Il y avait un jardin qu’on appelait la terre,

Avec un lit de mousse pour y faire 'amour.
Non ce n’était pas le Paradis ni I’Enfer,

Ni rien de déja vu ni déja entendu:

Un jour, mon enfant, pour toi il florira... !

To Seraina and Theres

REFLECTION, BERNOULLI NUMBERS AND THE PROOF OF
CATALAN’S CONJECTURE

PREDA MIHAILESCU

ABSTRACT. Catalan’s conjecture states that the equation P — y4 = 1 has no
other integer solutions but 32 — 23 = 1. We prove a theorem which simplifies
the proof of this conjecture.

1. INTRODUCTION

Let p, g be distinct odd primes with p # 1 mod ¢, ( € C be a primitive p—th
root of unity, £/ = Z[¢ + (]* be the real units of Q(¢) and Ey, the subgroup of
those units which are ¢ - adic ¢g—th powers (also called ¢ - primary units). Let
G = Gal (Q(¢ + ¢)/Q) and F,[G] be the group ring over the prime finite field
with characteristic ¢ and N = NQ(C +8)/0 € Z|G]. The main theorem of this paper
states:

Theorem 1. Let p > q be odd primes with p # 1 mod g. If C is the ideal class
group of Q¢+ (), E' =Z[(+ ] and Ay ={z € C: 29 =1} and the module T is
defined by
T = supp(E,/E?) | supp(4,),
then T # F4[G]/(N).
The notion of support: supp(T), will defined below and the signification of vari-

ous modules over the group ring will be given in detail. The module T introduced

above has the following connection to the Catalan conjecture, which is proved in
[Mi]:

IFree after Georges Moustaki
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Theorem 2. If p,q are distinct odd primes with p Z1 mod q, such that Catalan’s
equation

P —yl =1

has a non-trivial solution in the integers, then, with the notation introduced above,
T = (N).

Remark 1. In [Mi], the Theorem of Thaine and the assumption p > q are used
for the proof of T # (N). The new Theorem allows herewith to bypass the use of
Thaine’s Theorem but not the condition p > q.

2. CYCLOTOMIC FIELDS AND THEIR GROUP RINGS

The n—th cyclotomic extension is denoted, following [Ono], by C,, and its max-
imal real subfield is C;\; thus C, = Q(¢), etc. The n—th cyclotomic polynomial
is ®,(X) € Z[X]. The Galois groups are G,, = Gal (C,/Q) = (Z/n - Z)* and
Gt = Gal (C//Q). For c € (Z/n-Z)*, we let o, be the automorphism of Q(¢,)
with ¢, — (¢. If n,n’ are coprime odd integers, then the fields C,,, C,, are linear
independent [Ono] and G,,.,y = G, X Gypy. An automorphism o € G, lifts to Gy
by fixing (,/. Complex multiplication is an automorphism j C G,, for all n € N.

2.1. Group rings. If Ris aring and G = Gal (K/Q) a Galois group, the module
RI[G] is a free R - module generated by the elements of G and is called the group
ring of G. For |G| € R*, the group ring is separable, and we require that this
condition holds. We shall write R[G]' = R[G]/ (Ngq) for the submodule obtained
by modding out the ideal generated by the norm. If n is an odd prime power,
G = G, is generated by ¢ € G and ¢(n) € R*, then the polynomial X#(™ — 1 is
separable over R and ¢ — X mod X¥() — 1 induces an isomorphism

(1) mo o R[X]/(XP™ —1) - R[G,] with
RG] = (R[X]/ (%))

For (n.n') = 1, the isomorphism ¢ extends by multiplicativity. It is thus defined for
all cyclotomic fields and we shall write ¢, irrespective of the value of n and the ring
R.

The real group ring embeds in R[G] by R[G*] = 22 - R[G] and if R is a finite
field of odd characteristic, then R[GT] 2 (1 4 7)R[G]. In the latter case we shall
think of the real group ring in terms of the module on the right hand side of the
isomorphism. Let G~ = G/G™, the minus part of G; then R[G™] & % -R[G],
etc. In particular, since ¢(n) is even, under the isomorphism ¢ we have:

RG] = (R[X] / (X“’("W - 1)) ,
) RIGTT = o <R[X]/ (%)) and

RG] = (R[X]/ (X“’(")/Q—i-l)).
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2.2. Characters, idempotents and irreducible modules. The topics we ex-
pand next belong to representation theory, essentially Maschke’s Theorem. We
expose it in some detail, in order to keep a consistent notation.

