Il y avait un jardin qu'on appelait la terre, Avec un lit de mousse pour y faire l'amour. Non ce n'était pas le Paradis ni l'Enfer, Ni rien de déjà vu ni déjà entendu:
Un jour, mon enfant, pour toi il florira... ${ }^{1}$

REFLECTION, BERNOULLI NUMBERS AND THE PROOF OF CATALAN'S CONJECTURE

PREDA MIHĂILESCU

Abstract

Catalan's conjecture states that the equation $x^{p}-y^{q}=1$ has no other integer solutions but $3^{2}-2^{3}=1$. We prove a theorem which simplifies the proof of this conjecture.

1. Introduction

Let p, q be distinct odd primes with $p \not \equiv 1 \bmod q, \zeta \in \mathbb{C}$ be a primitive $p-$ th root of unity, $E^{\prime}=\mathbb{Z}[\zeta+\bar{\zeta}]^{\times}$be the real units of $\mathbb{Q}(\zeta)$ and E_{q}^{\prime}, the subgroup of those units which are q - adic q-th powers (also called q - primary units). Let $G=\operatorname{Gal}(\mathbb{Q}(\zeta+\bar{\zeta}) / \mathbb{Q})$ and $\mathbb{F}_{q}[G]$ be the group ring over the prime finite field with characteristic q and $\mathbf{N}=\mathbf{N}_{\mathbb{Q}(\zeta+\bar{\zeta}) / \mathbb{Q}} \in \mathbb{Z}[G]$. The main theorem of this paper states:

Theorem 1. Let $p>q$ be odd primes with $p \not \equiv 1 \bmod q$. If \mathcal{C} is the ideal class group of $\mathbb{Q}(\zeta+\bar{\zeta}), E^{\prime}=\mathbb{Z}[\zeta+\bar{\zeta}]^{\times}$and $A_{q}=\left\{x \in \mathcal{C}: x^{q}=1\right\}$ and the module \mathbf{T} is defined by

$$
\mathbf{T}=\operatorname{supp}\left(E_{q} / E^{q}\right) \bigcup \operatorname{supp}\left(A_{q}\right)
$$

then $\mathbf{T} \neq \mathbb{F}_{q}[G] /(\mathbf{N})$.
The notion of support: $\operatorname{supp}(\mathbf{T})$, will defined below and the signification of various modules over the group ring will be given in detail. The module \mathbf{T} introduced above has the following connection to the Catalan conjecture, which is proved in [Mi]:

[^0]Theorem 2. If p, q are distinct odd primes with $p \not \equiv 1 \bmod q$, such that Catalan's equation

$$
x^{p}-y^{q}=1
$$

has a non-trivial solution in the integers, then, with the notation introduced above, $\mathbf{T}=(\mathbf{N})$.

Remark 1. In [Mi], the Theorem of Thaine and the assumption $p>q$ are used for the proof of $\mathbf{T} \neq(\mathbf{N})$. The new Theorem allows herewith to bypass the use of Thaine's Theorem but not the condition $p>q$.

2. Cyclotomic fields and their group Rings

The $n-$ th cyclotomic extension is denoted, following [Ono], by \mathbf{C}_{n} and its maximal real subfield is \mathbf{C}_{n}^{+}; thus $\mathbf{C}_{p}=\mathbb{Q}(\zeta)$, etc. The n-th cyclotomic polynomial is $\Phi_{n}(X) \in \mathbb{Z}[X]$. The Galois groups are $G_{n}=\operatorname{Gal}\left(\mathbf{C}_{n} / \mathbb{Q}\right) \cong(\mathbb{Z} / n \cdot \mathbb{Z})^{*}$ and $G_{n}^{+}=\operatorname{Gal}\left(\mathbf{C}_{n}^{+} / \mathbb{Q}\right)$. For $c \in(\mathbb{Z} / n \cdot \mathbb{Z})^{*}$, we let σ_{c} be the automorphism of $\mathbb{Q}\left(\zeta_{n}\right)$ with $\zeta_{n} \longrightarrow \zeta_{n}^{c}$. If n, n^{\prime} are coprime odd integers, then the fields $\mathbf{C}_{n}, \mathbf{C}_{n^{\prime}}$ are linear independent [Ono] and $G_{n \cdot n^{\prime}}=G_{n} \times G_{n^{\prime}}$. An automorphism $\sigma \in G_{n}$ lifts to $G_{n n^{\prime}}$ by fixing $\zeta_{n^{\prime}}$. Complex multiplication is an automorphism $\jmath \subset G_{n}$ for all $n \in \mathbb{N}$.
2.1. Group rings. If \mathbf{R} is a ring and $G=\operatorname{Gal}(\mathbb{K} / \mathbb{Q})$ a Galois group, the module $\mathbf{R}[G]$ is a free \mathbf{R} - module generated by the elements of G and is called the group ring of G. For $|G| \in \mathbf{R}^{\times}$, the group ring is separable, and we require that this condition holds. We shall write $\mathbf{R}[G]^{\prime}=\mathbf{R}[G] /\left(\mathbf{N}_{\mathbb{K} / \mathbb{Q}}\right)$ for the submodule obtained by modding out the ideal generated by the norm. If n is an odd prime power, $G=G_{n}$ is generated by $\varsigma \in G$ and $\varphi(n) \in \mathbf{R}^{\times}$, then the polynomial $X^{\varphi(n)}-1$ is separable over \mathbf{R} and $\varsigma \mapsto X \bmod X^{\varphi(n)}-1$ induces an isomorphism

$$
\begin{align*}
\iota_{n} & : \mathbf{R}[X] /\left(X^{\varphi(n)}-1\right) \rightarrow \mathbf{R}\left[G_{n}\right] \quad \text { with } \tag{1}\\
\mathbf{R}[G]^{\prime} & =\iota_{n}\left(\mathbf{R}[X] /\left(\frac{X^{\varphi(n)}-1}{X-1}\right)\right) .
\end{align*}
$$

For $\left(n . n^{\prime}\right)=1$, the isomorphism ι extends by multiplicativity. It is thus defined for all cyclotomic fields and we shall write ι, irrespective of the value of n and the ring R.

The real group ring embeds in $\mathbf{R}[G]$ by $\mathbf{R}\left[G^{+}\right] \cong \frac{1+\jmath}{2} \cdot \mathbf{R}[G]$ and if \mathbf{R} is a finite field of odd characteristic, then $\mathbf{R}\left[G^{+}\right] \cong(1+\jmath) \mathbf{R}[G]$. In the latter case we shall think of the real group ring in terms of the module on the right hand side of the isomorphism. Let $G^{-}=G / G^{+}$, the minus part of G; then $\mathbf{R}\left[G^{-}\right] \cong \frac{1-\jmath}{2} \cdot \mathbf{R}[G]$, etc. In particular, since $\varphi(n)$ is even, under the isomorphism ι we have:

$$
\begin{align*}
\mathbf{R}\left[G^{+}\right] & =\iota_{n}\left(\mathbf{R}[X] /\left(X^{\varphi(n) / 2}-1\right)\right), \\
\mathbf{R}\left[G^{+}\right]^{\prime} & =\iota_{n}\left(\mathbf{R}[X] /\left(\frac{X^{\varphi(n) / 2}-1}{X-1}\right)\right), \quad \text { and } \tag{2}\\
\mathbf{R}\left[G^{-}\right] & =\iota_{n}\left(\mathbf{R}[X] /\left(X^{\varphi(n) / 2}+1\right)\right) .
\end{align*}
$$

2.2. Characters, idempotents and irreducible modules. The topics we expand next belong to representation theory, essentially Maschke's Theorem. We expose it in some detail, in order to keep a consistent notation.

