Il y avait un jardin qu'on appelait la terre, Avec un lit de mousse pour y faire l'amour. Non ce n'était pas le Paradis ni l'Enfer, Ni rien de déjà vu ni déjà entendu: Un jour, mon enfant, pour toi il florira... ¹

To Seraina and Theres

REFLECTION, BERNOULLI NUMBERS AND THE PROOF OF CATALAN'S CONJECTURE

PREDA MIHĂILESCU

ABSTRACT. Catalan's conjecture states that the equation $x^p - y^q = 1$ has no other integer solutions but $3^2 - 2^3 = 1$. We prove a theorem which simplifies the proof of this conjecture.

1. INTRODUCTION

Let p, q be distinct odd primes with $p \not\equiv 1 \mod q$, $\zeta \in \mathbb{C}$ be a primitive p-th root of unity, $E' = \mathbb{Z}[\zeta + \overline{\zeta}]^{\times}$ be the real units of $\mathbb{Q}(\zeta)$ and E'_q , the subgroup of those units which are q - adic q-th powers (also called q - primary units). Let $G = \operatorname{Gal}(\mathbb{Q}(\zeta + \overline{\zeta})/\mathbb{Q})$ and $\mathbb{F}_q[G]$ be the group ring over the prime finite field with characteristic q and $\mathbf{N} = \mathbf{N}_{\mathbb{Q}(\zeta + \overline{\zeta})/\mathbb{Q}} \in \mathbb{Z}[G]$. The main theorem of this paper states:

Theorem 1. Let p > q be odd primes with $p \not\equiv 1 \mod q$. If \mathcal{C} is the ideal class group of $\mathbb{Q}(\zeta + \overline{\zeta})$, $E' = \mathbb{Z}[\zeta + \overline{\zeta}]^{\times}$ and $A_q = \{x \in \mathcal{C} : x^q = 1\}$ and the module \mathbf{T} is defined by

$$\mathbf{T} = \operatorname{supp}(E_q/E^q) \bigcup \operatorname{supp}(A_q),$$

then $\mathbf{T} \neq \mathbb{F}_q[G]/(\mathbf{N})$.

The notion of *support*: $supp(\mathbf{T})$, will defined below and the signification of various modules over the group ring will be given in detail. The module \mathbf{T} introduced above has the following connection to the Catalan conjecture, which is proved in [Mi]:

¹Free after Georges Moustaki

PREDA MIHĂILESCU

Theorem 2. If p, q are distinct odd primes with $p \not\equiv 1 \mod q$, such that Catalan's equation

$$x^p - y^q = 1$$

has a non-trivial solution in the integers, then, with the notation introduced above, $\mathbf{T} = (\mathbf{N})$.

Remark 1. In [Mi], the Theorem of Thaine and the assumption p > q are used for the proof of $\mathbf{T} \neq (\mathbf{N})$. The new Theorem allows herewith to bypass the use of Thaine's Theorem but not the condition p > q.

2. Cyclotomic fields and their group rings

The *n*-th cyclotomic extension is denoted, following [Ono], by \mathbf{C}_n and its maximal real subfield is \mathbf{C}_n^+ ; thus $\mathbf{C}_p = \mathbb{Q}(\zeta)$, etc. The *n*-th cyclotomic polynomial is $\Phi_n(X) \in \mathbb{Z}[X]$. The Galois groups are $G_n = \text{Gal}(\mathbf{C}_n/\mathbb{Q}) \cong (\mathbb{Z}/n \cdot \mathbb{Z})^*$ and $G_n^+ = \text{Gal}(\mathbf{C}_n^+/\mathbb{Q})$. For $c \in (\mathbb{Z}/n \cdot \mathbb{Z})^*$, we let σ_c be the automorphism of $\mathbb{Q}(\zeta_n)$ with $\zeta_n \longrightarrow \zeta_n^c$. If n, n' are coprime odd integers, then the fields $\mathbf{C}_n, \mathbf{C}_{n'}$ are *linear independent* [Ono] and $G_{n \cdot n'} = G_n \times G_{n'}$. An automorphism $\sigma \in G_n$ lifts to $G_{nn'}$ by fixing $\zeta_{n'}$. Complex multiplication is an automorphism $j \subset G_n$ for all $n \in \mathbb{N}$.

2.1. Group rings. If **R** is a ring and $G = \text{Gal}(\mathbb{K}/\mathbb{Q})$ a Galois group, the module $\mathbf{R}[G]$ is a free **R** - module generated by the elements of G and is called the group ring of G. For $|G| \in \mathbf{R}^{\times}$, the group ring is **separable**, and we require that this condition holds. We shall write $\mathbf{R}[G]' = \mathbf{R}[G]/(\mathbf{N}_{\mathbb{K}/\mathbb{Q}})$ for the submodule obtained by modding out the ideal generated by the norm. If n is an odd prime power, $G = G_n$ is generated by $\varsigma \in G$ and $\varphi(n) \in \mathbf{R}^{\times}$, then the polynomial $X^{\varphi(n)} - 1$ is separable over **R** and $\varsigma \mapsto X \mod X^{\varphi(n)} - 1$ induces an isomorphism

(1)
$$\iota_n : \mathbf{R}[X]/(X^{\varphi(n)}-1) \to \mathbf{R}[G_n] \text{ with} \\ \mathbf{R}[G]' = \iota_n \left(\mathbf{R}[X] / \left(\frac{X^{\varphi(n)}-1}{X-1} \right) \right).$$

For (n.n') = 1, the isomorphism ι extends by multiplicativity. It is thus defined for all cyclotomic fields and we shall write ι , irrespective of the value of n and the ring **R**.

The real group ring embeds in $\mathbf{R}[G]$ by $\mathbf{R}[G^+] \cong \frac{1+j}{2} \cdot \mathbf{R}[G]$ and if \mathbf{R} is a finite field of odd characteristic, then $\mathbf{R}[G^+] \cong (1+j)\mathbf{R}[G]$. In the latter case we shall think of the real group ring in terms of the module on the right hand side of the isomorphism. Let $G^- = G/G^+$, the *minus part* of G; then $\mathbf{R}[G^-] \cong \frac{1-j}{2} \cdot \mathbf{R}[G]$, etc. In particular, since $\varphi(n)$ is even, under the isomorphism ι we have:

(2)
$$\mathbf{R}[G^+] = \iota_n \left(\mathbf{R}[X] / \left(X^{\varphi(n)/2} - 1 \right) \right),$$
$$\mathbf{R}[G^+]' = \iota_n \left(\mathbf{R}[X] / \left(\frac{X^{\varphi(n)/2} - 1}{X - 1} \right) \right), \text{ and}$$
$$\mathbf{R}[G^-] = \iota_n \left(\mathbf{R}[X] / \left(X^{\varphi(n)/2} + 1 \right) \right).$$

2.2. Characters, idempotents and irreducible modules. The topics we expand next belong to representation theory, essentially Maschke's Theorem. We expose it in some detail, in order to keep a consistent notation.

