October 1980.
- *Electronic Systems, Navy Model EA-6A Aircraft,* NAVAIR 01-85ADB-2-3, Naval Air Systems Command, Washington, D.C., 15 April 1980; Change 3, 1 March 1991.
- Integrated Navigation/Communication Station, Navy Model P-3C Aircraft, NAVAIR 01-75PAC-2-10, Naval Air Systems Command, Washington, D.C., 15 September 1991; Rapid Action Change 4, 15 June 1992.
- Navy Electricity and Electronics Training Series (NEETS), Module 17, *Radio Frequency Communication Principles,* NAVEDTRA 172-17-00-84, Naval Education and Training Program Development Center, Pensacola, Fla., 1984.

Chapter 2

- *Air Navigation,* NAVAIR 00-80V-49, Chapters 1,2,4,7, 18, and 19, Office of the Chief of Naval Operations, Washington D.C., 15 March 1983.
- Principles of Operation Avionic Systems Nonacoustic Sensors, Electronic Countermeasures, Navigation, Automatic Flight Control and Communications, Navy Model S-3A, NAVAIR 01-S3AAA-2-2.14, Naval Air Systems Command, Washington, D.C., 15 April 1979; Change 7, 15 April 1989.
- *Electronic Systems, Navy Model EA-6A Aircraft,* NAVAIR 01-85ADB-2-3, Naval Air Systems Command, Washington, D.C., 15 April 1980; Change 3, 1 March 1991.
- *Electronics Installation and Maintenance Book (EIMB), General,* NAVSEA SE000-00-EIM-100, Naval Sea Systems Command, Washington D.C., 1983.
- Integrated Navigation/Communication Station, Navy Model P-3C Aircraft, NAVAIR 01-75PAC-2-10, Naval Air Systems Command, Washington, D.C., 15 September 1991; Rapid Action Change 4, 15 June 1992.
- Principles of Operation, Navigation Systems, Navy Models F-14A and F-14A (PLUS) Aircraft, NAVAIR 01-F14AAA-2-2-10, Naval Air Systems Command, Washington, D.C., 16 January 1989.

Chapter 3

- Principles of Operation Avionic System Nonacoustic Sensors, Electronic Countermeasures, Navigation, Automatic Flight Control and Communications, Navy Model S-3A, NAVAIR 01-S3AAA-2-2.14, Naval Air Systems Command, Washington, D.C., 15 April 1979; Change 7, 15 April 1989.
- Communication, TACAN, ADE Electronic Altimeter and IFF Systems, Navy Model F/TF-18A 160775 thru 161251, A1-F18AA-600-100, Naval Air Systems Command, Washington, D.C., 1 March 1980; Change 2, 15 October 1980.
- Integrated Sensor Station 3, Navy Models P-3C Aircraft, NAVAIR 01-75PAC-2-8, Naval Air Systems Command, Washington, D.C., 1 October 1984; Change 3, 1 March 1991.

Chapter 4

- NATOPS Flight Manual S-3A Aircraft, NAVAIR 01-S3AAA-1, Naval Air System Command, Washington D.C., September 1982; Change 1, January 1983.
- General Information and Principles of Operation, Volume II, Avionics, Navy Model SH-3H, NAVAIR 01-230HLH-2-1.2, Naval Air Systems Command, Washington, D.C., 1 November 1989; Change 7, 15 February 1992.
- Integrated Sensor Stations 1 and 2 Update III, Navy Model P-3C Aircraft, NAVAIR 01-75PAC-2-15, Naval Air Systems Command, Washington, D.C., 1 April 1985; Change 5, 15 January 1989.

Chapter 5

- Attitude Heading Reference System, AN/ASN-50, NAVAIR 05-35LAA-1, Naval Air Systems Command, Washington D.C., January 1984.
- Principles of Operation Avionics Systems Data Processing Display and Control Acoustic Processing, Armament and Stores Control, NAVAIR 01-S3AAA-2-2.13, Naval Air System Command, Washington D.C., February 1976, Change 5, December 1987.
- NATOPS Flight Manual S-3A Aircraft, NAVAIR 01-S3AAA-1, Naval Air System Command, Washington D.C., September 1982; Change 1, January 1983.
- Integrated Flight Station Systems, Navy Model P-3C Aircraft, NAVAIR 01-75PAC-2-9, Naval Air Systems Command, Washington, D.C., 31 October 1984; Change 9, 1 February 1991.

Chapter 6

- Forward Linking Infrared System, Navy Model F/TF-18A 160782 and 160785 thru 161251, A1-F18AA-744-100, Naval Air Systems Command, Washington, D.C., 1 February 1981.
- Integrated Sensor Station 3, Navy Models P-3C Aircraft, NAVAIR 01-75PAC-2-8, Naval Air Systems Command, Washington, D.C., 1 October 1984; Rapid Action Change 9, 9 June 1988.

Chapter 7

- Airborne Weapons/Stores Loading Manual, Navy Model F-14A/A+ Aircraft, NAVAIR 01-F14AAA-75, Naval Air Systems Command, Washington, D.C., 1 July 1990; Rapid Action Change 23, 1 November 1990.
- Principles of Operation, Instruments and Displays, Navy Models F-14A and F-14A (PLUS) Aircraft, NAVAIR 01-F14AAA-2-2-8, Naval Air Systems Command, Washington, D.C., 16 January 1989.
- LAMPS MK III Weapon System Manual, A1-H60BB-NFM-010, Naval Air Systems Command, Washington, D.C., 1 March 1992.