Let $f \in \mathbb{N}_{>1}$ be a positive integer. A Dirichlet character ([Wa], Chapter 3) of conductor n is a multiplicative map $\psi: \mathbb{Z} \rightarrow \mathbb{C}$, such that $\psi(x)=\psi(y)$ if $x \equiv y$ $\bmod n$ and $\psi(x)=0$ iff $(x, n)>1$. The Dirichlet character is thus a multiplicative $\operatorname{map} \chi:(\mathbb{Z} / f \cdot \mathbb{Z})^{*} \rightarrow \mathbb{C}$; if $n \mid n^{\prime}$, one can regard the same character as a map $\left(\mathbb{Z} / n^{\prime} \cdot \mathbb{Z}\right)^{*} \rightarrow \mathbb{C}$ by composition with the natural projection $\left(\mathbb{Z} / n^{\prime} \cdot \mathbb{Z}\right)^{*} \rightarrow(\mathbb{Z} / n \cdot \mathbb{Z})^{*}$. The set of integers n^{\prime} for which the same map is defined builds an ideal and it is convenient to choose the generator of this ideal as conductor. A character defined with respect to its minimal conductor - which is sometimes denoted [Wa] by n_{χ} is called primitive. We will only consider primitive characters. A character is odd if $\psi(-1)=-1$ and even if $\psi(-1)=1$. Odd and even characters multiply like signs: odd times odd is even, etc. The trivial character is unique for all conductors and will be denoted by $\mathbf{1}$, so $\mathbf{1}(x)=1$ for all $x \in \mathbb{Z}$. The isomorphism $G_{n} \cong(\mathbb{Z} / n \cdot \mathbb{Z})^{*}$ allows one to consider Dirichlet characters as characters of the Galois group $G_{n}=$ $\operatorname{Gal}\left(\mathbf{C}_{n} / \mathbb{Q}\right)$. More precisely, let $H=(\mathbb{Z} / n \cdot \mathbb{Z})^{*} / \operatorname{ker} \psi \subset(\mathbb{Z} / n \cdot \mathbb{Z})^{*}$. Then there is a field $\mathbb{K}^{\prime} \subset \mathbf{C}_{n}$ with Galois group isomorphic to H and ψ may be regarded as character of this field.

Let $G=\operatorname{Gal}(\mathbb{K} / \mathbb{Q})$ as before and $\mathbf{R}=\mathbf{k}$ be a field and $\overline{\mathbf{k}}$ an algebraic closure. If $\mathbb{K}=\mathbf{C}_{n}$ is a cyclotomic field - the case we are interested in - then, due to the linear independence above mentioned, we may restrict ourselves to the case when n is a prime power; we shall also assume that n is odd. Furthermore, the polynomial $F(X)=X^{\varphi(n)}-1$ should be separable over \mathbf{k}, so we require $(\operatorname{char}(\mathbf{k}), \varphi(n))=1$. Let $\mathcal{F} \subset \mathbf{k}[X]$ be the set of irreducible factors of $X^{\varphi(n)}-1$ over \mathbf{k} and, naturally, $\mathcal{F}^{\prime}=\mathbf{F} \backslash\{X-1\}$; since $F(X)$ is separable, $F(X)=\prod_{f \in \mathcal{F}} f(X)$. We have the disjoint union $\mathcal{F}=\mathcal{F}^{+} \cup \mathcal{F}^{-}$induced by the rational polynomial factorization:

$$
X^{\varphi(n)}-1=\left(X^{\varphi(n) / 2}-1\right) \cdot\left(X^{\varphi(n) / 2}+1\right)
$$

The primitive (Galois) characters $\chi: G \rightarrow \overline{\mathbf{k}}$ are multiplicative maps which form a group G^{\prime}. We shall make the dependence on \mathbf{k} explicit by writing $G^{\prime}(\mathbf{k})$, whenever the context requires it. The Galois characters $\chi \in G^{\prime}(\mathbb{Q})$ can be identified to Dirichlet characters of conductor n via the convention

$$
\chi(c)=\chi\left(\sigma_{c}\right) \quad \text { for } c \in(\mathbb{Z} / n \cdot \mathbb{Z})^{*}
$$

A simple and important property of sums of characters is the following:
Lemma 1. Let G be an abelian Galois group and $H^{\prime} \subset G^{\prime}(\mathbf{k})$ a subgroup of the Galois characters. Then

$$
\begin{gather*}
\sum_{\chi \in H^{\prime}} \chi(x)= \begin{cases}0 & \forall x \in \mathbb{Z} \backslash \operatorname{ker}\left(H^{\prime}\right), \quad \text { and } \\
\left|H^{\prime}\right| & \forall x \in \operatorname{ker}\left(H^{\prime}\right) .\end{cases} \tag{3}\\
\sum_{x \in G} \chi(x)= \begin{cases}0 & \forall \chi \in G^{\prime}, \quad \chi \neq \mathbf{1}, \quad \text { and } \\
|G| & \text { if } \chi=\mathbf{1}\end{cases} \tag{4}
\end{gather*}
$$

Proof. Let $x \in \mathbb{Z}$ with $H^{\prime}(x) \neq\{1\}$; then there is a $\chi^{\prime} \in H^{\prime}$ such that $\chi^{\prime}(x) \neq 1$.
Let $s(x)=\sum_{\chi \in K} \chi(x)$. Then

$$
\begin{aligned}
\left(\chi^{\prime}(x)-1\right) \cdot s(x) & =\sum_{\chi \in H^{\prime}} \chi(x)-\sum_{\chi \in H^{\prime}} \chi^{\prime}(x) \cdot \chi(x) \\
& =\sum_{\chi \in H^{\prime}} \chi(x)-\sum_{\chi^{\prime \prime} \in H^{\prime}} \chi^{\prime \prime}(x)=0 .
\end{aligned}
$$

Since $\left(\chi^{\prime}(x)-1\right) \neq 0$, it follows that $s(x)=0$. For $x \in \operatorname{ker}\left(H^{\prime}\right)$ we have $\chi(x)=1$ for all $\chi \in H^{\prime}$ and obviously $s(x)=|H|$. The proof of (4) is similar.

Let $\mu \in \overline{\mathbf{k}}$ be a primitive $\varphi(n)-$ th root of unity. Since G_{n} is cyclic, $\varsigma \in G$ is a generator, then $\chi(\varsigma) \in \overline{\mathbf{k}}$ determines all the values of χ by multiplicativity. Furthermore $\varsigma^{\varphi(n)}=1$, so $(\chi(\varsigma))^{\varphi(n)}=1$ and $\chi(\varsigma) \in<\mu>$ is an $\varphi(n)$-th root of unity.