Let $f \in \mathbb{N}_{>1}$ be a positive integer. A Dirichlet character ([Wa], Chapter 3) of conductor n is a multiplicative map $\psi: \mathbb{Z} \to \mathbb{C}$, such that $\psi(x) = \psi(y)$ if $x \equiv y$ mod n and $\psi(x) = 0$ iff (x, n) > 1. The Dirichlet character is thus a multiplicative map $\chi : (\mathbb{Z}/f \cdot \mathbb{Z})^* \to \mathbb{C}$; if n|n', one can regard the same character as a map $(\mathbb{Z}/n' \cdot \mathbb{Z})^* \to \mathbb{C}$ by composition with the natural projection $(\mathbb{Z}/n' \cdot \mathbb{Z})^* \to (\mathbb{Z}/n \cdot \mathbb{Z})^*$. The set of integers n' for which the same map is defined builds an ideal and it is convenient to choose the generator of this ideal as conductor. A character defined with respect to its minimal conductor - which is sometimes denoted [Wa] by n_{χ} is called **primitive**. We will only consider primitive characters. A character is **odd** if $\psi(-1) = -1$ and **even** if $\psi(-1) = 1$. Odd and even characters multiply like signs: odd times odd is even, etc. The trivial character is unique for all conductors and will be denoted by 1, so $\mathbf{1}(x) = 1$ for all $x \in \mathbb{Z}$. The isomorphism $G_n \cong (\mathbb{Z}/n \cdot \mathbb{Z})^*$ allows one to consider Dirichlet characters as characters of the Galois group $G_n =$ Gal $(\mathbf{C}_n/\mathbb{Q})$. More precisely, let $H = (\mathbb{Z}/n \cdot \mathbb{Z})^* / \ker \psi \subset (\mathbb{Z}/n \cdot \mathbb{Z})^*$. Then there is a field $\mathbb{K}' \subset \mathbf{C}_n$ with Galois group isomorphic to H and ψ may be regarded as character of this field.

Let $G = \text{Gal}(\mathbb{K}/\mathbb{Q})$ as before and $\mathbf{R} = \mathbf{k}$ be a field and $\overline{\mathbf{k}}$ an algebraic closure. If $\mathbb{K} = \mathbf{C}_n$ is a cyclotomic field - the case we are interested in - then, due to the linear independence above mentioned, we may restrict ourselves to the case when n is a prime power; we shall also assume that n is odd. Furthermore, the polynomial $F(X) = X^{\varphi(n)} - 1$ should be separable over \mathbf{k} , so we require $(\operatorname{char}(\mathbf{k}), \varphi(n)) = 1$. Let $\mathcal{F} \subset \mathbf{k}[X]$ be the set of irreducible factors of $X^{\varphi(n)} - 1$ over \mathbf{k} and, naturally, $\mathcal{F}' = \mathbf{F} \setminus \{X - 1\}$; since F(X) is separable, $F(X) = \prod_{f \in \mathcal{F}} f(X)$. We have the disjoint union $\mathcal{F} = \mathcal{F}^+ \cup \mathcal{F}^-$ induced by the rational polynomial factorization:

$$X^{\varphi(n)} - 1 = \left(X^{\varphi(n)/2} - 1\right) \cdot \left(X^{\varphi(n)/2} + 1\right).$$

The **primitive (Galois) characters** $\chi : G \to \overline{\mathbf{k}}$ are multiplicative maps which form a group G'. We shall make the dependence on \mathbf{k} explicit by writing $G'(\mathbf{k})$, whenever the context requires it. The Galois characters $\chi \in G'(\mathbb{Q})$ can be identified to Dirichlet characters of conductor n via the convention

$$\chi(c) = \chi(\sigma_c) \quad \text{for } c \in (\mathbb{Z}/n \cdot \mathbb{Z})^*.$$

A simple and important property of sums of characters is the following:

Lemma 1. Let G be an abelian Galois group and $H' \subset G'(\mathbf{k})$ a subgroup of the Galois characters. Then

(3)
$$\sum_{\chi \in H'} \chi(x) = \begin{cases} 0 & \forall \ x \in \mathbb{Z} \ \setminus \ \ker(H'), \quad and \\ |H'| & \forall \ x \in \ker(H'). \end{cases}$$

(4)
$$\sum_{x \in G} \chi(x) = \begin{cases} 0 & \forall \ \chi \in G', \ \chi \neq \mathbf{1}, \\ |G| & if \ \chi = \mathbf{1}. \end{cases}$$

Proof. Let $x \in \mathbb{Z}$ with $H'(x) \neq \{1\}$; then there is a $\chi' \in H'$ such that $\chi'(x) \neq 1$. Let $s(x) = \sum_{\chi \in K} \chi(x)$. Then

$$\begin{aligned} (\chi'(x)-1)\cdot s(x) &= \sum_{\chi\in H'} \chi(x) - \sum_{\chi\in H'} \chi'(x)\cdot \chi(x) \\ &= \sum_{\chi\in H'} \chi(x) - \sum_{\chi''\in H'} \chi''(x) = 0. \end{aligned}$$

Since $(\chi'(x) - 1) \neq 0$, it follows that s(x) = 0. For $x \in \ker(H')$ we have $\chi(x) = 1$ for all $\chi \in H'$ and obviously s(x) = |H|. The proof of (4) is similar.

Let $\mu \in \overline{\mathbf{k}}$ be a primitive $\varphi(n)$ -th root of unity. Since G_n is cyclic, $\varsigma \in G$ is a generator, then $\chi(\varsigma) \in \overline{\mathbf{k}}$ determines all the values of χ by multiplicativity. Furthermore $\varsigma^{\varphi(n)} = 1$, so $(\chi(\varsigma))^{\varphi(n)} = 1$ and $\chi(\varsigma) \in \langle \mu \rangle$ is an $\varphi(n)$ -th root of unity.

The **orthogonal idempotents** [Lo] of G' over this field are:

(5)
$$1_{\chi} = \frac{1}{|G|} \cdot \sum_{\sigma \in G} \chi(\sigma) \cdot \sigma^{-1} \in \mathbf{k}(\mu)[G], \quad \forall \ \chi \in G'.$$

An easy computation shows that the idempotents verify:

(6)
$$\begin{array}{rcl}
1_{\chi_1} \times 1_{\chi_2} &=& \delta(\chi_1, \chi_2) & \forall \chi_1, \chi_2 \in G', \\
\sum_{\chi \in G'} 1_{\chi} &=& 1, \\
\sigma \cdot 1_{\chi} &=& \chi(\sigma) \cdot 1_{\chi}, & \forall \sigma \in G, \chi \in G', \\
1_{\chi} \times (\chi(\sigma_0) - \sigma_0) &=& 0 & \forall \sigma_0 \in G.
\end{array}$$

Here $\delta(\chi_1, \chi_2) = 1$ if $\chi_1 = \chi_2$ and 0 otherwise. In general $1_{\chi} \notin \mathbf{k}[G]$, so they have merely an abstract meaning, but their actions may not be well defined. We need idempotents in $\mathbf{k}[G]$; let $S(\chi) = \text{Gal}(\mathbf{k}(\chi(G))/\mathbf{k})$, where $\mathbf{k}(\chi(G))$ is the field obtained by adjoining all the values $\chi(x), x \in G$ to the base field \mathbf{k} . The action of $S(\chi)$ induces an equivalence relation on G' given by

$$\chi \sim \chi' \Leftrightarrow \exists s \in S(\chi) : \chi' = s(\chi).$$

We let $\mathfrak{X} \subset G'$ be a set of representants for the classes of G' / \sim . The **k** - rational idempotents are defined by taking traces:

$$\varepsilon_{\chi} = \frac{1}{|S(\chi)|} \cdot \sum_{s \in S(\chi)} 1_{\chi} \in \mathbf{k}[G], \quad \chi \in G'.$$