Let f € N5; be a positive integer. A Dirichlet character ([Wa], Chapter 3)
of conductor n is a multiplicative map 1 : Z — C, such that ¢(z) = ¢(y) if x =y
mod n and ¢ (z) = 0 iff (z,n) > 1. The Dirichlet character is thus a multiplicative
map x : (Z/f - Z)* — C; if n|n/, one can regard the same character as a map
(Z/n'-Z)* — C by composition with the natural projection (Z/n’-Z)* — (Z/n-Z)*.
The set of integers n’ for which the same map is defined builds an ideal and it is
convenient to choose the generator of this ideal as conductor. A character defined
with respect to its minimal conductor - which is sometimes denoted [Wa] by n, is
called primitive. We will only consider primitive characters. A character is odd if
(—1) = —1 and even if ¥p(—1) = 1. Odd and even characters multiply like signs:
odd times odd is even, etc. The trivial character is unique for all conductors and
will be denoted by 1, so 1(z) = 1 for all € Z. The isomorphism G,, = (Z/n - Z)*
allows one to consider Dirichlet characters as characters of the Galois group G,, =
Gal (C,,/Q). More precisely, let H = (Z/n - Z)*/ kertp C (Z/n - Z)*. Then there
is a field K’ ¢ C,, with Galois group isomorphic to H and 1 may be regarded as
character of this field.

Let G = Gal (K/Q) as before and R = k be a field and k an algebraic closure.
If K = C, is a cyclotomic field - the case we are interested in - then, due to the
linear independence above mentioned, we may restrict ourselves to the case when n
is a prime power; we shall also assume that n is odd. Furthermore, the polynomial
F(X) = X% — 1 should be separable over k, so we require (char(k), ¢(n)) = 1.
Let F C k[X] be the set of irreducible factors of X¥(") — 1 over k and, naturally,
F'=F\{X —1}; since F(X) is separable, F'(X) = [[;c» f(X). We have the
disjoint union F = FT U F~ induced by the rational polynomial factorization:

XP0) 1= (X902 1) (xe/2 4 1),

The primitive (Galois) characters y : G — k are multiplicative maps which
form a group G’. We shall make the dependence on k explicit by writing G’(k),
whenever the context requires it. The Galois characters x € G'(Q) can be identified
to Dirichlet characters of conductor n via the convention

x(e) = x(oe) for c e (Z/n-Z)".
A simple and important property of sums of characters is the following:

Lemma 1. Let G be an abelian Galois group and H' C G'(k) a subgroup of the
Galois characters. Then

L VaeeZ \ ker(H'), and
) X;{, x(@) = {|H’| Y z € ker(H').

0 Vxe@, x#1, and
4 ) =
(1) IR {|G| e
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Proof. Let x € Z with H'(x) # {1}; then there is a x’ € H' such that x/(z) # 1.
Let s(z) = > cx X(). Then

(@) =1)-s) = > x@)- > X(2) x(@)

xE€EH' xEH'
= Z x(z) — Z X" (z) = 0.
xEH’ X" €H’
Since (x'(x) — 1) # 0, it follows that s(xz) = 0. For = € ker(H’) we have x(z) =1
for all x € H' and obviously s(x) = |H|. The proof of (4) is similar. O

Let 1 € k be a primitive p(n)—th root of unity. Since G, is cyclic, ¢ € G
is a generator, then x(s) € k determines all the values of y by multiplicativity.
Furthermore <™ = 1, s0 (x(<))*™ =1 and x(s) €< g > is an ¢(n)—th root of
unity.

The orthogonal idempotents [Lo] of G’ over this field are:

1 _
(5) =g 2 x0) -0 ekwld], Vxed.
oceG
An easy computation shows that the idempotents verify:
1X1 X 1X2 = 5(X17X2) VXIaX? € Gla
(6) 2yeawr Ix = L
o-1, = x(o)-1y, Yo e G,x € G,
Iy x (x(00) —00) = 0 Y oo € G.