The orthogonal idempotents [Lo] of G^{\prime} over this field are:

$$
\begin{equation*}
1_{\chi}=\frac{1}{|G|} \cdot \sum_{\sigma \in G} \chi(\sigma) \cdot \sigma^{-1} \in \mathbf{k}(\mu)[G], \quad \forall \chi \in G^{\prime} \tag{5}
\end{equation*}
$$

An easy computation shows that the idempotents verify:

$$
\begin{align*}
1_{\chi_{1}} \times 1_{\chi_{2}} & =\delta\left(\chi_{1}, \chi_{2}\right) & & \forall \chi_{1}, \chi_{2} \in G^{\prime}, \tag{6}\\
\sum_{\chi \in G^{\prime}} 1_{\chi} & =1, & & \\
\sigma \cdot 1_{\chi} & =\chi(\sigma) \cdot 1_{\chi}, & & \forall \sigma \in G, \chi \in G^{\prime}, \\
1_{\chi} \times\left(\chi\left(\sigma_{0}\right)-\sigma_{0}\right) & =0 & & \forall \sigma_{0} \in G .
\end{align*}
$$

Here $\delta\left(\chi_{1}, \chi_{2}\right)=1$ if $\chi_{1}=\chi_{2}$ and 0 otherwise. In general $1_{\chi} \notin \mathbf{k}[G]$, so they have merely an abstract meaning, but their actions may not be well defined. We need idempotents in $\mathbf{k}[G]$; let $S(\chi)=\mathrm{Gal}(\mathbf{k}(\chi(G)) / \mathbf{k})$, where $\mathbf{k}(\chi(G))$ is the field obtained by adjoining all the values $\chi(x), x \in G$ to the base field \mathbf{k}. The action of $S(\chi)$ induces an equivalence relation on G^{\prime} given by

$$
\chi \sim \chi^{\prime} \Leftrightarrow \exists s \in S(\chi): \chi^{\prime}=s(\chi)
$$

We let $\mathfrak{X} \subset G^{\prime}$ be a set of representants for the classes of G^{\prime} / \sim. The \mathbf{k} - rational idempotents are defined by taking traces:

$$
\varepsilon_{\chi}=\frac{1}{|S(\chi)|} \cdot \sum_{s \in S(\chi)} 1_{\chi} \in \mathbf{k}[G], \quad \chi \in G^{\prime}
$$

The isomorphism ι defined by (1) extends to the field $\mathbf{k}[\mu]$, by fixing this extension. Then $\iota(\chi(\varsigma))=\chi(\varsigma)=\nu$ is a root of unity whose order is equal to the order of the character $\chi \in G^{\prime}$. The annihilator $\chi(\varsigma)-\varsigma$ of 1_{χ} maps under the isomorphism defined in (1) to $\iota(\chi(\varsigma)-\varsigma)=X-\nu$. The group $S(\chi)$ acts on χ and on ν but not on ς, and thus

$$
\iota\left(\prod_{s \in S(\chi)}(\varsigma-s(\chi(\varsigma)))\right) \equiv \prod_{s \in S(\chi)}(X-s(\nu)) \equiv f_{\chi}(X) \bmod X^{\varphi(n)-1}
$$

Note that the polynomial $f_{\chi} \in \mathbf{k}[X]$ since it is invariant under the group $S(\chi)$ acting on ν. Furthermore it is an irreducible factor of $X^{\varphi(n)}-1$, so $f_{\chi} \in \mathcal{F}$. We have thus a one-to-one $\operatorname{map} \phi: \mathfrak{X} \rightarrow \mathcal{F}, \chi \mapsto f_{\chi}$. Since $f_{\chi(\varsigma)}$ annihilates $1_{\chi^{\prime}}$ for all conjugate characters of χ, it follows that it annihilates ε_{χ}. Furthermore, since
$(\varsigma-\chi(\varsigma)) \mid\left(\sigma_{0}-\chi\left(\sigma_{0}\right)\right)$ for any $\sigma_{0} \in G$, it is also the minimal annihilator. We have thus the following properties for the \mathbf{k} - rational idempotents:

$$
\begin{align*}
\varepsilon_{\chi_{1}} \times \varepsilon_{\chi_{2}} & =\delta\left(\chi_{1}, \chi_{2}\right) & & \forall \chi_{1}, \chi_{2} \in G^{\prime}, \\
\sum_{\chi \in \mathfrak{X}} \varepsilon_{\chi} & =1, & & \tag{7}\\
\sigma \cdot \varepsilon_{\chi} & =\chi(\sigma) \cdot \varepsilon_{\chi}, & & \forall \sigma \in G, \chi \in G^{\prime}, \\
\varepsilon_{\chi} \times f_{\chi}\left(\sigma_{0}\right) & =0 & & \forall \sigma_{0} \in G .
\end{align*}
$$

Here, unlike (6), $\delta\left(\chi_{1}, \chi_{2}\right)=1$ if $\chi_{1} \sim \chi_{2}$ and 0 otherwise.
We define the irreducible submodules of $\mathbf{k}[G]$ by $M_{\chi}=\varepsilon_{\chi} \cdot \mathbf{k}[G], \chi \in \mathfrak{X}$. By the previous remarks, they have $f_{\chi}(\varsigma)$ as minimal annihilator and thus $M_{\chi} \cong$ $\mathbf{k}[G] /\left(f_{\chi}(\varsigma) \mathbf{k}[G]\right)$ and they are in fact fields and:

$$
\begin{equation*}
\mathbf{k}[G]=\bigoplus_{\chi \in \mathfrak{X}} \varepsilon_{\chi} \cdot \mathbf{k}[G]=\bigoplus_{\chi \in \mathfrak{X}} M_{\chi} \tag{8}
\end{equation*}
$$

Let H be a finite multiplicative abelian group on which G acts. The action of G makes H into a $\mathbf{k}[G]$ - module and (8) induces a direct sum representation of the module $\mathbf{H}=\mathbf{k}[G] \cdot H$:

$$
\begin{equation*}
\mathbf{k}[G] \cdot H=\bigoplus_{\chi \in \mathfrak{X}}\left(\varepsilon_{\chi} \cdot \mathbf{k}[G]\right) \cdot H=\bigoplus_{\chi \in \mathfrak{X}} M_{\chi} \cdot H \tag{9}
\end{equation*}
$$

The subgroups $M_{\chi} \cdot H \subset H$ are called irreducible components of H; a component is the direct sum of one or more irreducible components. Note that the \mathbb{Q} rational idempotents correspond to the factorization of $X^{\varphi(n)}-1$ over the rationals. The induced \mathbb{Q} - irreducible components are thus always unions of one of more \mathbb{F}_{r} - irreducible components, for some prime r.

We define the support and annihilator of H as the direct sum of irreducible modules which act non-trivially, resp. trivially on H :

$$
\begin{align*}
\operatorname{supp}(H) & =\bigoplus_{\chi \in \mathfrak{X}_{0} ;}^{M_{\chi} \cdot H \neq\{1\}} \tag{10}\\
\operatorname{ann}(H) & \prod_{\chi} \prod_{\chi \in \mathfrak{X}_{0} ;} \prod_{\chi} \cdot H=\{1\} \\
& M_{\chi}
\end{align*}
$$

Note that $\operatorname{supp}(H), \operatorname{ann}(H) \subset \mathbf{k}[G]$; they are components of $\mathbf{k}[G]$ and not of H. In particular, various unrelated abelian groups may share the same support and annihilator. Furthermore, an irreducible component needs not be a cyclic module. Since H is finite, there are a finite number of cyclic modules in $M_{\chi} \cdot H$:

$$
\exists m_{\chi, 1}, m_{\chi, 2}, \ldots, m_{\chi, k} \in H: \quad M_{\chi} \cdot H=\bigoplus_{i=1}^{k} M_{\chi} \cdot m_{\chi, i}
$$

The number k of cyclic modules $M_{\chi} \cdot m_{\chi, i}$ in $M_{\chi} \cdot H$ is called the cycle-rank of $M_{\chi} \cdot H$ and will be denoted by cyc.rk. $\left(M_{\chi}\right)$.