The isomorphism ι defined by (1) extends to the field $\mathbf{k}[\mu]$, by fixing this extension. Then $\iota(\chi(\varsigma)) = \chi(\varsigma) = \nu$ is a root of unity whose order is equal to the order of the character $\chi \in G'$. The annihilator $\chi(\varsigma) - \varsigma$ of 1_{χ} maps under the isomorphism defined in (1) to $\iota(\chi(\varsigma) - \varsigma) = X - \nu$. The group $S(\chi)$ acts on χ and on ν but not on ς , and thus

$$\iota\left(\prod_{s\in S(\chi)} \left(\varsigma - s(\chi(\varsigma))\right)\right) \equiv \prod_{s\in S(\chi)} \left(X - s(\nu)\right) \equiv f_{\chi}(X) \mod X^{\varphi(n)-1}.$$

Note that the polynomial $f_{\chi} \in \mathbf{k}[X]$ since it is invariant under the group $S(\chi)$ acting on ν . Furthermore it is an irreducible factor of $X^{\varphi(n)} - 1$, so $f_{\chi} \in \mathcal{F}$. We have thus a one-to-one map $\phi : \mathfrak{X} \to \mathcal{F}, \chi \mapsto f_{\chi}$. Since $f_{\chi(\varsigma)}$ annihilates $1_{\chi'}$ for all conjugate characters of χ , it follows that it annihilates ε_{χ} . Furthermore, since

 $(\varsigma - \chi(\varsigma))|(\sigma_0 - \chi(\sigma_0))$ for any $\sigma_0 \in G$, it is also the minimal annihilator. We have thus the following properties for the **k** - rational idempotents:

(7)
$$\begin{aligned} \varepsilon_{\chi_1} \times \varepsilon_{\chi_2} &= \delta(\chi_1, \chi_2) & \forall \chi_1, \chi_2 \in G', \\ \sum_{\chi \in \mathfrak{X}} \varepsilon_{\chi} &= 1, \\ \sigma \cdot \varepsilon_{\chi} &= \chi(\sigma) \cdot \varepsilon_{\chi}, & \forall \sigma \in G, \chi \in G', \\ \varepsilon_{\chi} \times f_{\chi}(\sigma_0) &= 0 & \forall \sigma_0 \in G. \end{aligned}$$

Here, unlike (6), $\delta(\chi_1, \chi_2) = 1$ if $\chi_1 \sim \chi_2$ and 0 otherwise.

We define the **irreducible submodules of** $\mathbf{k}[G]$ by $M_{\chi} = \varepsilon_{\chi} \cdot \mathbf{k}[G], \ \chi \in \mathfrak{X}$. By the previous remarks, they have $f_{\chi}(\varsigma)$ as minimal annihilator and thus $M_{\chi} \cong \mathbf{k}[G]/(f_{\chi}(\varsigma)\mathbf{k}[G])$ and they are in fact *fields* and:

(8)
$$\mathbf{k}[G] = \bigoplus_{\chi \in \mathfrak{X}} \varepsilon_{\chi} \cdot \mathbf{k}[G] = \bigoplus_{\chi \in \mathfrak{X}} M_{\chi}.$$

Let *H* be a finite multiplicative abelian group on which *G* acts. The action of *G* makes *H* into a $\mathbf{k}[G]$ - module and (8) induces a direct sum representation of the module $\mathbf{H} = \mathbf{k}[G] \cdot H$:

(9)
$$\mathbf{k}[G] \cdot H = \bigoplus_{\chi \in \mathfrak{X}} (\varepsilon_{\chi} \cdot \mathbf{k}[G]) \cdot H = \bigoplus_{\chi \in \mathfrak{X}} M_{\chi} \cdot H.$$

The subgroups $M_{\chi} \cdot H \subset H$ are called **irreducible components** of H; a **component** is the direct sum of one or more irreducible components. Note that the \mathbb{Q} - rational idempotents correspond to the factorization of $X^{\varphi(n)} - 1$ over the rationals. The induced \mathbb{Q} - irreducible components are thus always unions of one of more \mathbb{F}_r - irreducible components, for some prime r.

We define the **support and annihilator** of H as the direct sum of irreducible modules which act non-trivially, resp. trivially on H:

(10)
$$\sup (H) = \bigoplus_{\chi \in \mathfrak{X}_0; \ M_{\chi} \cdot H \neq \{1\}} M_{\chi}$$
$$\operatorname{ann}(H) = \bigoplus_{\chi \in \mathfrak{X}_0; \ M_{\chi} \cdot H = \{1\}} M_{\chi}.$$

Note that $\operatorname{supp}(H)$, $\operatorname{ann}(H) \subset \mathbf{k}[G]$; they are components of $\mathbf{k}[G]$ and not of H. In particular, various unrelated abelian groups may share the same support and annihilator. Furthermore, an irreducible component needs not be a cyclic module. Since H is finite, there are a finite number of cyclic modules in $M_{\chi} \cdot H$:

$$\exists \ m_{\chi,1}, m_{\chi,2}, \dots, m_{\chi,k} \in H: \quad M_{\chi} \cdot H = \bigoplus_{i=1}^{k} \ M_{\chi} \cdot m_{\chi,i}$$

The number k of cyclic modules $M_{\chi} \cdot m_{\chi,i}$ in $M_{\chi} \cdot H$ is called the **cycle-rank** of $M_{\chi} \cdot H$ and will be denoted by cyc.rk. (M_{χ}) .

Let now n_1, n_2 be powers of coprime integers. Then $G = G_{n_1 \cdot n_2} = G_{n_1} \times G_{n_2}$, as noted in the previous section. A character $\chi \in G_{n_1n_2}$ splits then in $\chi = \chi_1 \cdot \chi_2$, with $\chi_i \in G'_{n_i}$, i = 1, 2. If $\mu \in \overline{\mathbf{k}}$ is a primitive $\varphi(n_1n_2)$ -th root of unity, we define the orthogonal idempotents by the same formula (5) used in the case of prime powers. Let $\chi \in G$ with $\chi = \chi_1 \cdot \chi_2$ as above. An easy computation shows that, using the representation $\tau \in G_{nn'}$ with $\tau = \sigma_1 \cdot \sigma_2$, where $\sigma_i \in G_{n_i}$, i = 1, 2 we have:

$$1_{\chi} = \frac{1}{|G|} \cdot \sum_{\tau \in G} \chi(\tau) \cdot \tau^{-1} = \frac{1}{|G_{n_1}| \cdot |G_{n_2}|} \cdot \sum_{\sigma_i \in G_{n_i}} \chi_1(\sigma_1) \cdot \chi_2(\sigma_2) \cdot \sigma_1^{-1} \cdot \sigma_2^{-1}$$

$$(11) = \left(\frac{1}{G_{n_1}} \cdot \sum_{\sigma_1 \in G_{n_1}} \chi_1(\sigma_1) \cdot \sigma_1^{-1}\right) \times \left(\frac{1}{G_{n_2}} \cdot \sum_{\sigma_2 \in G_{n_2}} \chi_2(\sigma_2) \cdot \sigma_2^{-1}\right)$$

$$= 1_{\chi_1} \times 1_{\chi_2}.$$

Herewith all the properties of idempotents and further definitions which build up upon these properties, extend by multiplicativity to general cyclotomic fields.

3. Explicit reflection

We let now ℓ be an odd prime and $n \in \mathbb{N}$ be divisible by ℓ and such that $\ell \not\mid \varphi(n)$. The fields will be $\mathbb{K} = \mathbb{C}_n$, so Gal $(\mathbb{K}/\mathbb{Q}) = G_n$, and $\mathbf{k} = \mathbb{F}_{\ell}$. Remember that the group ring $\mathbf{k}[G_n]$ is defined by multiplicativity and it is *semisimple*, since $\ell = \operatorname{char}(\mathbf{k}) \not\mid |G_n|$.