Here 0(x1,x2) = 1 if x1 = x2 and 0 otherwise. In general 1, & k[G], so they
have merely an abstract meaning, but their actions may not be well defined. We
need idempotents in k[G]; let S(x) = Gal (k(x(G))/k), where k(x(G)) is the field
obtained by adjoining all the values x(x),z € G to the base field k. The action of
S(x) induces an equivalence relation on G’ given by

x~x e 3seS) X =50
We let X C G’ be a set of representants for the classes of G’/ ~. The k - rational
idempotents are defined by taking traces:

1
== Y. 1, €K[G], x€G.
1S ()] e

The isomorphism ¢ defined by (1) extends to the field k[u], by fixing this exten-
sion. Then ¢(x(s)) = x(s) = v is a root of unity whose order is equal to the order of
the character x € G'. The annihilator x(s) — ¢ of 1,, maps under the isomorphism
defined in (1) to ¢ (x(s) —¢) = X —v. The group S(x) acts on x and on v but not
on ¢, and thus

L H (c—s(x(9)) | = H (X —s(v) = f(X) mod X®(m-1

s€S(x) s€S(x)

Note that the polynomial f, € k[X] since it is invariant under the group S(x)
acting on v. Furthermore it is an irreducible factor of X" — 1, so fx € F. We
have thus a one-to-one map ¢ : X — F,x — fy. Since f,() annihilates 1,/ for
all conjugate characters of , it follows that it annihilates €,. Furthermore, since
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(¢ = x(s)|(o0 — x(00)) for any g € G, it is also the minimal annihilator. We have
thus the following properties for the k - rational idempotents:

€x1 X Ex2 = 5(X17X2) vX17X2 € Glu
(7) erx ey = 1,
o-gy = Xx(0) ey, VoeG,xe @,
ex X fxloo) = 0 Y oo € G.

Here, unlike (6), 6(x1,x2) = 1 if x1 ~ x2 and 0 otherwise.

We define the irreducible submodules of k[G] by M, = ¢, - K[G], x € X.
By the previous remarks, they have f,(¢) as minimal annihilator and thus M, =
k[G]/ (fx(s)k[G]) and they are in fact fields and:

(8) kG = P ekl = P M,

XEX x€EX

Let H be a finite multiplicative abelian group on which G acts. The action of G
makes H into a k[G] - module and (8) induces a direct sum representation of the
module H = k[G] - H:

(9) K[G]-H=ED (4 k[G)-H=E) M,-H.

XEX XEX

The subgroups M, - H C H are called irreducible components of H; a compo-
nent is the direct sum of one or more irreducible components. Note that the Q -
rational idempotents correspond to the factorization of X#(™ —1 over the rationals.
The induced Q - irreducible components are thus always unions of one of more F,
- irreducible components, for some prime 7.

We define the support and annihilator of H as the direct sum of irreducible
modules which act non-trivially, resp. trivially on H:

(10) supp(H) = P M,
xXE€Xo; MX-H#{I}

ann(H) = @ M,.

XE€Xo; My -H={1}

Note that supp(H),ann(H) C k[G]; they are components of k[G] and not of H.
In particular, various unrelated abelian groups may share the same support and
annihilator. Furthermore, an irreducible component needs not be a cyclic module.
Since H is finite, there are a finite number of cyclic modules in M, - H:

k
Imya,my2,. . myk € H: o My -H=E) My-my.
i=1

The number £ of cyclic modules M, - m,; in M, - H is called the cycle-rank of
M, - H and will be denoted by cyc.rk.(M, ).

Let now n1,ny be powers of coprime integers. Then G = Gy, .n, = Gpy X Gy, a8
noted in the previous section. A character x € Gp,n, splits then in x = x1-x2, with
xi € G, i=1,2. If p € k is a primitive ¢(n1n2)—th root of unity, we define the
orthogonal idempotents by the same formula (5) used in the case of prime powers.
Let x € G with x = x1 - x2 as above. An easy computation shows that, using the
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representation 7 € G, with 7 = 01 - 02, where 0; € G,,, © = 1,2 we have:

1 _ 1 L
1, = @Z X(T)-lem' > xalon) - xa(o2) oyt oy

T€G 0, €Gn,

(11) . > xalon)-opt | x Gl D DS CICH R

1 01€Gn, n2 02€Gn,
= Ly X1y,
Herewith all the properties of idempotents and further definitions which build up
upon these properties, extend by multiplicativity to general cyclotomic fields.

3. EXPLICIT REFLECTION

We let now ¢ be an odd prime and n € N be divisible by ¢ and such that
¢ [ p(n). The fields will be K = C,,, so Gal (K/Q) = G,, and k = F,. Remember
that the group ring k[G,,] is defined by multiplicativity and it is semisimple, since
¢ = char(k) J |Gyl

There is a unique character w = wy € G;l such that

a(Ce) = ZJ(U), YoeG,.