Chapter 8

Navy Electricity and Electronics Training Series (NEETS), Module 22, Introduction to Digital Computers, NAVEDTRA B72-22-00-88, Naval Education and Training Program Management Support Activity, Pensacola, Fla., 1988

Chapter 9

Automatic Flight Control Systems AN/ASW-16 and AN/ASW-42, Navy Models A-6E and KA-6D Aircraft, NAVAIR 01-85 ADA-2-5.1, Naval Air Systems Command, Washington, D.C., 15 July 1974; Rapid Action Change 2, 15 May 1991.

Chapter 10

- *Electronics Installation and Maintenance Book (EIMB), General,* NAVSEA SE000-00-EIM-100, Naval Sea Systems Command, Washington D.C., 1983.
- *Electronics Installation and Maintenance Book (EIMB), General Maintenance,* NAVSEA SE000-00-EIM-160, Naval Sea Systems Command, Washington D.C., 1981.
- Installation Practices Aircraft Electric and Electronic Wiring, NAVAIR 01-1A-505, Naval Air Systems Command, Washington D.C., 1 December 1987.

APPENDIX II

ANSWERS TO REVIEW QUESTIONS

CHAPTER 1

- A2. 3 GHz to 30 GHz
- A3. Three.
- A4. Manchester word encoding/decoding.
- A5. 116.000 to 155.975 MHz
- A6. 20.
- A7. An interface fault.
- A8. 7.9000 to 9.1000 MHz and 18.9000 to 20.1000 MHz
- A9. To protect the radio if lightning strikes the long-wire antenna.
- A10. HF-1, HF-2, and UHF-2.
- A11. The NAV/COMM.
- A12. The TTY signal data converter.
- A13. Communications Interface No. 1.

- A1. The position of one point in space relative to another without reference to the distance between them.
- A2. 12 miles.
- A3. Parallels of latitudes and meridians of longitudes.
- A4. The actual height that an aircraft is above the surface of the earth.
- A5. One.
- A6. 20 to 5,000 feet.
- A7. It automatically resets.
- A8. ADF mode, loop mode, and antenna mode.
- A9. RECEIVE mode.
- A10. 10.2 kHz, 11.3 kHz and 13.6 kHz.
- A11. Drift; angle and ground speed.

CHAPTER 3

- A1. Airborne X-band.
- A2. 20 degrees down to 10 degrees up.
- A3. Scan switch.
- A4. Four.
- *A5.* 6 *RPM.*
- A6. Three (search, fire control, and bomb director).
- A7. 3,500 yards.
- A8. Jizzle.
- A9. Greater than 700 knots.
- A10. A large X is displayed.
- A11. 1, 2, 3/A, C, and 4.
- A12. The UHF L-band blade antennas.
- A13. 1030 MHz carrier.
- A14. The fail light on the control box.

CHAPTER 4

- A1. From the initial letters of SOund, NAvigation and Ranging.
- A2. The transducer
- A3. The salinity, the pressure, and the temperature.
- A4. It controls the brightness of the cursor.
- A5. 500±5 feet.
- A6. Oil.
- A7. A detectable distortion.
- A8. The magnetic field will change.
- A9. One.
- A10. 50.

- A1. HSI.
- A2. No.
- A3. A fixed reference mark used to read the heading on the compass card.
- A4. Head-Up Display.
- A5. Tactical Display System.
- A6. A transparent mirror positioned directly in front of the pilot at eye level.
- A7. Seven.
- A8. Five.

- A9. The ADP
- A10. A pickup device.
- A11. The breaking up of the scene into minute elements and using these elements in an orderly manner.

A12. Four.

CHAPTER 6

- A1. Between wavelengths 0.72 and 1,000 micrometers.
- A2. They differ only in wavelength and frequency of oscillation.
- A3. About 0.98 on a scale of 0 to 1.
- A4. Photographic film.
- A5. Each detector element requires a supporting electronic circuit.
- A6. One element width.
- A7. Passive.
- A8. 180.
- *A9.* Three are connected in a wye configuration, and three are connected in a delta configuration.
- A10. The position mode, the FWD mode, the computer track mode, and the manual track mode.
- A11. False. The status light and the picture are the only indications of a properly functioning indicator.

CHAPTER 7

- A1. False.
- A2. Notify the appropriate person(s).
- A3. It symbolizes that the weapon station is loaded, ready, and selected.
- A4. The armament safety override switch.
- A5. AIM-7 missiles.
- A6. Eight.
- A7. 52.
- A8. 25.

- A1. Cathode-ray tubes, transistors, microchips, and printed circuit cards.
- A2. False.
- A3. Binary, octal, decimal equivalents.
- A4. Control unit, arithmetic-logic unit, and internal data storage unit.
- A5. Coincident-current technique.
- A6. 12.7 to 50.8 centimeters (5 to 20 inches).

- A7. Linking two or more computers together.
- A8. Speed versus power dissipation.
- A9. The use of subroutines.
- A10. Statement, analysis, flow diagram, encoding, debugging, and documentation.

CHAPTER 9

- A1. False.
- A2. Automatic, semiautomatic, and manual.
- A3. As the aircraft passes through the acquisition window.
- A4. No, the pilot can continue in any other mode.

- A1. Circuit deficiencies.
- A2. Grass.
- A3. A conductor semiconductor or solid-state device whose resistance or impedance varies with the voltage applied across it.
- A4. 0.41 MHz
- A5. 3 inches.
- A6. High repair costs, excessive equipment downtime, and reduced equipment effectiveness.
- A7. 35,000 volts.
- A8. Conductive and antistatic.