Let now n_{1}, n_{2} be powers of coprime integers. Then $G=G_{n_{1} \cdot n_{2}}=G_{n_{1}} \times G_{n_{2}}$, as noted in the previous section. A character $\chi \in G_{n_{1} n_{2}}$ splits then in $\chi=\chi_{1} \cdot \chi_{2}$, with $\chi_{i} \in G_{n_{i}}^{\prime}, i=1,2$. If $\mu \in \overline{\mathbf{k}}$ is a primitive $\varphi\left(n_{1} n_{2}\right)$-th root of unity, we define the orthogonal idempotents by the same formula (5) used in the case of prime powers. Let $\chi \in G$ with $\chi=\chi_{1} \cdot \chi_{2}$ as above. An easy computation shows that, using the
representation $\tau \in G_{n n^{\prime}}$ with $\tau=\sigma_{1} \cdot \sigma_{2}$, where $\sigma_{i} \in G_{n_{i}}, i=1,2$ we have:

$$
\begin{align*}
1_{\chi} & =\frac{1}{|G|} \cdot \sum_{\tau \in G} \chi(\tau) \cdot \tau^{-1}=\frac{1}{\left|G_{n_{1}}\right| \cdot\left|G_{n_{2}}\right|} \cdot \sum_{\sigma_{i} \in G_{n_{i}}} \chi_{1}\left(\sigma_{1}\right) \cdot \chi_{2}\left(\sigma_{2}\right) \cdot \sigma_{1}^{-1} \cdot \sigma_{2}^{-1} \\
(11) & =\left(\frac{1}{G_{n_{1}}} \cdot \sum_{\sigma_{1} \in G_{n_{1}}} \chi_{1}\left(\sigma_{1}\right) \cdot \sigma_{1}^{-1}\right) \times\left(\frac{1}{G_{n_{2}}} \cdot \sum_{\sigma_{2} \in G_{n_{2}}} \chi_{2}\left(\sigma_{2}\right) \cdot \sigma_{2}^{-1}\right) \tag{11}\\
& =1_{\chi_{1}} \times 1_{\chi_{2}} .
\end{align*}
$$

Herewith all the properties of idempotents and further definitions which build up upon these properties, extend by multiplicativity to general cyclotomic fields.

3. Explicit reflection

We let now ℓ be an odd prime and $n \in \mathbb{N}$ be divisible by ℓ and such that $\ell \nless \varphi(n)$. The fields will be $\mathbb{K}=\mathbf{C}_{n}$, so $\operatorname{Gal}(\mathbb{K} / \mathbb{Q})=G_{n}$, and $\mathbf{k}=\mathbb{F}_{\ell}$. Remember that the group ring $\mathbf{k}\left[G_{n}\right]$ is defined by multiplicativity and it is semisimple, since $\ell=\operatorname{char}(\mathbf{k}) X\left|G_{n}\right|$.

There is a unique character $\omega=\omega_{\ell} \in G_{n}^{\prime}$ such that

$$
\sigma\left(\zeta_{\ell}\right)=\zeta_{\ell}^{\omega(\sigma)}, \quad \forall \sigma \in G_{n}
$$

This character is called the cyclotomic character for ℓ and it is an odd character. If $\chi \in G^{\prime}$ we define the reflected character $\chi^{*} \in G^{\prime}$ by

$$
\begin{equation*}
\chi^{*}(\sigma)=\omega(\sigma) \cdot \chi\left(\sigma^{-1}\right) \tag{12}
\end{equation*}
$$

Since $\omega(\sigma) \in \mathbb{F}_{\ell}=\mathbf{k}$ it follows that χ^{*} is irreducible iff χ is so; also, ω being odd, reflection changes the parity of a character. The definition of reflected irreducible modules and reflected idempotents follows naturally. We shall write $1_{\chi}^{*}=1_{\chi^{*}}$, etc. One also remarks that reflection is an involutive operation, since $\left(\chi^{*}\right)^{*}=$ $\omega \cdot\left(\omega \chi^{-1}\right)^{-1}=\chi$.

If $n=\ell$, the polynomial $\Phi_{\varphi(\ell)}=\Phi_{\ell-1}(X)=\prod_{j=1}^{\ell-1}(X-j)$ splits in linear factors over \mathbf{k}. The orthogonal idempotents are thus annihilated by linear polynomials $\varsigma-j$ and can be indexed by these polynomials. They have in this case the representation ([Wa], Chapter 6.2):

$$
\begin{equation*}
\varepsilon_{j}=\varepsilon_{\chi_{j}}=-\sum_{\sigma \in G_{\ell}} \omega^{j}(\sigma) \cdot \sigma^{-1} \tag{13}
\end{equation*}
$$

Reflection of idempotents follows here the simple law: $\varepsilon_{j}^{*}=\varepsilon_{p-j}$.
We now expose Leopoldt's Reflection Theorem, which will establish relations between various ℓ - groups which are all $\mathbf{k}\left[G_{n}\right]$ modules. Leopoldt's original paper [Le] (see also [Lo]), treats the general case in which \mathbb{K} is a normal field containing ζ_{ℓ} and such that $([\mathbb{K} / \mathbb{Q}], \ell)=1$. Furthermore, the groups are ℓ - Sylow groups, while we are only interested in their elementary ℓ - subgroups, i.e. the subgroups of exponent ℓ. This second modification is only marginal, but it allows to bypass a step in which the base field for the group rings has to be $\mathbf{k}=\mathbb{Q}_{\ell}$, the ℓ - adic rational field.

Let \mathcal{C} be the ideal class group of \mathbb{K} and $E=\mathcal{O}\left(\mathbb{K}^{+}\right)^{\times}$be the real units. Let $\alpha \in \mathbb{K}$ have valuation zero at each prime $\mathcal{L} \supset(\ell)$; we say that α is ℓ - primary iff

$$
\alpha \equiv \nu^{\ell} \quad \bmod \ell \cdot\left(1-\zeta_{\ell}\right)^{2}, \quad \text { for some } \quad \nu \in \mathbb{K}
$$

We then write $\mathbb{K}_{\ell}=\left\{x \in \mathbb{K}^{\times}: x\right.$ is ℓ - primary $\}$ and let $E_{\ell}=E \cap \mathbb{K}_{\ell}$. Note that if $\mathbb{K}^{\prime} \subset \mathbb{K}$ is a field in which ℓ is inert, then the necessary condition for ℓ - primary numbers in \mathbb{K}^{\prime} is $\alpha \equiv \nu^{\ell} \bmod \ell^{2}$.

The first actors of reflection are then:

$$
\begin{aligned}
A_{\ell} & =\left\{x \in \mathcal{C}: x^{\ell}=1\right\}, \quad \text { and } \\
U_{\ell} & =E_{\ell} / E^{\ell}
\end{aligned}
$$

If $A_{\ell} \neq\{1\}$, there is a maximal abelian unramified elementary ℓ - extension $\mathbb{L} \supset \mathbb{K}$ - i.e. an extension with ℓ - elementary Galois group $H=\operatorname{Gal}(\mathbb{L} / \mathbb{K})$. This is a subfield of the Hilbert class field of \mathbb{K} and the Artin map yields an isomorphism between the groups $H \cong A_{\ell}$. The module $\mathbf{k}[G]$ acts on H by conjugation: $\sigma h=$ $h^{\sigma}=\sigma^{-1} \circ h \circ \sigma$, for all $h \in H, \sigma \in G$. Finally, a number $\alpha \in \mathbb{K}$ is called ℓ singular if there is a non-principal ideal $\mathfrak{a} \subset x \in A_{\ell}$ such that $\mathfrak{a}^{\ell}=(\alpha)$. Note that by definition $\alpha \notin \mathbb{K}^{\ell}$. We let $B=\{\alpha \in \mathbb{K}: \alpha$ is $\ell-\operatorname{singular}\} \cap\left(\mathbb{K}_{\ell} \backslash E_{\ell}\right)$ and $B_{\ell}=B /\left(K^{\times}\right)^{\ell}$.
Theorem 3 (Leopoldt's Reflection Theorem). Notations being like above, let $M=$ $M_{\chi} \subset \mathbf{k}[G]^{\prime}$ be an irreducible submodule, with $\chi \in \mathfrak{X}$ an even character. Then the $\mathbf{k}[G]^{\prime}-$ modules A_{ℓ}, U_{ℓ} and B_{ℓ} are related by:

$$
\begin{aligned}
\text { cyc.rk. }\left(M_{\chi} B_{\ell}\right)+\operatorname{cyc.rk} .\left(M_{\chi} U_{\ell}\right) & =\operatorname{cyc.rk} .\left(M_{\chi}^{*} A_{\ell}\right), \\
\operatorname{cyc.rk} .\left(M_{\chi}^{*} B_{\ell}\right)= & \text { cyc.rk. }\left(M_{\chi} A_{\ell}\right), \quad \text { and } \\
\text { cyc.rk. }\left(M_{\chi} B_{\ell}\right) \leq \operatorname{cyc.rk.}\left(M_{\chi} A_{\ell}\right), & \operatorname{cyc.rk.}\left(M_{\chi}^{*} B_{\ell}\right) \leq \operatorname{cyc.rk} .\left(M_{\chi}^{*} A_{\ell}\right) .
\end{aligned}
$$