This character is called the cyclotomic character for ¢ and it is an odd character.
If x € G’ we define the reflected character x* € G’ by

(12) X'(0) = w(o) - x(e™).
Since w(o) € Fy = k it follows that x* is irreducible iff x is so; also, w being odd,
reflection changes the parity of a character. The definition of reflected irreducible
modules and reflected idempotents follows naturally. We shall write 13 = 1,-,
etc. One also remarks that reflection is an involutive operation, since (x*)* =
_1\ -1

w - (wx 1) =X.

If n = ¢, the polynomial @) = &, 1(X) = Hf: (X —j) splits in linear factors
over k. The orthogonal idempotents are thus annihilated by linear polynomials ¢ —j

and can be indexed by these polynomials. They have in this case the representation
([Wa], Chapter 6.2):

(13) € = Ex; = — Z wi(o) o7t
oeGy
Reflection of idempotents follows here the simple law: €7 =¢;,_;.

We now expose Leopoldt’s Reflection Theorem, which will establish relations
between various £ - groups which are all k[G,,] modules. Leopoldt’s original paper
[Le] (see also [Lo]), treats the general case in which K is a normal field containing
¢¢ and such that ([K/Q],¢) = 1. Furthermore, the groups are £ - Sylow groups,
while we are only interested in their elementary ¢ - subgroups, i.e. the subgroups
of exponent ¢. This second modification is only marginal, but it allows to bypass
a step in which the base field for the group rings has to be k = Qy, the £ - adic
rational field.

Let C be the ideal class group of K and E = O(K")* be the real units. Let
a € K have valuation zero at each prime £ D (¢); we say that « is £ - primary iff

a=v" modl-(1-¢)?% forsome veK.
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We then write Ky = {& € K* : 2 is £ - primary} and let Ey = ENK,. Note that if
K’ € K is a field in which £ is inert, then the necessary condition for ¢ - primary
numbers in K’ is o = v* mod £2.

The first actors of reflection are then:

Ay = {zeC:2=1}, and
U = E;/E".

If Ay # {1}, there is a mazimal abelian unramified elementary £ - extension L D K
- i.e. an extension with ¢ - elementary Galois group H = Gal (L/K). This is a
subfield of the Hilbert class field of K and the Artin map yields an isomorphism
between the groups H = A,;. The module k[G] acts on H by conjugation: oh =
h =0 lohoo, forall h € Hyo € G. Finally, a number o € K is called ¢ -
singular if there is a non-principal ideal @ C = € Ay such that a’ = (a). Note
that by definition o ¢ K*. We let B = {a € K : a is £ - singular} N (K, \ Ey) and
By = B/(K*)".

Theorem 3 (Leopoldt’s Reflection Theorem). Notations being like above, let M =
M, C k[G]' be an irreducible submodule, with x € X an even character. Then the
k[G])' - modules Ay,Us and By are related by:

cycrk.(M, By) + cycrk (M Us) = cycrk.(MyAy),
(14) cycrk.(MyB;) = cycrk.(MyAe), and
cycrk.(M, By) < cyc.rk.(M, Ay), cyc.rk.(M3 By) < cyc.rk.(My Ag).
Moreover, the following inequality holds:
(15) cycrk. (M, - Ag) < cycrk. (M - Ay)

< cycrk.(M,, - Ag) + cycrk. (M, - Up).

Proof. Note that the norm Ny /g annihilates all the groups under consideration,
which explains why we concentrate on k[G]’. The numbers in B are primary singular
non-units and the union F;, = B,UUy is disjoint, so cyc.rk.(M Fy) = cyc.rk.(M By)+
cyc.rk.(MUy) for each simple submodule M C k[G]'. If x € Fp and y e K*, y =«
mod (K*)*, then K(y'/*) is an unramified abelian extension (e.g. [Wa], Chapter
9, Exercises). These are exactly all possibilities for generating the extension L.
The last line in (14) is obvious, since it takes an ideal in a € x € Ay in order to
define a singular number in B, and not all singular numbers are also primary, so
the inequalities may be strict.
We have the following one-to-one maps:

Fy+— H < Ay.
The first map is a consequence of the above remark, the second is the Artin map.
The last line of (14) follows now from
|M* Ayl = [MF| = |MBy| + |MUy|.
For odd characters x, M, -U, = {1}, since in this case M, annihilates the real units.