APPENDIX III

FORMULAS

FORMULAS

Ohm's Law for dc Circuits

$$I = \frac{E}{R} = \frac{P}{E} = \sqrt{\frac{P}{R}}$$
$$R = \frac{E}{I} = \frac{P}{I^2} = \frac{E^2}{P}$$
$$E = IR = \frac{P}{I} = \sqrt{PR}$$
$$P = EI = \frac{E^2}{R} = I^2R$$

Resistors in Series

$$\mathbf{R}_T = \mathbf{R}_1 + \mathbf{R}_2 + \ldots$$

Resistors in Parallel

Two resistors

$$\mathbf{R}_T = \frac{\mathbf{R}_1 \mathbf{R}_2}{\mathbf{R}_1 + \mathbf{R}_2}$$

More than two

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

RL Circuit Time Constant

 $\frac{L \text{ (in henrys)}}{R \text{ (in ohms)}} = t \text{ (in seconds), or}$

 $\frac{L \text{ (in microhenrys)}}{R \text{ (in ohms)}} = t \text{ (in microseconds)}$

RC Circuit Time Constant

- R (ohms) \times C (farads) = t (seconds)
- R (megohms) \times C (microfarads) = t (seconds)
- R (ohms) × C (microfarads) = t (microseconds)
- R (megohms) × C (micromicrofarads) = t (microseconds)

Capacitors in Series

Two capacitors

$$C_T = \frac{C_1 C_2}{C_1 + C_2}$$

More than two

$$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$$

Capacitors in Parallel

$$C_T = C_1 + C_2 + \ldots$$

Capacitive Reactance

$$X_C = \frac{1}{2\pi fC}$$

Impedance in an RC Circuit (Series)

$$Z = \sqrt{R^2 + (X_C)^2}$$

Inductors in Series

$$L_T = L_1 + L_2 + \dots$$
 (No coupling between coils)

Inductors in Parallel

Two inductors

$$L_T = \frac{L_1 L_2}{L_1 + L_2}$$
 (No coupling between coils)

More than two

$$\frac{1}{L_T} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots$$
 (No coupling between coils)

Inductive Reactance

$$X_L = 2\pi f L$$

Q of a Coil

$$Q = \frac{X_L}{R}$$

Impedance of an RL Circuit (Series)

$$Z = \sqrt{R^2 + (X_L)^2}$$

Impedance with R, C, and L in Series

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

Parallel Circuit Impedance

$$Z = \frac{Z_1 Z_2}{Z_1 + Z_2}$$

Sine-Wave Voltage Relationships

Average value

$$E_{ave} = \frac{2}{\pi} \times E_{max} = 0.637 E_{max}$$

Effective or rms value

$$E_{eff} = \frac{E_{max}}{\sqrt{2}} = \frac{E_{max}}{1.414} = 0.707E_{max} = 1.11E_{ave}$$

Maximum value

$$E_{max} = \sqrt{2} (E_{eff}) = 1.414 E_{eff} = 1.57 E_{ave}$$

Voltage in an ac circuit

$$E = IZ = \frac{P}{I \times PF}$$

Current in an ac circuit

$$I = \frac{E}{Z} = \frac{P}{E \times PF}$$

Power in AC Circuit

Apparent power: P = EI

True power: $P = EI \cos \theta = EI \times PF$

Power Factor

$$PF = \frac{P}{EI} = \cos \theta$$

 $\cos \theta = \frac{\text{true power}}{\text{apparent power}}$

Transformers

Voltage relationship

$$\frac{E_p}{E_s} = \frac{N_p}{N_s} \text{ or } E_s = E_p \times \frac{N_s}{N_p}$$

Current relationship

$$\frac{\mathbf{I}_p}{\mathbf{I}_s} = \frac{\mathbf{N}_s}{\mathbf{N}_p}$$

Induced voltage

$$E_{eff} = 4.44 \times BAfN \times 10^{-8}$$

Turns ratio

$$\frac{N_p}{N_s} = \sqrt{\frac{Z_p}{Z_s}}$$

Secondary current

$$\mathbf{I}_s = \mathbf{I}_p \times \frac{\mathbf{N}_p}{\mathbf{N}_s}$$

Secondary voltage

$$\mathbf{E}_{s} = \mathbf{E}_{p} \times \frac{\mathbf{N}_{s}}{\mathbf{N}_{p}}$$

Three-Phase Voltage and Current Relationships

With wye connected windings $E_{line} = \sqrt{3} (E_{coil}) = 1.732 E_{coil}$

With delta connected windings

$$E_{line} = E_{coil}$$
$$I_{line} = 1.732I_{coil}$$

With wye or delta connected winding

$$P_{coil} = E_{coil}I_{coil}$$
$$P_t = 3P_{coil}$$
$$P_t = 1.732E_{line}I_{line}$$

(To convert to true power multiply by $\cos \theta$)

Resonance

Grid-plate transconductance

At resonance

 $X_L = X_C$

Resonant frequency

$$F_o = \frac{1}{2\pi\sqrt{LC}}$$

Series resonance

Z (at any frequency) =
$$R + j(X_L - X_C)$$

Z (at resonance) = R

Parallel resonance

$$Z_{max}$$
 (at resonance) = $\frac{X_L X_C}{R} = \frac{X_L^2}{R} = QX_L = \frac{L}{CR}$

Bandwidth

$$\Delta = \frac{F_o}{Q} = \frac{R}{2\pi L}$$

Tube Characteristics

Amplification factor

$$\mu = \frac{\Delta \mathbf{e}_p}{\Delta \mathbf{e}_g} (\mathbf{i}_p \text{ constant})$$

$$\mu = g_m r_p$$

AC plate resistance

$$\mathbf{r}_{p} = \frac{\Delta \mathbf{e}_{p}}{\Delta \mathbf{i}_{p}} (\mathbf{e}_{g} \text{ constant})$$

$$\mathbf{g}_m = \frac{\Delta \mathbf{i}_p}{\Delta \mathbf{e}_g} (\mathbf{e}_p \text{ constant})$$

Decibels

NOTE: Wherever the expression "log" appears without a subscript specifying the base, the logarithmic base is understood to be 10.