Moreover, the following inequality holds:

$$
\begin{align*}
\operatorname{cyc.rk} .\left(M_{\chi} \cdot A_{\ell}\right) & \leq \operatorname{cyc.rk} .\left(M_{\chi}^{*} \cdot A_{\ell}\right) \tag{15}\\
& \leq \operatorname{cyc.rk} .\left(M_{\chi} \cdot A_{\ell}\right)+\operatorname{cyc.rk} .\left(M_{\chi} \cdot U_{\ell}\right)
\end{align*}
$$

Proof. Note that the norm $\mathbf{N}_{\mathbb{K} / \mathbb{Q}}$ annihilates all the groups under consideration, which explains why we concentrate on $\mathbf{k}[G]^{\prime}$. The numbers in B are primary singular non-units and the union $F_{\ell}=B_{\ell} \cup U_{\ell}$ is disjoint, so cyc.rk. $\left(M F_{\ell}\right)=$ cyc.rk. $\left(M B_{\ell}\right)+$ cyc.rk. $\left(M U_{\ell}\right)$ for each simple submodule $M \subset \mathbf{k}[G]^{\prime}$. If $x \in F_{\ell}$ and $y \in \mathbb{K}^{\times}, y \equiv x$ $\bmod \left(K^{\times}\right)^{\ell}$, then $\mathbb{K}\left(y^{1 / \ell}\right)$ is an unramified abelian extension (e.g. [Wa], Chapter 9 , Exercises). These are exactly all possibilities for generating the extension \mathbb{L}. The last line in (14) is obvious, since it takes an ideal in $\mathfrak{a} \in x \in A_{\ell}$ in order to define a singular number in B, and not all singular numbers are also primary, so the inequalities may be strict.

We have the following one-to-one maps:

$$
F_{\ell} \leftrightarrow H \leftrightarrow A_{\ell} .
$$

The first map is a consequence of the above remark, the second is the Artin map. The last line of (14) follows now from

$$
\left|M^{*} A_{\ell}\right|=\left|M F_{\ell}\right|=\left|M B_{\ell}\right|+\left|M U_{\ell}\right|
$$

For odd characters $\chi, M_{\chi} \cdot U_{\ell}=\{1\}$, since in this case M_{χ} annihilates the real units. This explains the asymmetry between the first two lines of (14). The symmetry is regained if we write, with F_{ℓ} defined above,

$$
\begin{equation*}
\text { cyc.rk. }\left(M_{\chi} F_{\ell}\right)=\operatorname{cyc.rk.}\left(M_{\chi}^{*} A_{\ell}\right) . \tag{16}
\end{equation*}
$$

This relation holds for any character χ, and we shall prove it below. The extension \mathbb{L} / \mathbb{K} is an abelian Kummer extension [La]; for $b \in \mathbf{b} \in F_{\ell}$, the extension $\mathbb{K}\left(b^{1 / \ell}\right)$
depends only upon the class $\mathbf{b} \in F_{\ell}$ of the algebraic number b. There is thus a (Kummer-) pairing $H \times F_{\ell} \rightarrow<\zeta_{\ell}>$ given by

$$
<h, \mathbf{b}>=\frac{h b^{1 / \ell}}{b^{1 / \ell}}, \quad \text { for any } \quad b \in \mathbf{b}
$$

The pairing [La] does not depend upon the choice of the ℓ-th root of b, is bilinear and non-degenerate. Furthermore, it is G - covariant in the sense that

$$
\begin{equation*}
<h^{\sigma}, b^{\sigma}>=<h, b>^{\sigma}, \quad \forall \sigma \in G \tag{17}
\end{equation*}
$$

Let now $\chi \in G^{\prime}$. We claim that the Kummer pairing verifies the reflection property:

$$
\begin{equation*}
<\varepsilon_{\chi}^{*} h, \mathbf{b}>=<h, \varepsilon_{\chi} \mathbf{b}> \tag{18}
\end{equation*}
$$

Indeed $<h, \mathbf{b}>^{\sigma}=\zeta_{\ell}^{n \sigma}=<h, \mathbf{b}>^{\omega(\sigma)}$ so (17) implies $\sigma<h, \mathbf{b}>=<h, \mathbf{b}>^{\omega(\sigma)}=<$ $h, \omega(\sigma) \mathbf{b}>$. The statement now follows by directly inserting the definition of ε_{χ} and using the fact that $|S(\chi)|=\left|S\left(\chi^{*}\right)\right|$. Let now $\mathbf{b} \in M_{\chi} F_{\ell}$, so $\varepsilon_{\chi} \mathbf{b}=\mathbf{b}$. Then (18) implies that

$$
<h, \mathbf{b}>=<\varepsilon_{\chi}^{*} h, \mathbf{b}>,
$$

so if $<h, \mathbf{b}>\neq 1$ then $\varepsilon_{\chi}^{*} h \neq 1$. But this means that $h \in M_{\chi}^{*} H$; however, if $b \in \mathbf{b} \in F_{\ell}$ and $1 \neq h \in \operatorname{Gal}\left(\mathbb{K}\left(b^{1 / \ell}\right) / \mathbb{K}\right)$, then the pairing is necessarily $<h, \mathbf{b}>\neq 1$. This shows that the correspondence $F_{\ell} \leftrightarrow H$ acts componentwise by reflection, implies (16) and completes the proof.

The main application of reflection is, for our purpose, the following:
Proposition 1. Let $n=\ell \cdot n^{\prime}$ with $\ell \nless \varphi(n)$, ℓ an odd prime and $n \in \mathbb{N}$. Let A_{ℓ}, U_{ℓ} be like above and $\chi \in G_{n^{\prime}}^{\prime}$, an even character belonging to the field $\mathbb{K}^{\prime}=\mathbf{C}_{n^{\prime}} \subset \mathbb{K}$. If $M_{\chi} U_{\ell}$ or $M_{\chi} A_{\ell}$ are not trivial, then $M_{\chi}^{*} A_{\ell} \neq\{1\}$
Proof. If $M_{\chi} U_{\ell} \neq\{1\}$, then by the first line in (14), $M_{\chi}^{*} A_{\ell} \neq\{1\}$. Otherwise, if $M_{\chi} A_{\ell}$ is non trivial, then $M_{\chi}^{*} B_{\ell}$ is non trivial as a consequence of the second and third lines in (14). In both cases, $M_{\chi}^{*} A_{\ell} \neq\{1\}$, which completes the proof.

Let ε_{1} be the orthogonal idempotent in (13), defined with respect to $\ell=q$. The Proposition implies:

Corollary 1. Let \mathbf{T} and A_{q} be as in the statement of Theorem 1. Then $\mathbf{T}^{*} \supset$ $\operatorname{supp}\left(\varepsilon_{1} \cdot A_{q}\right)$.
Proof. If $\chi \in G_{p}$ then $\chi^{*}=\omega \cdot \chi^{-1}$ and $M^{*} \chi \subset \varepsilon_{1} \mathbf{k}\left[G_{p q}\right]$. The statement follows now from Proposition 1.