This explains the asymmetry between the first two lines of (14). The symmetry is
regained if we write, with F} defined above,

(16) cycrk. (M, Fy) = cycrk.(My Ayp).

This relation holds for any character x, and we shall prove it below. The extension
L/K is an abelian Kummer extension [La]; for b € b € Fy, the extension K(b'/%)
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depends only upon the class b € Fy of the algebraic number b. There is thus a
(Kummer-) pairing H x Fy —< (y > given by

hbl/f
p1/e”’
The pairing [La] does not depend upon the choice of the /—th root of b, is bilinear
and non-degenerate. Furthermore, it is G - covariant in the sense that

< h,b>= for any b€ b.

(17) < h?,b7 >=<h,b>°, Voeq.
Let now x € G'. We claim that the Kummer pairing verifies the reflection property:
(18) <eyh,b>=<heb>.

Indeed < h,b >7= (7 =< h,b >“(?) 50 (17) implies o < h,b >=< h,b >*(?)=<
h,w(c)b >. The statement now follows by directly inserting the definition of ¢,
and using the fact that [S(x)| = |S(x*)|. Let now b € M, F}, so e,b = b. Then
(18) implies that
<h,b>=<elhb>,

so if < h,b ># 1 then elh # 1. But this means that h € M7H; however,
if b € be F,and 1 # h € Gal (K(b'/%)/K), then the pairing is necessarily
< h,b ># 1. This shows that the correspondence Fy <+ H acts componentwise by
reflection, implies (16) and completes the proof. O

The main application of reflection is, for our purpose, the following;:

Proposition 1. Let n = {¢-n' with £ fp(n), ¢ an odd prime and n € N. Let Ap, Uy
be like above and x € G, an even character belonging to the field K' = C,, C K.
If My Uy or My Ay are not trivial, then M} Ay # {1}

Proof. If MU, # {1}, then by the first line in (14), M;A, # {1}. Otherwise, if
M, Ag is non trivial, then My By is non trivial as a consequence of the second and
third lines in (14). In both cases, M} Ay # {1}, which completes the proof. O

Let &1 be the orthogonal idempotent in (13), defined with respect to £ = ¢q. The
Proposition implies:

Corollary 1. Let T and A, be as in the statement of Theorem 1. Then T* D
supp(e1 - Ag).

Proof. 1f x € G, then x* = w - x~! and M*y C e1k[Gp,]. The statement follows
now from Proposition 1. (|

4. BERNOULLI NUMBERS

If x # 1is a Dirichlet character of conductor f, then the generalized Bernoulli
numbers are defined ([Wa], Chapter 4), by:

)
(19) By = % 'S 4 x(a).
a=1

A major distinction between Galois characters and Dirichlet characters becomes
clear in the definition (19): although it is formally identical to the definition of
the idempotent 1,-1, no factorization like (11) is possible. The reason is that in
the definition of idempotents, x (o) is multiplied by an automorphism - thus, under
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the identification of Galois and Dirichlet characters, there is an implicit reduction
modulo the conductor of x. In (19) however, the factors a are considered as complex
numbers, so the factorization is true only modulo f.

The next lemma gathers some computational facts on various characters:

Lemma 2. Let £,n be like in the previous section and p € C a primitive p(n)—th
root of unity, L = Q(u) and (¢) C £ C O(L) a prime ideal above {. Let F, =
O(LL)/L be a field of characteristic £ so that the group G, (F;) has images in F,;
finally, let L' D Qq the extension of the £-adic field for which O(L')/ (¢- O(L)) = F,
[Gol.

If v = p mod £ € F,., then u is the unique root of unity in C with this prop-
erty. Furthermore, there is a unique @(n)—th root of unity u' € L' such that p'
mod (£-O(L')) =v. If x € G}, (Fy) there are unique characters ¥, € D!, = G, (Q)
and A, € GI,(Qq) - thus a Dirichlet and a £ - adic character - such that

() = x(z) mod £, Vzel,
(20) M(z) = x(z) mod (¢-OL)), Vzel,

Py(z) = M(x) mod £V, VezeZ N eN.
If w is the cyclotomic character for ¢, then
(21) Gi=y(x) =2 ' mod gV, VzeZ NEeN.