Power ratio

$$dB = 10 \log \frac{P_2}{P_1}$$

Current and voltage ratio

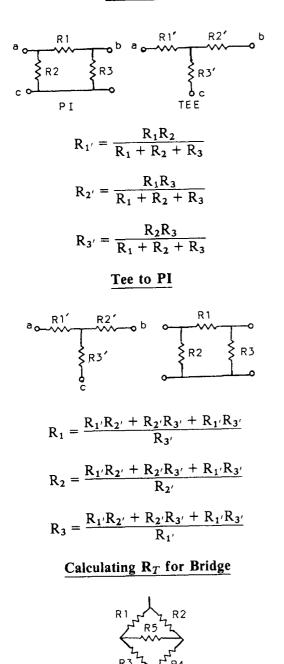
$$dB = 20 \log \frac{I_2 \sqrt{R_2}}{I_1 \sqrt{R_1}}$$
$$dB = 20 \log \frac{E_2 \sqrt{R_1}}{E_1 \sqrt{R_2}}$$

NOTE: When R_1 and R_2 are equal they may be omitted from the formula. When reference level is one milliwatt

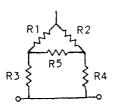
 $dBm = 10 \log \frac{P}{0.001}$ (when P is in watts)

Synchronous Speed of Motor

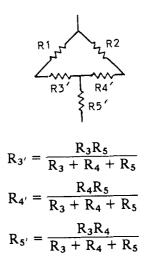
$$rpm = \frac{120 \times frequency}{number of poles}$$

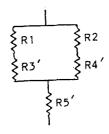

Wavelength

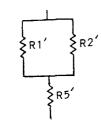
wavelength (in meters) =
$$\frac{300}{\text{frequency}}$$
 (in megahertz)


$$\lambda = \frac{300}{f (MHz)}$$

BRIDGE CIRCUIT CONVERSION FORMULAS


PI to Tee


1. Redraw


2. Convert PI network made up of resistors $R_3R_4R_5$ to Tee network made up of $R_{3'}R_{4'}R_{5'}$

3. Redraw circuit

4. Simplify circuit by combining

$$R_{1'} = R_1 + R_{3'}$$
 $R_{2'} = R_2 + R_4$

5. Simplify again

$$R_{6'} = \frac{R_{1'}R_{2'}}{R_{1'} + R_{2'}}$$

6. Solve for \mathbf{R}_T

$$\mathbf{R}_T = \mathbf{R}_{\mathbf{6}'} + \mathbf{R}_{\mathbf{5}'}$$

	Electric circuit	Magnetic circuit
Force,	Volt, E, or emf	Gilberts, F, or mmf
Flow	Ampere, I	Flux, ø, in maxwells
Opposition	Ohms, R	Reluctance, Q
Law	Ohm's law, $I = \frac{E}{R}$	Rowland's law, $\phi = \frac{\mathbf{F}}{\mathbf{R}}$
Intensity of force	Volts per cm of length.	$H = \frac{1.257IN}{L}, \text{ gilberts}$ per centimeter of length.
Density	Current density—for example, amperes per cm ² .	Flux density—for example, lines per cm ² or gausses.

Comparison of Units in Electric and Magnetic Circuits

INDEX

A

Acoustic System AN/UYS-1, 4-27 Control Indicator C-11104/UYS-1, 4-28 operating principles, 4-27 Power Supply PP-7467/UYS-1, 4-27 Spectrum Analyzer TS-4008/UYS-1, 4-27 Airborne navigation systems, 2-7 automatic direction finder (ADF), 2-12 Doppler, 2-18 loran, 2-15 omega, 2-16 pressure altimeters, 2-8 radar altimeter, 2-10 radar altimeter warning set (RAWS), 2-11 **TACAN**, 2-13 Airborne sonar system, 4-9 azimuth and range indicator, 4-10 bathythermographic mode of operation, 4-14 bearing and range indicator, 4-10 cable assembly and reel, 4-10 cable reeling machine, 4-11 communication mode of operation, 4-14 data computer, 4-14 dome control, 4-10 echo-ranging mode of operation, 4-14 hydrophore, 4-11 passive mode of operation, 4-14 projector, 4-11 receiver, 4-13 recorder aspect mode of operation, 4-15 recorder range mode of operation, 4-15 Recorder RO-358/ASQ-13A, 4-11 recorder test mode, 4-15 test mode. 4-14 transmitter, 4-13

Altimeter errors, 2-9 hysteresis, 2-9 installation/position, 2-9 mechanical. 2-9 reversal. 2-9 scale. 2-9 Altimeters, 2-7 counter-drum-pointer, 2-9 counter-pointer, 2-8 errors, types of, 2-9 pressure, 2-8 radar, 2-10 Altitudes, 2-7 absolute altitude, 2-8 calibrated altitude, 2-8 density altitude, 2-8 indicated altitude, 2-8 pressure altitude, 2-8 standard datum plane, 2-7 true altitude, 2-8 Antisubmarine warfare, 4-1 acoustic system, 4-27 airborne sonar system, 4-9 MAD recorder. 4-24 magnetic anomaly detection, 4-15 magnetic anomaly detection set, 4-21 magnetic anomaly detection system, 4-20 magnetic compensator group, 4-22 selector control group, 4-23 sonar principles, 4-1 sonobuoys, 4-24 sonobuoy receivers, 4-27 submarine anomaly detection (SAD) group, 4-22