There is a unique character $\omega = \omega_{\ell} \in G'_n$ such that

$$\sigma(\zeta_{\ell}) = \zeta_{\ell}^{\omega(\sigma)}, \quad \forall \ \sigma \in G_n.$$

This character is called the **cyclotomic character** for ℓ and it is an odd character. If $\chi \in G'$ we define the **reflected character** $\chi^* \in G'$ by

(12)
$$\chi^*(\sigma) = \omega(\sigma) \cdot \chi(\sigma^{-1}).$$

Since $\omega(\sigma) \in \mathbb{F}_{\ell} = \mathbf{k}$ it follows that χ^* is irreducible iff χ is so; also, ω being odd, reflection changes the parity of a character. The definition of *reflected irreducible modules* and *reflected idempotents* follows naturally. We shall write $1_{\chi}^* = 1_{\chi^*}$, etc. One also remarks that reflection is an *involutive* operation, since $(\chi^*)^* = \omega \cdot (\omega\chi^{-1})^{-1} = \chi$.

If $n = \ell$, the polynomial $\Phi_{\varphi(\ell)} = \Phi_{\ell-1}(X) = \prod_{j=1}^{\ell-1} (X-j)$ splits in linear factors over **k**. The orthogonal idempotents are thus annihilated by linear polynomials $\varsigma - j$ and can be indexed by these polynomials. They have in this case the representation ([Wa], Chapter 6.2):

(13)
$$\varepsilon_j = \varepsilon_{\chi_j} = -\sum_{\sigma \in G_\ell} \omega^j(\sigma) \cdot \sigma^{-1}.$$

Reflection of idempotents follows here the simple law: $\varepsilon_j^* = \varepsilon_{p-j}$.

We now expose Leopoldt's *Reflection Theorem*, which will establish relations between various ℓ - groups which are all $\mathbf{k}[G_n]$ modules. Leopoldt's original paper [Le] (see also [Lo]), treats the general case in which \mathbb{K} is a normal field containing ζ_{ℓ} and such that $([\mathbb{K}/\mathbb{Q}], \ell) = 1$. Furthermore, the groups are ℓ - Sylow groups, while we are only interested in their elementary ℓ - subgroups, i.e. the subgroups of exponent ℓ . This second modification is only marginal, but it allows to bypass a step in which the base field for the group rings has to be $\mathbf{k} = \mathbb{Q}_{\ell}$, the ℓ - adic rational field.

Let \mathcal{C} be the ideal class group of \mathbb{K} and $E = \mathcal{O}(\mathbb{K}^+)^{\times}$ be the real units. Let $\alpha \in \mathbb{K}$ have valuation zero at each prime $\mathcal{L} \supset (\ell)$; we say that α is ℓ - **primary** iff

$$\alpha \equiv \nu^{\ell} \mod \ell \cdot (1 - \zeta_{\ell})^2$$
, for some $\nu \in \mathbb{K}$.

We then write $\mathbb{K}_{\ell} = \{x \in \mathbb{K}^{\times} : x \text{ is } \ell \text{ - primary}\}$ and let $E_{\ell} = E \cap \mathbb{K}_{\ell}$. Note that if $\mathbb{K}' \subset \mathbb{K}$ is a field in which ℓ is inert, then the necessary condition for ℓ - primary numbers in \mathbb{K}' is $\alpha \equiv \nu^{\ell} \mod \ell^2$.

The first *actors* of reflection are then:

$$A_{\ell} = \{x \in \mathcal{C} : x^{\ell} = 1\}, \text{ and}$$
$$U_{\ell} = E_{\ell} / E^{\ell}.$$

If $A_{\ell} \neq \{1\}$, there is a maximal abelian unramified elementary ℓ - extension $\mathbb{L} \supset \mathbb{K}$ - i.e. an extension with ℓ - elementary Galois group $H = \text{Gal}(\mathbb{L}/\mathbb{K})$. This is a subfield of the Hilbert class field of \mathbb{K} and the Artin map yields an isomorphism between the groups $H \cong A_{\ell}$. The module $\mathbf{k}[G]$ acts on H by conjugation: $\sigma h =$ $h^{\sigma} = \sigma^{-1} \circ h \circ \sigma$, for all $h \in H, \sigma \in G$. Finally, a number $\alpha \in \mathbb{K}$ is called ℓ **singular** if there is a non-principal ideal $\mathfrak{a} \subset x \in A_{\ell}$ such that $\mathfrak{a}^{\ell} = (\alpha)$. Note that by definition $\alpha \notin \mathbb{K}^{\ell}$. We let $B = \{\alpha \in \mathbb{K} : \alpha \text{ is } \ell \text{ - singular}\} \cap (\mathbb{K}_{\ell} \setminus E_{\ell})$ and $B_{\ell} = B/(K^{\times})^{\ell}$.

Theorem 3 (Leopoldt's Reflection Theorem). Notations being like above, let $M = M_{\chi} \subset \mathbf{k}[G]'$ be an irreducible submodule, with $\chi \in \mathfrak{X}$ an even character. Then the $\mathbf{k}[G]'$ - modules A_{ℓ}, U_{ℓ} and B_{ℓ} are related by:

(14)
$$\operatorname{cyc.rk.}(M_{\chi}B_{\ell}) + \operatorname{cyc.rk.}(M_{\chi}U_{\ell}) = \operatorname{cyc.rk.}(M_{\chi}^*A_{\ell}),$$

 $\operatorname{cyc.rk.}(M_{\chi}^*B_{\ell}) = \operatorname{cyc.rk.}(M_{\chi}A_{\ell}), and$

$$\operatorname{cyc.rk.}(M_{\chi}B_{\ell}) \leq \operatorname{cyc.rk.}(M_{\chi}A_{\ell}), \qquad \operatorname{cyc.rk.}(M_{\chi}^*B_{\ell}) \leq \operatorname{cyc.rk.}(M_{\chi}^*A_{\ell})$$

Moreover, the following inequality holds:

(15)
$$\operatorname{cyc.rk.}(M_{\chi} \cdot A_{\ell}) \leq \operatorname{cyc.rk.}(M_{\chi}^* \cdot A_{\ell})$$

 $\leq \operatorname{cyc.rk.}(M_{\chi} \cdot A_{\ell}) + \operatorname{cyc.rk.}(M_{\chi} \cdot U_{\ell}).$

Proof. Note that the norm $\mathbf{N}_{\mathbb{K}/\mathbb{Q}}$ annihilates all the groups under consideration, which explains why we concentrate on $\mathbf{k}[G]'$. The numbers in B are primary singular non-units and the union $F_{\ell} = B_{\ell} \cup U_{\ell}$ is disjoint, so cyc.rk. $(MF_{\ell}) = \text{cyc.rk.}(MB_{\ell}) +$ cyc.rk. (MU_{ℓ}) for each simple submodule $M \subset \mathbf{k}[G]'$. If $x \in F_{\ell}$ and $y \in \mathbb{K}^{\times}$, $y \equiv x$ mod $(K^{\times})^{\ell}$, then $\mathbb{K}(y^{1/\ell})$ is an unramified abelian extension (e.g. [Wa], Chapter 9, Exercises). These are exactly all possibilities for generating the extension \mathbb{L} . The last line in (14) is obvious, since it takes an ideal in $\mathfrak{a} \in x \in A_{\ell}$ in order to define a singular number in B, and not all singular numbers are also primary, so the inequalities may be strict.