Proof. There is exactly one p € C with u = v mod £. If this was not the case
and g1 = pe = v mod £, then py — pe =0 mod £ and N(pu3 — p2) =0 mod 4.
But the norm on the right hand side is only divisible by primes dividing the order
of p, thus dividing ¢(n), which is coprime to ¢, so 3 = pe. The unicity of the
root p' is proved similarly. It is an elementary fact on ¢ - adic extensions [Gol,
that O(L)/(£Y) =2 O(L')/ (¢V - O()) for all N € N. Let x € G/, (F;) and ey (z) :
7 — 7./(¢(n) - Z) be the exponent with x(2) = v®x(*); then the characters in (20)
are given by ¥, (z) = p>® and \(z) = (u/)**). The properties in (20) are
immediate consequences.

Finally, the character w has order £ — 1 and is defined by its values for a =
1,2,...,£ — 1 for which w(a) = @ mod £. One verifies that the character v,
mod £% given by (21) has exactly these properties and the claim (21) follows from
the unicity of ¢, and A,. O

For even characters, By, = 0 and the odd characters are connected to the field
K by the class number formula [Wa], Theorem 4.17:

,=2n- [[ Bix, kez
X odd

Since we are interested in divisibility of i, by the odd prime ¢, the power of 2 is
of less concern in our case. The factor n cancels with the denominator of B; g;, for
all the cyclotomic characters defined with respect to prime divisors of t|n; all the
other Bernoulli numbers are algebraic integers. The class number formula indicates
that if £|h.,, then some Bernoulli numbers will be divisible by prime ideals above Z.
The next step is to follow this indication and gather a finer, component dependent
information about divisibility of B; , by primes above £.

Let 1
9 = — - . 1
g a-o,

0<c<n;(e,n)=1
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be the Stickelberger element of K ([Wa], Theorem 15.1). Then 0, = (¢ — 0.)0 €
Z|G,], for (¢,n) = 1 and it annihilates the class group C of K. Idempotents,
Bernoulli numbers and Stickelberger element are related by the following formula,
which is a consequence of (6). We assume here that the characters x € G’ are
defined with respect to the field k = QQ and they are identified to Dirichlet characters
as shown before.

6"1X = Bl,x*1 '1)(7 VXEG/(Q),
(c—0)0-1, = (c—x(c) By -1y, ¥YxeG(Q).
By reducing the above relations modulo primes lying above ¢, we obtain important

information about Bernoulli numbers, when an ¢ - component of the class group is
non trivial.

(22)

Proposition 2. Let ¢ be an odd prime and n = ¢ -n' € N with (¢,¢o(n)) = 1,
K = C,; for m|lp(n), m > 1, let up € C be a primitive m—th root of unity and
G = Gu(Fy). We fix a prime ideal (¢) C £ C O(Q(p)) and consider x € G', a
non - trivial primitive group character of exact order m, other then the cyclotomic
character wy.

Let C be the class group of K, Ay = {x € C : 2* = 1} and suppose that M, - Ay #
{1}. If ¢ =9, is the Dirichlet character defined in (20), then:

(23) By y-1 =0 mod £.
Furthermore, if My, - Ag # {1} for all characters of exact order m, then
(24) By y-1 =0 mod £-O(Q(u)).

Proof. Let ¢ € Z with x(c) Z ¢ mod ¢ - this is possible, since x # w¢ - so 0. =
(¢ — 0.)0 € Z|G] and it annihilates the class group. Thus 0. - 1,4, = {1} for all
k € G’ and in particular for s belonging to S(x)x. But since M, A, # {1}, it
follows that the last annihilation is non trivial. We insert ¢ in the second relation
of (22) and use ¢ — x(c) #0 mod £, thus finding

Oex = (c—x(c) Biy-1-e4 mod L.

Since €, does by definition not annihilate M, A, and ¢ — x(¢) mod £ € F), it
follows that B ;-1 must vanish modulo £, which is the statement of (23).

Suppose now that (23) holds for all characters of order m and let v, be the
Dirichlet character induced by one of the x € G}, (F;). Let 0 € Gal (Q(n)/Q);
then o () is also a character of exact order m for which (23) holds. Thus

Blya—l(w—l) = 0'_1 (Blwal) =0 mod 2,
and, by applying o to the above congruence, we find that By ;-1 = 0 mod o£.
This is the case for all 0 € Gal (Q(x)/Q) and (24) follows. O

In particular, when the situation described in the Proposition happens for the
reflected of all even characters in Fy[G,]’, then we have:

Corollary 2. Let the notations be the same as in Lemma 2, n' > 7 orn’ =5 and
suppose that My - Ay # {1} for all even characters x € Fo[Gy]'. If p € Cis a
primitive o(n')—th root of unity and (¢) C £ C O(Q(u)) is a prime ideal above ¢,
then for all even Dirichlet characters v of conductor n' the following holds:

(25) Big-1.4=0 mod £-O(Q(u)).
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Proof. Note that for n’ <7, n’ # 5, we have ¢(n') < 2 and there are no non-trivial
even characters in G,,,. The Corollary is a consequence of (24) and the fact that
the ideal (¢) in the m—th cyclotomic extension lifts to the ideal (£) in Q(u), for any
1 < mle(n). O

5. PROOF OF THE THEOREM

The proof of Theorem 1 is an application of Corollaries 1 and 2 combined with
some involved computations with congruences and integer parts. Let p,q be the
primes in Theorem 1 and let £ = ¢,n = pg and n’ = p. Since p Z 1 mod g and
p > q,p > 5, we are in the situation of the previous results. Assume that T = (N)
in Theorem 1. Then Corollary 1 implies that M} A, is non trivial for all even,
non-trivial x € G}, with images in F,. Let 4 € C be a primitive (p — 1)/2—th
root of unity - since we consider only even characters of G, their order divides
(p—1)/2; let &, be the set of all even, non-trivial Dirichlet characters of conductor
p. Then Corollary 2 implies that (25) holds for all ¢ € &,. for such ¢, we write
B1,4 = pqB1 y, so that

Biy=0 modg® By =0 mod ¢

The characters ¢ € &, are even, ¥(a) = ¢ (p — a).

We need some facts on computations modulo pg. Let 0 < u < ¢, 0 < v < p be
the unique integers given by the extended Euclid algorithm, such that up +vg =1
mod pq. The following easy consequence of the definition of u, v will be used below:

(26) v=+1 modp < ¢=F1 modp.
Let 0 < z(a,b) < pg and 0 < n(a,b) < p be the unique integers with

a modp, a=1,2,...,p—1,

z(a,b) =b+q-n(a,b) = {b mod g, b=1,2 g—1

Then z(a,b) = upb + vga mod pq and
up — 1

q-n(a,b) = avg+bg = q(av —bv) mod pg, so
(27) n(a,b) = (a—bv mod p.

Note the identity n(a,b) + n(p — ¢,¢ — b) = p — 1. Indeed, since z(p — a,q — b) =
pq — z(a,b), we have

pq="b+qn(a,b)+(q—b)+qn(p—a,q—b) =q- (L +n(a,b)+np—a,q-1)),
which confirms the claim. For a =1,2,...,p— 1 we let f(a) € F, be defined by:
qg—1
(28) fla) = b~ n(a,b) mod q.
Then

flp—a)= > (¢=b)"n(p—a,q=b)= Y —b"(p—1-n(a,b)) = f(a) mod q.
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With this, (25) implies for all non trivial ¢ € &:
(p—1)/2,9—1
Bro-1y = > Y@@ () - (2(a,b) + x(p — a,b))
a=1; b=1
(p—1)/2; q—1
Z 2¢(a)b' "7 + gb~* - (n(a,b) + n(p — a,b)) mod ¢°.
a=1;b=1
From (4), since 1 # 1, we have 2- S>%°9/2 4(a) = SP1 4(a) = 0. The sum
vanishes in C and a fortiori modulo ¢?, and with the definition (28), the previous
congruence becomes
(p—1)/2

(29) > ¥(a) fla)=0 modgq, ¢ €&,

a=1

We can regard the above as an homogeneous linear system of equations over F,
with (p — 1)/2 unknowns and (p — 3)/2 equations. One recognizes that the system
matrix has a submatrix of rank (p — 3)/2, which is in fact a Vandermonde matrix.
An easy verification shows that the constant vector is a solution of (29), so

JeoeF, suchthat f(a)=c¢o, for a=1,2,...,p—1.
Since ¢ — p - [g} € {0,1,....p— 1} for all z € Z, it follows that n(a,b) =

(a—b)—p- [“T_b] We can compute the constant ¢y directly, using (27):

co = gbl((a—b)u—p{@bzv—p-gbl {@] mod gq.