Antisubmarine warfare weapons systems, 7-11 basic ASW weapons systems, 7-11 fixed-wing kill store systems, 7-17 fixed-wing release and control system, 7-18 fixed-wing search store systems, 7-13 helicopter kill store system, 7-18 helicopter search store sytems, 7-14 Automatic carrier landing system, 9-1 block diagram, 9-2 components, 9-1 principles of operation, 9-3 safety provisions, 9-5 Automatic carrier landing system components, 9-1 Approach Indexer 128AV653-1,9-3 Approach Power Compensator AN/ASN-54, 9-3 Attitude Reference Indicator ID-1791/,4, 9-3 Automatic Flight Control System AN/ASW-42, 9-1 Digital Data Communication Set AN/ASW-25B, 9-1 Discrete Message Indicator 1284V66836, 9-3 Instrument Landing System AN/SPN-41, 9-1 Landing Control Central System AN/SPN-42, 9-2 Radar Beacon AN/APN-154B, 9-3 Receiving-Decoding Group AN/ARA-63, 9-1 warning indexer panel, 9-3 Automatic carrier landing system operation, 9-3 landing sequence, 9-4 mode I landing operation, 9-4 Automatic direction finder (ADF), 2-12 ADF mode of operation, 2-12 antenna mode of operation, 2-12 Control Panel C-6899/ARN-83, 2-12 Loop Antenna AS-1863/ARN-83, 2-12 loop mode of operation, 2-12 Receiver R-1391/ARN-83, 2-12 sense antenna, 2-12

B

Bearing-distance-heading indicator (BDHI), 5-4 functions, 5-5 indicator parts, 5-4 **Block diagrams** APS-115 signal flow, 3-8 basic television system, 5-17 data link, 1-21 DIFAR sonobuoy, 4-26 digital data processor, 8-3 FLIR azimuth drive, 6-18 FLIR control servomechanism bite, 6-22 FLIR elevation drive, 6-19 FLIR positioning/stabilization, 6-13 FLIR power supply-video converter BITE, 6-17 FLIR receiver-converter BITE, 6-14 FLIR receiver-converter heat exchanger, 6-12 FLIR system, 6-8 FLIR TTSC, 6-24 FLIR video indicator, 6-27 FLIR video processing, 6-15 heads-up display, 5-7 HF radio system, 1-19 tactical display system interface, 5-17 teletype, 1-24 Trainer 11D13A, 3-9 UHF radio system, 1-15 Bonding, 10-14 lightning protection, 10-15 purposes, 10-14

С

Camera tubes, 5-22 image isocon, 5-23 image orthicon, 5-22 plumbicon, 5-25 secondary electron conduction (SEC), 5-25 vidicon, 5-24

Computer input/output units, 8-9 devices, 8-11 input devices, 8-11 output devices, 8-12 parallel transmission, 8-10 parallel versus serial transmissions, 8-10 serial transmission, 8-11 Computer programming fundamentals, 8-13 executive routines. 8-14 flow charting, 8-15 jump and return jump instructions, 8-14 maintenance programs, 8-15 program construction, 8-15 subroutines, 8-14 Computers, 8-1 applications, 8-2 integrated circuit technology, 8-12 makeup, 8-1 peripheral avionics systems, 8-16 programming fundamentals, 8-13 types, 8-2 Computer types, 8-2 analog, 8-2 digital, 8-2 general-purpose, 8-3 special-purpose, 8-3

D

Data link system, 1-20 block diagram, 1-21 comm interface No. 2, 1-21 Control-Monitor Panel C7790/ACQ-5, 1-21 Converter-Control CV-2528/ACQ-5, 1-20 modes of operation, 1-22 Power Supply PP-6140/ACQ-5, 1-21 terms, 1-22

Digital computers, 8-2 data processor, 8-3 input/output, 8-9 operation, 8-3 Digital data processor, 8-3 arithmetic-logic unit, 8-5 block diagram, 8-3 control unit, 8-4 internal data storage unit, 8-5 Digital data storage, 8-5 magnetic cores, 8-6 magnetic disks, 8-8 magnetic drums, 8-7 magnetic tapes, 8-8 semiconductor memories, 8-6 thin film. 8-7 Doppler, 2-18 Antenna AS-1350/APN- 153(V), 2-18 Control Indicator C-4418A/APN-153(V), 2-18 operational theory, 2-18 Receiver Transmitter RT-680A/APN-153(V), 2 - 18test indications, 2-19

Ε

Electrical noise, 10-3 ac generators and motors, 10-3 beacons, 10-4 coded-pulse equipment, 10-4 dc motors, 10-3 inverters, 10-4 nonlinear elements, 10-5 power lines, 10-6 propeller systems, 10-5 radar, 10-4 receiver oscillators, 10-5 relays, 10-4 thyratrons, 10-4