4. Bernoulli numbers

If $\chi \neq 1$ is a Dirichlet character of conductor f, then the generalized Bernoulli numbers are defined ([Wa], Chapter 4), by:

$$
\begin{equation*}
B_{1, \chi}=\frac{1}{f} \cdot \sum_{a=1}^{f} a \cdot \chi(a) \tag{19}
\end{equation*}
$$

A major distinction between Galois characters and Dirichlet characters becomes clear in the definition (19): although it is formally identical to the definition of the idempotent $1_{\chi^{-1}}$, no factorization like (11) is possible. The reason is that in the definition of idempotents, $\chi(\sigma)$ is multiplied by an automorphism - thus, under
the identification of Galois and Dirichlet characters, there is an implicit reduction modulo the conductor of χ. In (19) however, the factors a are considered as complex numbers, so the factorization is true only modulo f.

The next lemma gathers some computational facts on various characters:
Lemma 2. Let ℓ, n be like in the previous section and $\mu \in \mathbb{C}$ a primitive $\varphi(n)-$ th root of unity, $\mathbb{L}=\mathbb{Q}(\mu)$ and $(\ell) \subset \mathfrak{L} \subset \mathcal{O}(\mathbb{L})$ a prime ideal above ℓ. Let $\mathbb{F}_{r}=$ $\mathcal{O}(\mathbb{L}) / \mathfrak{L}$ be a field of characteristic ℓ so that the group $G_{n}^{\prime}\left(\mathbb{F}_{\ell}\right)$ has images in $\mathbb{F}_{r} ;$ finally, let $\mathbb{L}^{\prime} \supset \mathbb{Q}$ e the extension of the ℓ-adic field for which $\mathcal{O}\left(\mathbb{L}^{\prime}\right) /\left(\ell \cdot \mathcal{O}\left(\mathbb{L}^{\prime}\right)\right)=\mathbb{F}_{r}$ [Go].

If $\nu \equiv \mu \bmod \mathfrak{L} \in \mathbb{F}_{r}$, then μ is the unique root of unity in \mathbb{C} with this property. Furthermore, there is a unique $\varphi(n)$-th root of unity $\mu^{\prime} \in \mathbb{L}^{\prime}$ such that μ^{\prime} $\bmod \left(\ell \cdot \mathcal{O}\left(\mathbb{L}^{\prime}\right)\right)=\nu$. If $\chi \in G_{n}^{\prime}\left(\mathbb{F}_{\ell}\right)$ there are unique characters $\psi_{\chi} \in D_{n}^{\prime}=G_{n}^{\prime}(\mathbb{Q})$ and $\lambda_{\chi} \in G_{n}^{\prime}\left(\mathbb{Q}_{\ell}\right)$ - thus a Dirichlet and a ℓ - adic character - such that

$$
\begin{array}{lll}
\psi_{\chi}(x) \equiv \chi(x) \quad \bmod \mathfrak{L}, & \forall x \in \mathbb{Z}, \tag{20}\\
\lambda_{\chi}(x) \equiv \chi(x) \bmod \left(\ell \cdot \mathcal{O}\left(\mathbb{L}^{\prime}\right)\right), & \forall x \in \mathbb{Z}, \\
\psi_{\chi}(x) \equiv \lambda_{\chi}(x) \bmod \mathfrak{L}^{N}, & \forall x \in \mathbb{Z}, N \in \mathbb{N} .
\end{array}
$$

If ω is the cyclotomic character for ℓ, then

$$
\begin{equation*}
\widehat{\omega}:=\psi_{\omega}(x) \equiv x^{\ell^{N-1}} \quad \bmod \mathfrak{L}^{N}, \quad \forall x \in \mathbb{Z}, N \in \mathbb{N} \tag{21}
\end{equation*}
$$

Proof. There is exactly one $\mu \in \mathbb{C}$ with $\mu \equiv \nu \bmod \mathfrak{L}$. If this was not the case and $\mu_{1} \equiv \mu_{2} \equiv \nu \bmod \mathfrak{L}$, then $\mu_{1}-\mu_{2} \equiv 0 \bmod \mathfrak{L}$ and $\mathbf{N}\left(\mu_{1}-\mu_{2}\right) \equiv 0 \bmod \ell$. But the norm on the right hand side is only divisible by primes dividing the order of μ, thus dividing $\varphi(n)$, which is coprime to ℓ, so $\mu_{1}=\mu_{2}$. The unicity of the root μ^{\prime} is proved similarly. It is an elementary fact on ℓ - adic extensions [Go], that $\mathcal{O}(\mathbb{L}) /\left(\mathfrak{L}^{N}\right) \cong \mathcal{O}\left(\mathbb{L}^{\prime}\right) /\left(\ell^{N} \cdot \mathcal{O}\left(\mathbb{L}^{\prime}\right)\right)$ for all $N \in \mathbb{N}$. Let $\chi \in G_{n}^{\prime}\left(\mathbb{F}_{\ell}\right)$ and $e_{\chi}(x)$: $\mathbb{Z} \rightarrow \mathbb{Z} /(\varphi(n) \cdot \mathbb{Z})$ be the exponent with $\chi(x)=\nu^{e_{\chi}(x)}$; then the characters in (20) are given by $\psi_{\chi}(x)=\mu^{e_{\chi}(x)}$ and $\lambda_{\chi}(x)=\left(\mu^{\prime}\right)^{e_{\chi}(x)}$. The properties in (20) are immediate consequences.

Finally, the character ω has order $\ell-1$ and is defined by its values for $a=$ $1,2, \ldots, \ell-1$ for which $\omega(a) \equiv a \bmod \ell$. One verifies that the character ψ_{ω} $\bmod \mathfrak{L}^{N}$ given by (21) has exactly these properties and the claim (21) follows from the unicity of ψ_{ω} and λ_{ω}.

For even characters, $B_{1, \chi}=0$ and the odd characters are connected to the field \mathbb{K} by the class number formula [Wa], Theorem 4.17:

$$
h_{n}^{-}=2^{k} \cdot n \cdot \prod_{\chi \text { odd }} B_{1, \chi}, \quad k \in \mathbb{Z}
$$

Since we are interested in divisibility of h_{n}^{-}by the odd prime ℓ, the power of 2 is of less concern in our case. The factor n cancels with the denominator of $B_{1, \widehat{\omega_{t}}}$, for all the cyclotomic characters defined with respect to prime divisors of $t \mid n$; all the other Bernoulli numbers are algebraic integers. The class number formula indicates that if $\ell \mid h_{n}^{-}$, then some Bernoulli numbers will be divisible by prime ideals above ℓ. The next step is to follow this indication and gather a finer, component dependent information about divisibility of $B_{1, \chi}$ by primes above ℓ.