We have the following one-to-one maps:

$$F_\ell \leftrightarrow H \leftrightarrow A_\ell.$$

The first map is a consequence of the above remark, the second is the Artin map. The last line of (14) follows now from

$$M^*A_{\ell}| = |MF_{\ell}| = |MB_{\ell}| + |MU_{\ell}|.$$

For odd characters χ , $M_{\chi} \cdot U_{\ell} = \{1\}$, since in this case M_{χ} annihilates the real units. This explains the asymmetry between the first two lines of (14). The symmetry is regained if we write, with F_{ℓ} defined above,

(16)
$$\operatorname{cyc.rk.}(M_{\chi}F_{\ell}) = \operatorname{cyc.rk.}(M_{\chi}^*A_{\ell}).$$

This relation holds for any character χ , and we shall prove it below. The extension \mathbb{L}/\mathbb{K} is an abelian Kummer extension [La]; for $b \in \mathbf{b} \in F_{\ell}$, the extension $\mathbb{K}(b^{1/\ell})$

depends only upon the class $\mathbf{b} \in F_{\ell}$ of the algebraic number b. There is thus a (Kummer-) pairing $H \times F_{\ell} \rightarrow <\zeta_{\ell} >$ given by

$$\langle h, \mathbf{b} \rangle = \frac{hb^{1/\ell}}{b^{1/\ell}}, \text{ for any } b \in \mathbf{b}.$$

The pairing [La] does not depend upon the choice of the ℓ -th root of b, is bilinear and non-degenerate. Furthermore, it is G - covariant in the sense that

(17)
$$< h^{\sigma}, b^{\sigma} > = < h, b >^{\sigma}, \quad \forall \ \sigma \in G.$$

Let now $\chi \in G'$. We claim that the Kummer pairing verifies the reflection property:

(18)
$$\langle \varepsilon_{\chi}^* h, \mathbf{b} \rangle = \langle h, \varepsilon_{\chi} \mathbf{b} \rangle$$

Indeed $\langle h, \mathbf{b} \rangle^{\sigma} = \zeta_{\ell}^{n\sigma} = \langle h, \mathbf{b} \rangle^{\omega(\sigma)}$ so (17) implies $\sigma \langle h, \mathbf{b} \rangle = \langle h, \mathbf{b} \rangle^{\omega(\sigma)} = \langle h, \omega(\sigma) \mathbf{b} \rangle$. The statement now follows by directly inserting the definition of ε_{χ} and using the fact that $|S(\chi)| = |S(\chi^*)|$. Let now $\mathbf{b} \in M_{\chi}F_{\ell}$, so $\varepsilon_{\chi}\mathbf{b} = \mathbf{b}$. Then (18) implies that

$$\langle h, \mathbf{b} \rangle = \langle \varepsilon_{\mathbf{y}}^* h, \mathbf{b} \rangle,$$

so if $\langle h, \mathbf{b} \rangle \neq 1$ then $\varepsilon_{\chi}^* h \neq 1$. But this means that $h \in M_{\chi}^* H$; however, if $b \in \mathbf{b} \in F_{\ell}$ and $1 \neq h \in \text{Gal}(\mathbb{K}(b^{1/\ell})/\mathbb{K})$, then the pairing is necessarily $\langle h, \mathbf{b} \rangle \neq 1$. This shows that the correspondence $F_{\ell} \leftrightarrow H$ acts componentwise by reflection, implies (16) and completes the proof.

The main application of reflection is, for our purpose, the following:

Proposition 1. Let $n = \ell \cdot n'$ with $\ell \not\models \varphi(n)$, ℓ an odd prime and $n \in \mathbb{N}$. Let A_{ℓ}, U_{ℓ} be like above and $\chi \in G'_{n'}$, an even character belonging to the field $\mathbb{K}' = \mathbf{C}_{n'} \subset \mathbb{K}$. If $M_{\chi}U_{\ell}$ or $M_{\chi}A_{\ell}$ are not trivial, then $M_{\chi}^*A_{\ell} \neq \{1\}$

Proof. If $M_{\chi}U_{\ell} \neq \{1\}$, then by the first line in (14), $M_{\chi}^*A_{\ell} \neq \{1\}$. Otherwise, if $M_{\chi}A_{\ell}$ is non trivial, then $M_{\chi}^*B_{\ell}$ is non trivial as a consequence of the second and third lines in (14). In both cases, $M_{\chi}^*A_{\ell} \neq \{1\}$, which completes the proof. \Box

Let ε_1 be the orthogonal idempotent in (13), defined with respect to $\ell = q$. The Proposition implies:

Corollary 1. Let **T** and A_q be as in the statement of Theorem 1. Then $\mathbf{T}^* \supset \operatorname{supp}(\varepsilon_1 \cdot A_q)$.

Proof. If $\chi \in G_p$ then $\chi^* = \omega \cdot \chi^{-1}$ and $M^*\chi \subset \varepsilon_1 \mathbf{k}[G_{pq}]$. The statement follows now from Proposition 1.

4. Bernoulli numbers

If $\chi \neq 1$ is a Dirichlet character of conductor f, then the **generalized Bernoulli** numbers are defined ([Wa], Chapter 4), by:

(19)
$$B_{1,\chi} = \frac{1}{f} \cdot \sum_{a=1}^{f} a \cdot \chi(a).$$

A major distinction between Galois characters and Dirichlet characters becomes clear in the definition (19): although it is formally identical to the definition of the idempotent $1_{\chi^{-1}}$, no factorization like (11) is possible. The reason is that in the definition of idempotents, $\chi(\sigma)$ is multiplied by an automorphism - thus, under

8

the identification of Galois and Dirichlet characters, there is an implicit reduction modulo the conductor of χ . In (19) however, the factors *a* are considered as complex numbers, so the factorization is true only modulo *f*.

The next lemma gathers some computational facts on various characters:

Lemma 2. Let ℓ , n be like in the previous section and $\mu \in \mathbb{C}$ a primitive $\varphi(n)$ -th root of unity, $\mathbb{L} = \mathbb{Q}(\mu)$ and $(\ell) \subset \mathfrak{L} \subset \mathcal{O}(\mathbb{L})$ a prime ideal above ℓ . Let $\mathbb{F}_r = \mathcal{O}(\mathbb{L})/\mathfrak{L}$ be a field of characteristic ℓ so that the group $G'_n(\mathbb{F}_\ell)$ has images in \mathbb{F}_r ; finally, let $\mathbb{L}' \supset \mathbb{Q}_\ell$ the extension of the ℓ -adic field for which $\mathcal{O}(\mathbb{L}')/(\ell \cdot \mathcal{O}(\mathbb{L}')) = \mathbb{F}_r$ [Go].