Electrostatic discharge, 10-15 component susceptibility, 10-17 device handling, 10-18 device packaging, 10-18 elimination of, 10-17 markings, 10-19 personal apparel, 10-17 personnel ground straps, 10-17 prime generators, 10-17 protective materials, 10-17 static electricity, 10-15 Electrostatic discharge program, 10-1 bonding, 10-14 electrical noise. 10-3 electrostatic discharge, 10-15 interference coupling, 10-6 protective material, 10-17 radio interference reduction components, 10-7 receiver noise interface, 10-1 static electricity, 10-15 Electrostatic discharge protective material, 10-17

antistatic material, 10-18 conductive material, 10-17 hybrid bags, 10-18

F

F-14 aircraft weapon systems, 7-1 air combat maneuver (ACM) panel, 7-1 AN/AWW-4 fuze function control system, 7-4 armament control indicator panel, 7-2 armament safety override switch, 7-4 basic controls and components, 7-1 control stick, 7-3 decoy dispensing system, 7-4 display control panel, 7-2 jettison system, 7-4 landing gear handle, 7-3

F-14 aircraft weapon systems-Continued M61A1 20-mm automatic gun fire control system, 7-4 master light control panel, 7-3 missile control system, 7-4 multiple weapons release system, 7-4 F/A-18 aircraft weapon systems, 7-5 AGM-65 Maverick system, 7-10 AGM-88 Harm system, 7-10 AIM-7 Sparrow fire control system, 7-10 AIM-9 Sidewinder fire control system, 7-11 aircraft controller grip, 7-6 AN/ALE-39 decoy dispensing system, 7-11 AN/AWW-4 fuze function control system, 7-10 AN/AWW-7B data link system, 7-10 armament computer, 7-8 armament safety override switch, 7-6 basic controls and components, 7-5 bomb release system, 7-10 digital computers, 7-9 digital display indicators (DDIs), 7-6 ground power control panel, 7-5 jettison system, 7-9 landing gear control handle, 7-6 M61A1 20-mm gun system, 7-11 master arm control panel, 7-6 rocket firing system, 7-10 Walleye guided weapon system, 7-10 Fighter aircraft weapon systems, 7-1 F-14 aircraft, 7-1 F/A-18 aircraft, 7-5 Fire control radar, 3-9 block diagram, 3-9 bomb director mode, 3-10 bomb director mode display, 3-15 fire control (automatic search) display, 3-12

Fire control radar-Continued fire control (automatic track) display, 3-14 fire control (breakaway) display, 3-15 fire control (lock on) display, 3-14 fire control (manual search) display, 3-13 fire control mode, 3-10 operating modes, 3-9 search display, 3-11 search mode, 3-10 system controls, 3-10 Fixed-wing kill store systems, 7-17 bomb bay system, 7-17 P-3C wing launcher assembly, 7-18 S-3A pylor/rack assembly, 7-18 Fixed-wing release and control system, 7-18 automatic mode, 7-19 jettison, 7-20 manual mode, 7-20 operation, 7-19 Forward-looking infrared system (FLIR), 6-7 azimuth drive block diagram, 6-18 azimuth drive computer track mode, 6-20 azimuth drive forward mode, 6-20 azimuth drive manual track mode, 6-20 azimuth drive position mode, 6-19 azimuth drive subsystem, 6-19 block diagram, 6-8 control box, 6-25 control servomechanism assembly, 6-18 control servomechanism BITE, 6-21 control servomechanism BITE block diagram, 6-22 control servomechanism BITE 1 test, 6-23 control servomechanism BITE 2 test, 6-23 control servomechanism BITE 3 test, 6-23 control servomechanism fault isolate test, 6-21

Forward-looking infrared system (FLIR)-Continued elevation drive block diagram, 6-19 elevation drive subsystem, 6-21 infrared to composite video conversion, 6-10 infrared to video processing, 6-11 positioning and stabilization, 6-12 positioning/stabilization block diagram, 6-13 power supply, 6-14 power supply-video converter assembly, 6-14 power supply-video converter BITE, 6-17 power supply-video converter BITE block diagram, 6-17 receiver-converter assembly, 6-9 receiver-converter BITE, 6-13 receiver-converter BITE block diagram, 6-14 receiver-converter heat exchanger diagram, 6-12 signal optical path, 6-10 target track sight control, 6-25 target track sight control block diagram, 6-24 temperature control, 6-12 video indicator, 6-26 video indicator block diagram, 6-27 video processing, 6-14 video processing block diagram, 6-15 Frequency band usage, 1-2 frequency spectrum, 1-2 MF and HF band, 1-2 VHF and UHF band. 1-2 VLF and LF band, 1-2

Н

Heading indicators, 5-1 bearing-distance-heading indicator (BDHI), 5-4 horizontal situation indicator (HSI), 5-1

Heads-up display (HUD), 5-5 air-to-air mode of operation, 5-13 air-to-ground mode of operation, 5-14 analog-to-digital conversion mode, 5-9 **BITE functions**, 5-10 block diagram, 5-7 circle mode, 5-81 cruise mode of operation, 5-13 declutter, 5-10 deflection module, 5-10 digital computer, 5-7 display unit, 5-9 input receivers, 5-6 landing mode of operation, 5-14 line mode, 5-8 optical module, 5-9 signal data processor, 5-6 symbol generator, 5-7 symbology, 5-10 takeoff mode of operation, 5-13 video module, 5-9 Helicopter search store sytems, 7-14 SH-3 helicopter sonobuoy launcher, 7-16 SH-60 helicopter sonobuoy launcher, 7-16 HF communications, 1-16 antenna. 1-18 block diagram, 1-19 Control Box C-9245/ARC- 161, 1-17 Coupler CU-2070/ARC, 1-18 lightning arrester, 1-18 receive function, 1-19 Receiver-Transmitter RT-1000/ARC-161, 1-17 Remote Control Unit TSEC/KY-75, 1-19 RF Amplifier AM-6561/ARC-161, 1-17 Security Unit TSEC/KY-75, 1-18 transmit function, 1-19

