Reflection and Interference from Thin Films

\rightarrow Normal-incidence light strikes surface covered by a thin film

- Some rays reflect from film surface
- Some rays reflect from substrate surface (distance d further)
\rightarrow Path length difference $=2 d$ causes interference
\bullet From full constructive to full destructive, depending on λ

Standard analysis of Thin Film Interference

$$
\begin{array}{ll}
2 d=m \lambda_{n_{1}} & \text { Max (constructive) } \\
2 d=\left(m+\frac{1}{2}\right) \lambda_{n_{1}} & \text { Min (destructive) }
\end{array}
$$

$$
\lambda_{n_{1}}=\frac{\lambda}{n_{1}}
$$

Wavelength inside film!

Example of Thin Film Interference

$$
\begin{aligned}
& \text { Let } \lambda=500 \quad n_{1}=1.38(\text { MgF2 }) \quad n_{2}=1.5 \text { (glass) } \\
& \lambda_{1.38}=\frac{500}{1.38}=362.3 \mathrm{~nm}
\end{aligned}
$$

Max intensity $\quad d=\frac{1}{2} m \lambda_{1.38}=181 \mathrm{~nm}, 362 \mathrm{~nm}, 543 \mathrm{~nm}, \ldots$
Min intensity $\quad d=\frac{1}{2}\left(m+\frac{1}{2}\right) \lambda_{1.38}=90.6 \mathrm{~nm}, 272 \mathrm{~nm}, 453 \mathrm{~nm}, \ldots$

Must be careful about phase shift at boundary:
$>$ Reflection for $\mathrm{n}_{\text {in }}<\mathrm{n}_{\text {out }}$ has $1 / 2 \lambda$ phase shift, 0 if $\mathrm{n}_{\text {in }}>\mathrm{n}_{\text {out }}$
$>$ Since $\mathrm{n}_{0}<\mathrm{n}_{1}$ and $\mathrm{n}_{1}<\mathrm{n}_{2}$, the phase shift has no effect here
$>$ But for other cases, there can be an extra $1 / 2 \lambda$ phase shift
> Soap bubble (next slide)

Thin Film Interference for Soap Bubble

$$
\begin{array}{lll}
2 d=m \lambda_{n} & \text { Min (destructive) } & \lambda_{n}=\frac{\lambda}{n} \\
2 d=\left(m+\frac{1}{2}\right) \lambda_{n} & \text { Max (constructive) } & \text { Wavelenath ins }
\end{array}
$$

Wavelength inside soap!
Similar analysis, but...
> Phase shift of $1 / 2 \lambda$ for air-soap reflection
> No phase shift for soap-air reflection
$>$ Net $1 / 2 \lambda$ phase shift switches $\max \leftrightarrow \min$

Example of Soap Bubble Interference

Let $\lambda=500 \quad \mathrm{n}=1.32$ (soap + water)

$$
\lambda_{1.32}=\frac{500}{1.32}=379 \mathrm{~nm}
$$

Min intensity $\quad d=\frac{1}{2} m \lambda_{1.32}=189 \mathrm{~nm}, 379 \mathrm{~nm}, 568 \mathrm{~nm}, \ldots$
Max intensity $d=\frac{1}{2}\left(m+\frac{1}{2}\right) \lambda_{1.32}=94.7 \mathrm{~nm}, 284 \mathrm{~nm}, 473 \mathrm{~nm}, \ldots$

Quiz

\rightarrow What is the condition for destructive interference for light reflecting from a soap bubble of thickness d?
(1) $2 d=m \lambda_{n}$

Only 1 reflection has a phase shift, so this switches min and max
-(2) $2 d=\left(m+\frac{1}{2}\right) \lambda_{n}$

Quiz

\rightarrow Consider an oil film (thickness $\mathrm{d}, \mathrm{n}=1.5$) on top of water ($\mathrm{n}=1.3$). Light of $\lambda=600 \mathrm{~nm}$ is normally incident. Which value of d corresponds to destructive interference?

- (1) 300 nm
- (2) 150 nm
(3) 200 nm

Only 1 reflection has a phase shift, so $d=m$ * 200 nm

Quiz

\rightarrow Consider a soap bubble of thickness d and $\mathrm{n}=1.5$. Light of $\lambda=600 \mathrm{~nm}$ is incident on the bubble. Which value of d corresponds to destructive interference?

- (1) 300 nm
(2) 150 nm
(3) 200 nm

Only 1 reflection has a phase shift, so $d=m$ * 200 nm

Diffraction Grating: 1000s of Slits!

Diffraction Grating

\rightarrow Analysis similar to double slit

- Many slits instead of 2
- Slits still separated by distance d
- Maxima again occur only for $d \sin \theta=m \lambda$
- Maxima are much sharper

Intensity Pattern for Diffraction Grating

\rightarrow Calculation of intensity vs θ

- Basically a product of single slit and multiple slit formula

Let $a=$ slit width, $d=$ slit separation, $N=\#$ of slits

$$
\begin{aligned}
& I=I_{\max }\left(\frac{\sin \alpha}{\alpha}\right)^{2}\left(\frac{\sin N \beta}{N \sin \beta}\right)^{2} \\
& \quad \alpha=\pi a \sin \theta / \lambda \\
& \quad \beta=\pi d \sin \theta / \lambda
\end{aligned}
$$

\rightarrow When N is large, maxima are extremely sharp

- For central peak, angular half-width $\Delta \theta_{h w} \simeq \lambda / N d$
\rightarrow Imagine $\mathrm{N} \cong 10000$ - 100000!

2 Slits: $d=4 \lambda$

Double slit, d=4*lambda

4 Slits: $d=4 \lambda$
Grating: $\mathrm{N}=4, \mathrm{~d}=4 * \operatorname{lambda}$

10 Slits: $d=4 \lambda$

Grating: $\mathrm{N}=10, \mathrm{~d}=4$ *lambda

20 Slits: $d=4 \lambda$

Grating: $\mathrm{N}=20$, $\mathrm{d}=4$ *lambda

Diffraction Gratings in Astronomy

\rightarrow Use to determine wavelength (θ measured)
\checkmark Use $d \sin \theta=m \lambda$ to determine wavelength (θ measured)

- Typically have $N=60,000-100,000$!!
- Sharp peaks allow closely spaced wavelengths to be resolved
- Accuracy better than 0.001 nm, e.g. $589.605 \pm 0.001 \mathrm{~nm}$
\rightarrow Important for distinguishing element "signatures"
- Find all the elements in a stellar spectrum

Mercury

Example: Separate $\lambda=600, \lambda=600.05 \mathrm{~nm}$

\rightarrow Poorly resolved with 15,000 slit grating

- Too few slits \Rightarrow lines too wide to tell apart

Grating, $\mathrm{N}=15000$: lines at $600,600.05 \mathrm{~nm}$

Example (cont.)

\rightarrow Lines easily resolved with 60,000 slit grating
Grating, $N=60000$: lines at $600,600.05 \mathrm{~nm}$

Example: Resolution of Sodium $\mathrm{D}_{1}, \mathrm{D}_{2}$ Lines

\rightarrow High resolution solar spectrum near sodium absorption lines

$\lambda_{D_{1}}=589.54 \mathrm{~nm}$

$$
\Delta \lambda=0.60 \mathrm{~nm}
$$

$\lambda_{D_{2}}=588.94 \mathrm{~nm}$