If $\nu \equiv \mu \mod \mathfrak{L} \in \mathbb{F}_r$, then μ is the unique root of unity in \mathbb{C} with this property. Furthermore, there is a unique $\varphi(n)$ -th root of unity $\mu' \in \mathbb{L}'$ such that $\mu' \mod (\ell \cdot \mathcal{O}(\mathbb{L}')) = \nu$. If $\chi \in G'_n(\mathbb{F}_\ell)$ there are unique characters $\psi_{\chi} \in D'_n = G'_n(\mathbb{Q})$ and $\lambda_{\chi} \in G'_n(\mathbb{Q}_\ell)$ - thus a Dirichlet and a ℓ - adic character - such that

(20)
$$\begin{aligned} \psi_{\chi}(x) &\equiv \chi(x) \mod \mathfrak{L}, & \forall x \in \mathbb{Z}, \\ \lambda_{\chi}(x) &\equiv \chi(x) \mod (\ell \cdot \mathcal{O}(\mathbb{L}')), \quad \forall x \in \mathbb{Z}, \\ \psi_{\chi}(x) &\equiv \lambda_{\chi}(x) \mod \mathfrak{L}^{N}, & \forall x \in \mathbb{Z}, N \in \mathbb{N} \end{aligned}$$

If ω is the cyclotomic character for ℓ , then

(21)
$$\widehat{\omega} := \psi_{\omega}(x) \equiv x^{\ell^{N-1}} \mod \mathfrak{L}^N, \quad \forall \ x \in \mathbb{Z}, N \in \mathbb{N}.$$

Proof. There is exactly one $\mu \in \mathbb{C}$ with $\mu \equiv \nu \mod \mathfrak{L}$. If this was not the case and $\mu_1 \equiv \mu_2 \equiv \nu \mod \mathfrak{L}$, then $\mu_1 - \mu_2 \equiv 0 \mod \mathfrak{L}$ and $\mathbf{N}(\mu_1 - \mu_2) \equiv 0 \mod \ell$. But the norm on the right hand side is only divisible by primes dividing the order of μ , thus dividing $\varphi(n)$, which is coprime to ℓ , so $\mu_1 = \mu_2$. The unicity of the root μ' is proved similarly. It is an elementary fact on ℓ - adic extensions [Go], that $\mathcal{O}(\mathbb{L})/(\mathfrak{L}^N) \cong \mathcal{O}(\mathbb{L}')/(\ell^N \cdot \mathcal{O}(\mathbb{L}'))$ for all $N \in \mathbb{N}$. Let $\chi \in G'_n(\mathbb{F}_\ell)$ and $e_{\chi}(x) :$ $\mathbb{Z} \to \mathbb{Z}/(\varphi(n) \cdot \mathbb{Z})$ be the exponent with $\chi(x) = \nu^{e_{\chi}(x)}$; then the characters in (20) are given by $\psi_{\chi}(x) = \mu^{e_{\chi}(x)}$ and $\lambda_{\chi}(x) = (\mu')^{e_{\chi}(x)}$. The properties in (20) are immediate consequences.

Finally, the character ω has order $\ell - 1$ and is defined by its values for $a = 1, 2, \ldots, \ell - 1$ for which $\omega(a) \equiv a \mod \ell$. One verifies that the character $\psi_{\omega} \mod \mathfrak{L}^N$ given by (21) has exactly these properties and the claim (21) follows from the unicity of ψ_{ω} and λ_{ω} .

For even characters, $B_{1,\chi} = 0$ and the odd characters are connected to the field \mathbb{K} by the class number formula [Wa], Theorem 4.17:

$$h_n^- = 2^k \cdot n \cdot \prod_{\chi \text{ odd}} B_{1,\chi}, \quad k \in \mathbb{Z}$$

Since we are interested in divisibility of h_n^- by the odd prime ℓ , the power of 2 is of less concern in our case. The factor n cancels with the denominator of $B_{1,\widehat{\omega_t}}$, for all the cyclotomic characters defined with respect to prime divisors of t|n; all the other Bernoulli numbers are algebraic integers. The class number formula indicates that if $\ell|h_n^-$, then some Bernoulli numbers will be divisible by prime ideals above ℓ . The next step is to follow this indication and gather a finer, component dependent information about divisibility of $B_{1,\chi}$ by primes above ℓ .

Let

$$\theta = \frac{1}{n} \cdot \sum_{0 < c < n; (c,n) = 1} a \cdot \sigma_c^{-1}$$

PREDA MIHĂILESCU

be the Stickelberger element of \mathbb{K} ([Wa], Theorem 15.1). Then $\theta_c = (c - \sigma_c)\theta \in \mathbb{Z}[G_n]$, for (c, n) = 1 and it annihilates the class group \mathcal{C} of \mathbb{K} . Idempotents, Bernoulli numbers and Stickelberger element are related by the following formula, which is a consequence of (6). We assume here that the characters $\chi \in G'$ are defined with respect to the field $\mathbf{k} = \mathbb{Q}$ and they are identified to Dirichlet characters as shown before.

(22)
$$\begin{array}{rcl} \theta \cdot 1_{\chi} &=& B_{1,\chi^{-1}} \cdot 1_{\chi}, & \forall \ \chi \in G'(\mathbb{Q}), \\ (c - \sigma_c)\theta \cdot 1_{\chi} &=& (c - \chi(c)) \cdot B_{1,\chi^{-1}} \cdot 1_{\chi}, & \forall \ \chi \in G'(\mathbb{Q}). \end{array}$$

By reducing the above relations modulo primes lying above ℓ , we obtain important information about Bernoulli numbers, when an ℓ - component of the class group is non trivial.

Proposition 2. Let ℓ be an odd prime and $n = \ell \cdot n' \in \mathbb{N}$ with $(\ell, \varphi(n)) = 1$, $\mathbb{K} = \mathbf{C}_n$; for $m | \varphi(n), m > 1$, let $\mu \in \mathbb{C}$ be a primitive m-th root of unity and $G = G_n(\mathbb{F}_\ell)$. We fix a prime ideal $(\ell) \subset \mathfrak{L} \subset \mathcal{O}(\mathbb{Q}(\mu))$ and consider $\chi \in G'$, a non - trivial primitive group character of exact order m, other then the cyclotomic character ω_ℓ .

Let C be the class group of \mathbb{K} , $A_{\ell} = \{x \in C : x^{\ell} = 1\}$ and suppose that $M_{\chi} \cdot A_{\ell} \neq \{1\}$. If $\psi = \psi_{\chi}$ is the Dirichlet character defined in (20), then:

$$(23) B_{1,\psi^{-1}} \equiv 0 \mod \mathfrak{L}$$

Furthermore, if $M_{\chi} \cdot A_{\ell} \neq \{1\}$ for all characters of exact order m, then

(24)
$$B_{1,\psi^{-1}} \equiv 0 \mod \ell \cdot \mathcal{O}(\mathbb{Q}(\mu)).$$

Proof. Let $c \in \mathbb{Z}$ with $\chi(c) \not\equiv c \mod \ell$ - this is possible, since $\chi \neq \omega_{\ell}$ - so $\theta_c = (c - \sigma_c)\theta \in \mathbb{Z}[G]$ and it annihilates the class group. Thus $\theta_c \cdot 1_{\kappa}A_{\ell} = \{1\}$ for all $\kappa \in G'$ and in particular for κ belonging to $S(\chi)\chi$. But since $M_{\chi}A_{\ell} \neq \{1\}$, it follows that the last annihilation is non trivial. We insert c in the second relation of (22) and use $c - \chi(c) \not\equiv 0 \mod \mathfrak{L}$, thus finding

$$\theta_c \varepsilon_{\chi} \equiv (c - \chi(c)) \cdot B_{1,\psi^{-1}} \cdot \varepsilon_{\chi} \mod \mathfrak{L}.$$

Since ε_{χ} does by definition not annihilate $M_{\chi}A_{\ell}$ and $c - \chi(c) \mod \mathfrak{L} \in \mathbb{F}_r^{\times}$, it follows that $B_{1,\psi^{-1}}$ must vanish modulo \mathfrak{L} , which is the statement of (23).

Suppose now that (23) holds for all characters of order m and let ψ_{χ} be the Dirichlet character induced by one of the $\chi \in G'_n(\mathbb{F}_\ell)$. Let $\sigma \in \text{Gal}(\mathbb{Q}(\mu)/\mathbb{Q})$; then $\sigma(\psi)$ is also a character of exact order m for which (23) holds. Thus

$$B_{1,\sigma^{-1}(\psi^{-1})} = \sigma^{-1} \left(B_{1,\psi^{-1}} \right) \equiv 0 \mod \mathfrak{L},$$

and, by applying σ to the above congruence, we find that $B_{1,\psi^{-1}} \equiv 0 \mod \sigma \mathfrak{L}$. This is the case for all $\sigma \in \text{Gal}(\mathbb{Q}(\mu)/\mathbb{Q})$ and (24) follows.