Horizontal situation indicator (HSI), 5-1 control box, Copilot A279, 5-2 control box, NAV/COMM A309, 5-3 control box, Pilot A280, 5-2 Indicator ID-1540/A, 5-1 system description, 5-4

I

IFF systems, 3-15 interrogator set, 3-20 transponder set, 3-15 Indicators, 5-1 bearing-distance-heading indicator (BDHI), 5-4 heading indicators, 5-1 heads-up display (HUD), 5-5 horizontal situation indicator (HSI), 5-1 tactical display system (non-bud) (TDS), 5-15 Infrared, 6-1 detectors, 6-4 foward-looking infrared system (FLIR), 6-7 imaging system, 6-5 optics, 6-4 radiation, 6-3 thermal imaging, 6-1 Infrared detectors, 6-4 elemental detectors, 6-4 imaging detectors, 6-4 photon effect, 6-5 thermal effect, 6-5 Infrared imaging system, 6-5 detector array, 6-5 front end optics, 6-7 image processing, 6-7 refrigeration system, 6-7 scene dissection, 6-6 single detector, 6-6

Infrared radiation. 6-3 sources, 6-3 Intercommunication system, 1-3 Control Panel C-8760/AI. 1-3 Control Panel LS-602/AI, 1-4 Converter-Interconnecting Box CV-3048, 1-4 Crew ICS Panel LS-601/AI, 1-4 indicators, 1-5 Manchester word decoding, 1-7 Manchester word encoding, 1-6 multiplex transmission, 1-8 roll call, 1-8 signal interfaces, 1-4 word format, 1-5 Interference coupling, 10-6 complex coupling, 10-7 conductive coupling, 10-6 inductive-capacitive coupling, 10-7 inductive-magnetic coupling, 10-6 radiation coupling, 10-7 Integrated circuit technology, 8-12 characteristics, 8-13 classifications, 8-12 Interrogator set, 3-20 Antema AS-2719/AP, 3-20 Computer KIR-1A/TSEC, 3-21 Control Box C-7383/APX-76A(V), 3-20 Electronic Synchronizer SN-416A/APX-76A(V), 3-21 mode 4 transmission, 3-22 modes 1, 2, and 3/A transmission, 3-21 performance monitoring, 3-23 Receiver-Transmitter RT-868A/APX-76A(V), 3 - 21reception, 3-22 Switch Amplifier SA-1568A/APX-76A(V), 3-21

L

Loran, 2-15 Control Box C-6604/ARN-81, 2-15 Indicator IP-796/ARN-81, 2-15 Receiver R-1336/ARN-81, 2-15 system function, 2-15

M

Mad Recorder RO-32, 4-24 Magnetic anomaly detection, 4-15 anomaly strength, 4-17 compensation for noise, 4-19 dc circuit noise, 4-18 magnetic anomaly, 4-15 maneuver noise, 4-18 submarine anomaly, 4-17 Magnetic anomaly detection set, 4-21 Amplifier Power Supply AM-4535, 4-21 Control Box C-6983, 4-21 Magnetic Detector DT-323, 4-21 Magnetic anomaly detection system, 4-20 MAD Recorder RO-32, 4-24 Magnetic Anomaly Detection Set AN/ASQ-81, 4 - 21Magnetic Compensator Group AN/ASA-65, 4-22 Selector Control Group AN/ASA-71, 4-23 Submarine Anomaly Detection Group AN/ASA-64, 4-22 Magnetic compensator group, 4-22 compensation coils, 4-23 Control Indicator C-8935, 4-22 Electronic Control Amplifier AM-6459, 4-22 Magnetic Field Computer CP-1390,4-23 Magnetic Field Indicator ID-2254, 4-23 Magnetometer Assembly DT-355, 4-22

Navigation basics, 2-1 airborne navigation, 2-7 altitudes, 2-7 compass rose, 2-5 dead reckoning, 2-6 direction, 2-5 distance, 2-5 earth's size and shape, 2-2 electronic assisted navigation, 2-6 great circles and small circles, 2-2 latitude, 2-3 longitude, 2-4

0

Omega, 2-16 Antenna Coupler AS-2623/ARN-99(V), 2-17 operating frequencies, 2-16 operational theory, 2-16 Power Control Panel 960767,2-16 Receiver-Converter OR-90/ARN-99(V), 2-17

P

Peripheral avionics systems, 8-16 data link, 8-16 navigation, 8-16 ordnance/weapons, 8-16 search/track radar, 8-16

R

Radar, 3-1 fire control radar, 3-9 IFF systems, 3-15 search radar, 3-1

Radar altimeter, 2-10 Height Indicator ID-1760A/APN- 194,2-10 Low-Altitude Alarm BZ-157A, 2-11 low altitude warning light, 2-11 Receiver-Transmitter RT-1042/APN-194. 2-11 Radar altimeter warning set (RAWS), 2-11 Radio communications. 1-1 data link system, 1-20 frequency band usage, 1-2 HF communciations, 1-16 intercommunication system (ICS), 1-3 teletype system, 1-22 types of, 1-1 UHF communications, 1-13 VHF communications, 1-11 Radio communications types, 1-1 radiotelegraph, 1-1 radiotelephone, 1-1 teletypewriter, 1-1 Radio interference reduction components, 10-7 bandpass filters, 10-13 band-rejection filters, 10-14 capacitive filter application, 10-10 capacitive filtering, ac circuits, 10-10 capacitive filtering, switching devices, 10-11 capacitors, 10-8 capacitors, selection of, 10-10 coaxial feedthrough capacitors, 10-8 high-pass filters, 10-13 inductive-capacitive filters, 10-12 low-pass filters, 10-12 resistive-capacitive filters, 10-11 Receiver noise interference, 10-1 atmospheric static, 10-1 broadband interference. 10-2 cosmic noise, 10-2 narrow-band interference, 10-3 precipitation static, 10-2