Let

$$
\theta=\frac{1}{n} \cdot \sum_{0<c<n ;(c, n)=1} a \cdot \sigma_{c}^{-1}
$$

be the Stickelberger element of \mathbb{K} ([Wa], Theorem 15.1). Then $\theta_{c}=\left(c-\sigma_{c}\right) \theta \in$ $\mathbb{Z}\left[G_{n}\right]$, for $(c, n)=1$ and it annihilates the class group \mathcal{C} of \mathbb{K}. Idempotents, Bernoulli numbers and Stickelberger element are related by the following formula, which is a consequence of (6). We assume here that the characters $\chi \in G^{\prime}$ are defined with respect to the field $\mathbf{k}=\mathbb{Q}$ and they are identified to Dirichlet characters as shown before.

$$
\begin{align*}
\theta \cdot 1_{\chi} & =B_{1, \chi} \chi^{-1} \cdot 1_{\chi}, & & \forall \chi \in G^{\prime}(\mathbb{Q}), \\
\left(c-\sigma_{c}\right) \theta \cdot 1_{\chi} & =(c-\chi(c)) \cdot B_{1, \chi^{-1}} \cdot 1_{\chi}, & & \forall \chi \in G^{\prime}(\mathbb{Q}) . \tag{22}
\end{align*}
$$

By reducing the above relations modulo primes lying above ℓ, we obtain important information about Bernoulli numbers, when an ℓ - component of the class group is non trivial.

Proposition 2. Let ℓ be an odd prime and $n=\ell \cdot n^{\prime} \in \mathbb{N}$ with $(\ell, \varphi(n))=1$, $\mathbb{K}=\mathbf{C}_{n}$; for $m \mid \varphi(n), m>1$, let $\mu \in \mathbb{C}$ be a primitive $m-$ th root of unity and $G=G_{n}\left(\mathbb{F}_{\ell}\right)$. We fix a prime ideal $(\ell) \subset \mathfrak{L} \subset \mathcal{O}(\mathbb{Q}(\mu))$ and consider $\chi \in G^{\prime}$, a non - trivial primitive group character of exact order m, other then the cyclotomic character ω_{ℓ}.

Let \mathcal{C} be the class group of $\mathbb{K}, A_{\ell}=\left\{x \in \mathcal{C}: x^{\ell}=1\right\}$ and suppose that $M_{\chi} \cdot A_{\ell} \neq$ $\{1\}$. If $\psi=\psi_{\chi}$ is the Dirichlet character defined in (20), then:

$$
\begin{equation*}
B_{1, \psi^{-1}} \equiv 0 \quad \bmod \mathfrak{L} . \tag{23}
\end{equation*}
$$

Furthermore, if $M_{\chi} \cdot A_{\ell} \neq\{1\}$ for all characters of exact order m, then

$$
\begin{equation*}
B_{1, \psi^{-1}} \equiv 0 \quad \bmod \ell \cdot \mathcal{O}(\mathbb{Q}(\mu)) \tag{24}
\end{equation*}
$$

Proof. Let $c \in \mathbb{Z}$ with $\chi(c) \not \equiv c \bmod \ell$ - this is possible, since $\chi \neq \omega_{\ell}$ - so $\theta_{c}=$ $\left(c-\sigma_{c}\right) \theta \in \mathbb{Z}[G]$ and it annihilates the class group. Thus $\theta_{c} \cdot 1_{\kappa} A_{\ell}=\{1\}$ for all $\kappa \in G^{\prime}$ and in particular for κ belonging to $S(\chi) \chi$. But since $M_{\chi} A_{\ell} \neq\{1\}$, it follows that the last annihilation is non trivial. We insert c in the second relation of (22) and use $c-\chi(c) \not \equiv 0 \bmod \mathfrak{L}$, thus finding

$$
\theta_{c} \varepsilon_{\chi} \equiv(c-\chi(c)) \cdot B_{1, \psi^{-1}} \cdot \varepsilon_{\chi} \quad \bmod \mathfrak{L}
$$

Since ε_{χ} does by definition not annihilate $M_{\chi} A_{\ell}$ and $c-\chi(c) \bmod \mathfrak{L} \in \mathbb{F}_{r}^{\times}$, it follows that $B_{1, \psi^{-1}}$ must vanish modulo \mathfrak{L}, which is the statement of (23).

Suppose now that (23) holds for all characters of order m and let ψ_{χ} be the Dirichlet character induced by one of the $\chi \in G_{n}^{\prime}\left(\mathbb{F}_{\ell}\right)$. Let $\sigma \in \operatorname{Gal}(\mathbb{Q}(\mu) / \mathbb{Q})$; then $\sigma(\psi)$ is also a character of exact order m for which (23) holds. Thus

$$
B_{1, \sigma^{-1}\left(\psi^{-1}\right)}=\sigma^{-1}\left(B_{1, \psi^{-1}}\right) \equiv 0 \quad \bmod \mathfrak{L}
$$

and, by applying σ to the above congruence, we find that $B_{1, \psi^{-1}} \equiv 0 \bmod \sigma \mathfrak{L}$. This is the case for all $\sigma \in \operatorname{Gal}(\mathbb{Q}(\mu) / \mathbb{Q})$ and (24) follows.

In particular, when the situation described in the Proposition happens for the reflected of all even characters in $\mathbb{F}_{\ell}\left[G_{n^{\prime}}\right]^{\prime}$, then we have:

Corollary 2. Let the notations be the same as in Lemma 2, $n^{\prime} \geq 7$ or $n^{\prime}=5$ and suppose that $M_{\chi}^{*} \cdot A_{\ell} \neq\{1\}$ for all even characters $\chi \in \mathbb{F}_{\ell}\left[G_{n^{\prime}}\right]^{\prime}$. If $\mu \in \mathbb{C}$ is a primitive $\varphi\left(n^{\prime}\right)$-th root of unity and $(\ell) \subset \mathfrak{L} \subset \mathcal{O}(\mathbb{Q}(\mu))$ is a prime ideal above ℓ, then for all even Dirichlet characters ψ of conductor n^{\prime} the following holds:

$$
\begin{equation*}
B_{1, \widetilde{\omega}^{-1} \cdot \psi} \equiv 0 \quad \bmod \ell \cdot \mathcal{O}(\mathbb{Q}(\mu)) \tag{25}
\end{equation*}
$$

Proof. Note that for $n^{\prime}<7, n^{\prime} \neq 5$, we have $\varphi\left(n^{\prime}\right) \leq 2$ and there are no non-trivial even characters in $G_{n^{\prime}}^{\prime}$. The Corollary is a consequence of (24) and the fact that the ideal (ℓ) in the m-th cyclotomic extension lifts to the ideal (ℓ) in $\mathbb{Q}(\mu)$, for any $1<m \mid \varphi\left(n^{\prime}\right)$.

5. Proof of the Theorem

The proof of Theorem 1 is an application of Corollaries 1 and 2 combined with some involved computations with congruences and integer parts. Let p, q be the primes in Theorem 1 and let $\ell=q, n=p q$ and $n^{\prime}=p$. Since $p \not \equiv 1 \bmod q$ and $p>q, p \geq 5$, we are in the situation of the previous results. Assume that $\mathbf{T}=(\mathbf{N})$ in Theorem 1. Then Corollary 1 implies that $M_{\chi}^{*} A_{q}$ is non trivial for all even, non-trivial $\chi \in G_{p}^{\prime}$ with images in $\overline{\mathbb{F}}_{q}$. Let $\mu \in \mathbb{C}$ be a primitive $(p-1) / 2$-th root of unity - since we consider only even characters of G_{p}, their order divides $(p-1) / 2$; let \mathcal{E}_{p} be the set of all even, non-trivial Dirichlet characters of conductor p. Then Corollary 2 implies that (25) holds for all $\psi \in \mathcal{E}_{p}$. for such ψ, we write $\beta_{1, \psi}=p q B_{1, \psi}$, so that

$$
B_{1, \psi} \equiv 0 \quad \bmod q \Leftrightarrow \beta_{1, \psi} \equiv 0 \quad \bmod q^{2}
$$

The characters $\psi \in \mathcal{E}_{p}$ are even, $\psi(a)=\psi(p-a)$.
We need some facts on computations modulo $p q$. Let $0<u<q, 0<v<p$ be the unique integers given by the extended Euclid algorithm, such that $u p+v q \equiv 1$ $\bmod p q$. The following easy consequence of the definition of u, v will be used below:

$$
\begin{equation*}
v \equiv \pm 1 \quad \bmod p \quad \Leftrightarrow \quad q \equiv \mp 1 \quad \bmod p \tag{26}
\end{equation*}
$$