In particular, when the situation described in the Proposition happens for the reflected of *all* even characters in $\mathbb{F}_{\ell}[G_{n'}]'$, then we have:

Corollary 2. Let the notations be the same as in Lemma 2, $n' \geq 7$ or n' = 5 and suppose that $M^*_{\chi} \cdot A_{\ell} \neq \{1\}$ for all even characters $\chi \in \mathbb{F}_{\ell}[G_{n'}]'$. If $\mu \in \mathbb{C}$ is a primitive $\varphi(n')$ -th root of unity and $(\ell) \subset \mathfrak{L} \subset \mathcal{O}(\mathbb{Q}(\mu))$ is a prime ideal above ℓ , then for all even Dirichlet characters ψ of conductor n' the following holds:

(25)
$$B_{1,\widetilde{\omega}^{-1}\cdot\psi} \equiv 0 \mod \ell \cdot \mathcal{O}(\mathbb{Q}(\mu)).$$

10

Proof. Note that for n' < 7, $n' \neq 5$, we have $\varphi(n') \leq 2$ and there are no non-trivial even characters in $G'_{n'}$. The Corollary is a consequence of (24) and the fact that the ideal (ℓ) in the m-th cyclotomic extension lifts to the ideal (ℓ) in $\mathbb{Q}(\mu)$, for any $1 < m | \varphi(n')$.

5. Proof of the Theorem

The proof of Theorem 1 is an application of Corollaries 1 and 2 combined with some involved computations with congruences and integer parts. Let p, q be the primes in Theorem 1 and let $\ell = q, n = pq$ and n' = p. Since $p \not\equiv 1 \mod q$ and $p > q, p \ge 5$, we are in the situation of the previous results. Assume that $\mathbf{T} = (\mathbf{N})$ in Theorem 1. Then Corollary 1 implies that $M_{\chi}^*A_q$ is non trivial for all even, non-trivial $\chi \in G'_p$ with images in $\overline{\mathbb{F}}_q$. Let $\mu \in \mathbb{C}$ be a primitive (p-1)/2-th root of unity - since we consider only even characters of G_p , their order divides (p-1)/2; let \mathcal{E}_p be the set of all even, non-trivial Dirichlet characters of conductor p. Then Corollary 2 implies that (25) holds for all $\psi \in \mathcal{E}_p$. for such ψ , we write $\beta_{1,\psi} = pqB_{1,\psi}$, so that

$$B_{1,\psi} \equiv 0 \mod q \Leftrightarrow \beta_{1,\psi} \equiv 0 \mod q^2.$$

The characters $\psi \in \mathcal{E}_p$ are even, $\psi(a) = \psi(p-a)$.

We need some facts on computations modulo pq. Let 0 < u < q, 0 < v < p be the unique integers given by the extended Euclid algorithm, such that $up + vq \equiv 1 \mod pq$. The following easy consequence of the definition of u, v will be used below:

(26)
$$v \equiv \pm 1 \mod p \iff q \equiv \mp 1 \mod p.$$

Let 0 < x(a, b) < pq and $0 \le n(a, b) < p$ be the unique integers with

$$x(a,b) = b + q \cdot n(a,b) \equiv \begin{cases} a \mod p, & a = 1, 2, \dots, p-1, \\ b \mod q, & b = 1, 2, \dots, q-1. \end{cases}$$

Then $x(a, b) \equiv upb + vqa \mod pq$ and

$$q \cdot n(a,b) \equiv avq + bq \frac{up-1}{q} \equiv q(av - bv) \mod pq, \quad \text{so}$$
(27)
$$n(a,b) \equiv (a-b)v \mod p.$$

Note the identity n(a,b) + n(p-q,q-b) = p-1. Indeed, since x(p-a,q-b) = pq - x(a,b), we have

$$pq = b + qn(a,b) + (q-b) + qn(p-a,q-b) = q \cdot (1 + n(a,b) + n(p-a,q-b)),$$

which confirms the claim. For $a = 1, 2, ..., p-1$ we let $f(a) \in \mathbb{F}_q$ be defined by:

(28)
$$f(a) \equiv \sum_{b=1}^{q-1} b^{-1} \cdot n(a,b) \mod q.$$

Then

$$f(p-a) \equiv \sum_{b=q-1}^{1} (q-b)^{-1} \cdot n(p-a,q-b) \equiv \sum_{b=q-1}^{1} -b^{-1} \cdot (p-1-n(a,b)) \equiv f(a) \mod q.$$

With this, (25) implies for all non trivial $\psi \in \mathcal{E}_p$:

$$\begin{split} \beta_{1,\widetilde{\omega}^{-1}\psi} &= \sum_{a=1;\ b=1}^{(p-1)/2,q-1} \psi(a)\widetilde{\omega}^{-1}(b) \cdot (x(a,b) + x(p-a,b)) \\ &\equiv \sum_{a=1;b=1}^{(p-1)/2;\ q-1} 2\psi(a)b^{1-q} + qb^{-1} \cdot (n(a,b) + n(p-a,b)) \mod q^2. \end{split}$$

From (4), since $\psi \neq \mathbf{1}$, we have $2 \cdot \sum_{a=1}^{(p-1)/2} \psi(a) = \sum_{a=1}^{p-1} \psi(a) = 0$. The sum vanishes in \mathbb{C} and a fortiori modulo q^2 , and with the definition (28), the previous congruence becomes

(29)
$$\sum_{a=1}^{(p-1)/2} \psi(a) \cdot f(a) \equiv 0 \mod q, \quad \psi \in \mathcal{E}_p.$$

We can regard the above as an homogeneous linear system of equations over \mathbb{F}_q , with (p-1)/2 unknowns and (p-3)/2 equations. One recognizes that the system matrix has a submatrix of rank (p-3)/2, which is in fact a Vandermonde matrix. An easy verification shows that the constant vector is a solution of (29), so

$$\exists c_0 \in \mathbb{F}_q$$
 such that $f(a) = c_0$, for $a = 1, 2, \dots, p-1$.

Since $x - p \cdot \left[\frac{x}{p}\right] \in \{0, 1, \dots, p-1\}$ for all $x \in \mathbb{Z}$, it follows that $n(a, b) = (a-b) - p \cdot \left[\frac{a-b}{p}\right]$. We can compute the constant c_0 directly, using (27): $c_0 \equiv \sum_{b=1}^{q-1} b^{-1} \left((a-b)v - p \left[\frac{(a-b)v}{p}\right]\right) \equiv v - p \cdot \sum_{b=1}^{q-1} b^{-1} \left[\frac{(a-b)v}{p}\right] \mod q.$

With a new constant $c_1 \equiv \frac{v-c_0}{p} \equiv uv - uc_0 \mod q$, we have the linear system of equations:

(30)
$$\sum_{b=1}^{q-1} b^{-1} \cdot \left[\frac{(a-b)v}{p}\right] - c_1 \equiv 0 \mod q, \quad a = 1, 2, \dots, p-1.$$

For a heuristic investigation of (30), let us define

$$\theta_{a,b} = \sum_{b=1}^{q-1} \left(\left[\frac{(a-b)v}{p} \right] \cdot \sigma_b^{-1} \right) - c_1 \in \mathbb{F}_q[G_q].$$

Then (30) says that $\varepsilon_1 \theta_{a,b} = 0$ for $a = 1, 2, \ldots, p-1$ and ε_1 the idempotent in (13), with respect to $\ell = q$. We assume that the vectors $(n(a,b))_{b=1}^{q-1}$ are random distributed for $a = 1, 2, \ldots, (p-1)/2$. By fixing c_1 such that $\theta_{1,b}\varepsilon_1 = 0$, the probability that the same component vanishes for the further (p-3)/2 independent elements in $\mathbb{F}_q[G]_q$ is $q^{-(p-3)/2}$. For fixed p and $q < N \to \infty$, the probability that (30) is verified for at least one q is thus $P(p) < \zeta \left(\frac{p-3}{2}\right) - 1 < 1$, with ζ , the Riemann function. The heuristic suggests thus that (30) has no solutions, irrespective of the size of p and q.