S

Search radar. 3-1 Antenna AS-2146/APS-115, 3-5 antema characteristics, 3-5 Antenna Control Box C-75 11A/APS-115, 3-2 antenna elevation parking control, 3-5 Antenna Position Programmer MX-7930/ APS-115. 3-3 Control Panel C-7512/APS-115, 3-5 functional description, 3-8 Radar Interface Unit (RIU) MX-7974/ASA-69, 3 - 7Radar Scan Converter Control C-7557/ASA-69, 3-6 Receiver-Transmitter RT-889/APS-115, 3-3 signal flow diagram, 3-8 transmitter characteristics, 3-4 Selector control group, 4-23 Control Panel C-7693/ASA-71, 4-23 Control Subassembly MX-8109/ASA-71, 4-24 Sonar principles, 4-1 absorption and scattering, 4-2 depth and temperature, 4-4 divergence, 4-3 **Doppler effect**, 4-6 echo-ranging, 4-1 reflection. 4-2 refraction, 4-3 reverberation, 4-2 sound beam speed, 4-3 Sonobuoys, 4-24 ATAC/DLC buoys, 4-27 BT buoys, 4-26 CASS buoys, 4-26 deployment, 4-24 DIC ASS buoys, 4-26

DIFAR buoy block diagram, 4-26

Sonobuoys-Continued DIFAR buoys, 4-25 frequency channels, 4-24 LOFAR buoys, 4-25 markings, 4-25 operating life, 4-25 operation principles, 4-24 RO buoys, 4-26 SAR buoys, 4-26 water entry and activation, 4-25 Sonobuoy Receiver AN/ARR-72, 4-27 Static electricity, 10-15 causes of, 10-16 effects of, 10-17 triboelectric effect, 10-16 Submarine anomaly detection group, 4-22

Т

TACAN, 2-13 air-to-air mode of operation, 2-15 Antenna Assembly AS-26281A, 2-14 Control Box C-9054/ARN-84, 2-14 ground station, 2-13 interruptive self-test, 2-15 readiness monitoring, 2-15 receive mode of operation, 2-14 Receiver-Transmitter RT-1022/ARN-84, 2-14 RF Transmission Line Switch SA-1818/A, 2-14 Signal Data Converter CV-2837/ARN-84, 2-14 station identification. 2-13 transmit-receive mode of operation, 2-15 Tactical display system (non-bud) (TDS), 5-15 block diagram, 5-17 copilot/cotac display, 5-15 display generator unit, 5-15 pilot display, 5-15 senso ARU display, 5-16 system interface, 5-16 TACCO and SENSO displays, 5-16

Teletype system, 1-22 block diagram, 1-24 comm interface No. 1, 1-24 Keyboard Transmitter TT-568/AGC-6, 1-23 secure interface. 1-24 security unit remote control unit, 1-24 Security Unit TSEC/KW-7, 1-24 signal data converter, 1-23 system operation, 1-24 teleprinter TT-567, 1-23 Television, 5-16 basic block diagram, 5-17 camera tubes, 5-22 fundamentals, 5-17 picture tubes, 5-26 scanning, 5-18 signals, 5-19 Television scanning methods, 5-18 interlaced, 5-18 noninterlaced, 5-18 odd-line interlaced, modified sync pulse, 5-22 odd-line interlaced, no special sync pulse, 5-21 random interlaced, 5-20 slow-speed scan, 5-22 Television signals, 5-19 picture average dc component, 5-20 picture blanking pulses, 5-19 picture information, 5-19 picture synchronizing pulses, 5-20 Thermal imaging, 6-2 infrared detectors, 6-4 infrared optics, 6-4 infrared radiation, 6-3

Transponder set, 3-15 Computer KIT-1A/TSEC, 3-17 Control Box C-6280(P)/APX, 3-16 emergency function, 3-19 **IDENT function**, 3-19 mode 1, 3-19 mode 2 and mode 3/A, 3-19 mode 4, 3-19 mode C, 3-19 monitor function, 3-20 pulse position for dial settings, 3-18 received signals, 3-17 Receiver-Transmitter RT-859/APX-72, 3-16 RF Transmission Line Switch SA-1769/A, 3-16 self-test, 3-20 side lobe suppression, 3-17 special position indicator, 3-20 Test Set TS-1843/APX, 3-17 transponder recognition, 3-17 transponder response, 3-18 X-pulse function, 3-20

U

UHF communications, 1-13 block diagram, 1-15 Control Box C-11950/ARC-187, 1-13 modes of operation, 1-14 operating modes, 1-16 Receiver-Transmitter RT-1571/ARC-187, 1-13 transmit functions, 1-15 UHF-DF operation, 1-15 UHF1 receive mode, 1-15 UHF2 antenna select panel, 1-14 UHF2 receive mode, 1-16 voice and data signals, 1-15

V

VHF communications-Continued

transmit mode of operation, 1-13

W

Weapons systems, 7-1 antisubmarine warfare aircraft, 7-11 fighter aircraft, 7-1

VHF communications, 1-11

Antenna 949880, 1-12

Control Box C-11067/ARC-197, 1-12

receive mode of operation, 1-12

Transceiver RT-1397/ARC-197, 1-12