With a new constant ¢; = =%

equations:

= uv — ucy mod g, we have the linear system of

! (a — Db
(30) bl-[i}—clz() modgq, a=1,2,....,p—1.
p
b=1

For a heuristic investigation of (30), let us define

Oup = qf q@} -0b1> - € F,[G,).

b=1

Then (30) says that €10, = 0 for a = 1,2,...,p — 1 and ¢; the idempotent in
(13), with respect to £ = q. We assume that the vectors (n(a, b))g;% are random
distributed for a = 1,2,...,(p — 1)/2. By fixing ¢; such that 6,61 = 0, the
probability that the same component vanishes for the further (p —3)/2 independent
elements in F,[G], is ¢~®~3)/2. For fixed p and ¢ < N — oo, the probability that
(30) is verified for at least one ¢ is thus P(p) < ¢ (p—;3) —1 < 1, with ¢, the Riemann
function. The heuristic suggests thus that (30) has no solutions, irrespective of the
size of p and q.

For a proof, we shall need to restrict generality to the case p > ¢, as in the
statement of Theorem 1, and since p and ¢ are primes, then p — 2 > ¢q. We let

su(z) = {@] - {%’] for z € Z. Since 0 < v < p, if follows that 0 < s,(z) < 1
for all z € Z.
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We extend the summation range to b = 0 and replace b=! by w=(b) which is
also defined at b = 0. By subtracting the identities above for two successive values
a,a+ 1 with 0 < a < p— 2, if follows that

- = qlw1(b).<{(a+;—b)v]_{(a;b)ﬂ)

o

=

Q

wtb) - sy(a—b) =0 mod gq.

S
I
o

or, equivalently
(31) Z wla—1t)-s,(t)=0 modq.

t=a+1—q
Since p > g, relation (26) implies that v Z £1 mod p and a simple computation
shows that s,(z) = sy(z + ¢q) for 1 — ¢ < z < 0. This allows to keep the argument
of s,(t) in the range 0 < ¢ < ¢, when a < ¢:

=

(32) wla—t)-5,0t)=0 modqg, a=1,2,...,p—2.

)

~
Il
o

The first ¢ equations in (32) then lead to a quadratic homogeneous system mod-
ulo ¢. Let the matrices Q; € M(Fy,q —14), i = 0,1, be defined by:
Q= (w (a— t))q_l_i i=0,1.

a,t=0 ’

Then €2 is a submatrix of €g, which is the system matrix of the first ¢ equations
in the system (32). Note that €, is a Toeplitz matrix and it has the characteristic
polynomial X971 41 - as results by applying an usual method of numerical analysts
for such matrices. The method consists in completing the matrix into a 2(¢ — 1) x
2(g¢ — 1) circulant matrix, whose eigenvalues are then 55((171), where £3(4—1) is a
primitive 2(¢ — 1)—th root of unity over F, (i.e. the quadratic root of a generator of
F,) and k =0,1,...,2(¢ — 1) — 1. One verifies that the odd powers are eigenvalues
of €y, which leads to the claimed characteristic polynomial. In particular, €4
is a regular matrix and since Qyx = 0 allows the constant vector as solution, it
follows that this is also the only solution. But then s,(t) is the constant vector, for
t=0,...,q— 1; since s,(0) = 0 and

-3 (52 -2 - [2] - [rem] o

0 p p p D
We reached a contradiction, which completes the proof of the Theorem.

Remark 2. The careful reader may have noted that we started from a redundant
system of equations, which allowed for the substitution a — p — a and we obtained
a non redundant system of rank q — 1. This may seem surprising, especially if
q—1> 21, However tracing back the use of s,(t) = s,(t+q), one notes that (51)
is invariant under the above substitution, while (32) is not.

The Theorem 1 is tailored for the needs of the proof of Catalan’s equation. The
Proposition 2 allows for more general results and raises more general questions then
the Theorem, questions and results which shall be presented separately.
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The general question is the following: given £,n = £-n' like in the previous section
and if T C Fy[G,] is one of the supports supp(Ay),supp(Fy), is it possible that T
a full Q - rational component of Fy|G] ¢ Further manipulation of the fundamental
system (29) together with heuristics similar to the one above (and the one used by
Washington in [Wa] for analysing the likeliness of Vandiver’s conjecture), suggest
that this fact should never happen, independently of the size of £,n’, as long as the
degree of the rational components is at least 3. In lack of a proof, we conject it is
impossible and will investigate this conjecture in future works.

Conjecture 1. Let £,n be like in the previous section and T C F([G] be one of
supp(Ag),supp(Fy). Let
xen) _q
X2-1"
be an irreducible factor of degree at least 3 and let
X,={x€G:g(X)=0 mod (4, f (X)) }
Then Uyex, M, ¢ T.

9(X) € Z[X] with ¢g(X)|
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