For a proof, we shall need to restrict generality to the case p > q, as in the statement of Theorem 1, and since p and q are primes, then $p - 2 \ge q$. We let $s_v(z) = \left[\frac{(z+1)v}{p}\right] - \left[\frac{zv}{p}\right]$ for $z \in \mathbb{Z}$. Since 0 < v < p, if follows that $0 \le s_v(z) \le 1$ for all $z \in \mathbb{Z}$.

12

We extend the summation range to b = 0 and replace b^{-1} by $\omega^{-1}(b)$ which is also defined at b = 0. By subtracting the identities above for two successive values a, a + 1 with 0 < a < p - 2, if follows that

$$c_1 - c_1 \equiv \sum_{b=0}^{q-1} \omega^{-1}(b) \cdot \left(\left[\frac{(a+1-b)v}{p} \right] - \left[\frac{(a-b)v}{p} \right] \right)$$
$$\equiv \sum_{b=0}^{q-1} \omega^{-1}(b) \cdot s_v(a-b) \equiv 0 \mod q.$$

or, equivalently

(31)
$$\sum_{t=a+1-q}^{a} \omega^{-1}(a-t) \cdot s_v(t) \equiv 0 \mod q.$$

Since p > q, relation (26) implies that $v \not\equiv \pm 1 \mod p$ and a simple computation shows that $s_v(z) = s_v(z+q)$ for $1-q < z \leq 0$. This allows to keep the argument of $s_v(t)$ in the range $0 \leq t < q$, when a < q:

(32)
$$\sum_{t=0}^{q-1} \omega^{-1}(a-t) \cdot s_v(t) \equiv 0 \mod q, \quad a = 1, 2, \dots, p-2.$$

The first q equations in (32) then lead to a quadratic homogeneous system modulo q. Let the matrices $\Omega_i \in M(\mathbb{F}_q, q-i)$, i = 0, 1, be defined by:

$$\Omega_i = \left(\omega^{-1}(a-t)\right)_{a,t=0}^{q-1-i}, \quad i = 0, 1.$$

Then Ω_1 is a submatrix of Ω_0 , which is the system matrix of the first q equations in the system (32). Note that Ω_1 is a Toeplitz matrix and it has the characteristic polynomial $X^{q-1} + 1$ - as results by applying an usual method of numerical analysts for such matrices. The method consists in completing the matrix into a $2(q-1) \times 2(q-1)$ circulant matrix, whose eigenvalues are then $\xi_{2(q-1)}^k$, where $\xi_{2(q-1)}$ is a primitive 2(q-1)-th root of unity over \mathbb{F}_q (i.e. the quadratic root of a generator of \mathbb{F}_q) and $k = 0, 1, \ldots, 2(q-1) - 1$. One verifies that the odd powers are eigenvalues of Ω_1 , which leads to the claimed characteristic polynomial. In particular, Ω_1 is a regular matrix and since $\Omega_0 \mathbf{x} = \mathbf{0}$ allows the constant vector as solution, it follows that this is also the only solution. But then $s_v(t)$ is the constant vector, for $t = 0, \ldots, q - 1$; since $s_v(0) = 0$ and

$$\sum_{t=0}^{q-1} s_v(t) = \sum_{t=0}^{q-1} \left(\left[\frac{(t+1)v}{p} \right] - \left[\frac{tv}{p} \right] \right) = \left[\frac{qv}{p} \right] = \left[\frac{1 + (q-u)p}{p} \right] = q - u > 0.$$

We reached a contradiction, which completes the proof of the Theorem.

Remark 2. The careful reader may have noted that we started from a redundant system of equations, which allowed for the substitution $a \to p - a$ and we obtained a non redundant system of rank q - 1. This may seem surprising, especially if $q-1 > \frac{p-1}{2}$. However tracing back the use of $s_v(t) = s_v(t+q)$, one notes that (31) is invariant under the above substitution, while (32) is not.

The Theorem 1 is tailored for the needs of the proof of Catalan's equation. The Proposition 2 allows for more general results and raises more general questions then the Theorem, questions and results which shall be presented separately.

The general question is the following: given $\ell, n = \ell \cdot n'$ like in the previous section and if $\mathbf{T} \subset \mathbb{F}_{\ell}[G_n]$ is one of the supports $\operatorname{supp}(A_{\ell}), \operatorname{supp}(F_{\ell})$, is it possible that \mathbf{T} a full \mathbb{Q} - rational component of $\mathbb{F}_{\ell}[G]$? Further manipulation of the fundamental system (29) together with heuristics similar to the one above (and the one used by Washington in [Wa] for analysing the likeliness of Vandiver's conjecture), suggest that this fact should never happen, independently of the size of ℓ, n' , as long as the degree of the rational components is at least 3. In lack of a proof, we **conject** it is impossible and will investigate this conjecture in future works.

Conjecture 1. Let ℓ, n be like in the previous section and $\mathbf{T} \subset \mathbb{F}_{\ell}[G]$ be one of $\operatorname{supp}(A_{\ell}), \operatorname{supp}(F_{\ell})$. Let

$$g(X) \in \mathbb{Z}[X]$$
 with $g(X) \left| \frac{X^{\varphi(n)} - 1}{X^2 - 1} \right|$,

be an irreducible factor of degree at least 3 and let

$$\mathfrak{X}_g = \{ \chi \in G : g(X) \equiv 0 \mod (\ell, f_{\chi}(X)) \}.$$

Then $\cup_{\chi \in \mathfrak{X}_q} M_{\chi} \not\subset \mathbf{T}$.

Acknowledgments: I thank Francisco Thaine for his suggestions and encouragement shown during the development of this paper.

References

- [Go] Fernando Q. Gouvêa: p adic Numbers, An Introduction, Second Edition, Springer Universitext (1991).
- [La] Lang, S.: Algebra, Third Edition, Springer 2002, Graduate Texts in Mathematics 211
- [Le] Leopoldt, H. W.: Über Einheitengruppe und Klassenzahl reeller abelscher Zahlkörper, Abhandlungen der Deutschen Akademie der Wissenschaftern, Berlin, Kl. Math. Nat. 1953, no. 2 (1954).
- [Lo] Long, R. : Algebraic number theory, Marcel Dekker, Series in Pure and Applied Mathematics (1977).
- [Mi] P. Mihăilescu: Primary Cyclotomic Units and a Proof of Catalan's Conjecture, J. reine angew. Math. 572 (2004), pp. 167-195.
- [Ono] Takashi Ono: Algebraic Number Theory, Academic Press.
- [Wa] L. Washington: Introduction to Cyclotomic Fields, Second Edition, Springer (1996), Graduate Texts in Mathematics 83.

(P. Mihăilescu) GESAMTHOCHSCHULE PADERBORN *E-mail address*, P. Mihăilescu: preda@upb.de