Let $0<x(a, b)<p q$ and $0 \leq n(a, b)<p$ be the unique integers with

$$
x(a, b)=b+q \cdot n(a, b) \equiv\left\{\begin{array}{lll}
a & \bmod p, & a=1,2, \ldots, p-1 \\
b & \bmod q, & b=1,2, \ldots, q-1
\end{array}\right.
$$

Then $x(a, b) \equiv u p b+v q a \bmod p q$ and

$$
\begin{align*}
q \cdot n(a, b) & \equiv a v q+b q \frac{u p-1}{q} \equiv q(a v-b v) \quad \bmod p q, \quad \text { so } \\
n(a, b) & \equiv(a-b) v \quad \bmod p \tag{27}
\end{align*}
$$

Note the identity $n(a, b)+n(p-q, q-b)=p-1$. Indeed, since $x(p-a, q-b)=$ $p q-x(a, b)$, we have

$$
p q=b+q n(a, b)+(q-b)+q n(p-a, q-b)=q \cdot(1+n(a, b)+n(p-a, q-b)),
$$

which confirms the claim. For $a=1,2, \ldots, p-1$ we let $f(a) \in \mathbb{F}_{q}$ be defined by:

$$
\begin{equation*}
f(a) \equiv \sum_{b=1}^{q-1} b^{-1} \cdot n(a, b) \quad \bmod q . \tag{28}
\end{equation*}
$$

Then
$f(p-a) \equiv \sum_{b=q-1}^{1}(q-b)^{-1} \cdot n(p-a, q-b) \equiv \sum_{b=q-1}^{1}-b^{-1} \cdot(p-1-n(a, b)) \equiv f(a) \bmod q$.

With this, (25) implies for all non trivial $\psi \in \mathcal{\mathcal { E } _ { p }}$:

$$
\begin{aligned}
\beta_{1, \widetilde{\omega}^{-1} \psi} & =\sum_{a=1 ; b=1}^{(p-1) / 2, q-1} \psi(a) \widetilde{\omega}^{-1}(b) \cdot(x(a, b)+x(p-a, b)) \\
& \equiv \sum_{a=1 ; b=1}^{(p-1) / 2 ; q-1} 2 \psi(a) b^{1-q}+q b^{-1} \cdot(n(a, b)+n(p-a, b)) \quad \bmod q^{2} .
\end{aligned}
$$

From (4), since $\psi \neq \mathbf{1}$, we have $2 \cdot \sum_{a=1}^{(p-1) / 2} \psi(a)=\sum_{a=1}^{p-1} \psi(a)=0$. The sum vanishes in \mathbb{C} and a fortiori modulo q^{2}, and with the definition (28), the previous congruence becomes

$$
\begin{equation*}
\sum_{a=1}^{(p-1) / 2} \psi(a) \cdot f(a) \equiv 0 \quad \bmod q, \quad \psi \in \mathcal{E}_{p} \tag{29}
\end{equation*}
$$

We can regard the above as an homogeneous linear system of equations over \mathbb{F}_{q}, with $(p-1) / 2$ unknowns and $(p-3) / 2$ equations. One recognizes that the system matrix has a submatrix of rank $(p-3) / 2$, which is in fact a Vandermonde matrix. An easy verification shows that the constant vector is a solution of (29), so

$$
\exists c_{0} \in \mathbb{F}_{q} \quad \text { such that } \quad f(a)=c_{0}, \quad \text { for } \quad a=1,2, \ldots, p-1
$$

Since $x-p \cdot\left[\frac{x}{p}\right] \in\{0,1, \ldots, p-1\}$ for all $x \in \mathbb{Z}$, it follows that $n(a, b)=$ $(a-b)-p \cdot\left[\frac{a-b}{p}\right]$. We can compute the constant c_{0} directly, using (27):

$$
c_{0} \equiv \sum_{b=1}^{q-1} b^{-1}\left((a-b) v-p\left[\frac{(a-b) v}{p}\right]\right) \equiv v-p \cdot \sum_{b=1}^{q-1} b^{-1}\left[\frac{(a-b) v}{p}\right] \quad \bmod q
$$

With a new constant $c_{1} \equiv \frac{v-c_{0}}{p} \equiv u v-u c_{0} \bmod q$, we have the linear system of equations:

$$
\begin{equation*}
\sum_{b=1}^{q-1} b^{-1} \cdot\left[\frac{(a-b) v}{p}\right]-c_{1} \equiv 0 \quad \bmod q, \quad a=1,2, \ldots, p-1 \tag{30}
\end{equation*}
$$

For a heuristic investigation of (30), let us define

$$
\theta_{a, b}=\sum_{b=1}^{q-1}\left(\left[\frac{(a-b) v}{p}\right] \cdot \sigma_{b}^{-1}\right)-c_{1} \in \mathbb{F}_{q}\left[G_{q}\right]
$$

Then (30) says that $\varepsilon_{1} \theta_{a, b}=0$ for $a=1,2, \ldots, p-1$ and ε_{1} the idempotent in (13), with respect to $\ell=q$. We assume that the vectors $(n(a, b))_{b=1}^{q-1}$ are random distributed for $a=1,2, \ldots,(p-1) / 2$. By fixing c_{1} such that $\theta_{1, b} \varepsilon_{1}=0$, the probability that the same component vanishes for the further $(p-3) / 2$ independent elements in $\mathbb{F}_{q}[G]_{q}$ is $q^{-(p-3) / 2}$. For fixed p and $q<N \rightarrow \infty$, the probability that (30) is verified for at least one q is thus $P(p)<\zeta\left(\frac{p-3}{2}\right)-1<1$, with ζ, the Riemann function. The heuristic suggests thus that (30) has no solutions, irrespective of the size of p and q.

For a proof, we shall need to restrict generality to the case $p>q$, as in the statement of Theorem 1 , and since p and q are primes, then $p-2 \geq q$. We let $s_{v}(z)=\left[\frac{(z+1) v}{p}\right]-\left[\frac{z v}{p}\right]$ for $z \in \mathbb{Z}$. Since $0<v<p$, if follows that $0 \leq s_{v}(z) \leq 1$ for all $z \in \mathbb{Z}$.

We extend the summation range to $b=0$ and replace b^{-1} by $\omega^{-1}(b)$ which is also defined at $b=0$. By subtracting the identities above for two successive values $a, a+1$ with $0<a<p-2$, if follows that

$$
\begin{aligned}
c_{1}-c_{1} & \equiv \sum_{b=0}^{q-1} \omega^{-1}(b) \cdot\left(\left[\frac{(a+1-b) v}{p}\right]-\left[\frac{(a-b) v}{p}\right]\right) \\
& \equiv \sum_{b=0}^{q-1} \omega^{-1}(b) \cdot s_{v}(a-b) \equiv 0 \bmod q
\end{aligned}
$$

or, equivalently

$$
\begin{equation*}
\sum_{t=a+1-q}^{a} \omega^{-1}(a-t) \cdot s_{v}(t) \equiv 0 \quad \bmod q \tag{31}
\end{equation*}
$$

Since $p>q$, relation (26) implies that $v \not \equiv \pm 1 \bmod p$ and a simple computation shows that $s_{v}(z)=s_{v}(z+q)$ for $1-q<z \leq 0$. This allows to keep the argument of $s_{v}(t)$ in the range $0 \leq t<q$, when $a<q$:

$$
\begin{equation*}
\sum_{t=0}^{q-1} \omega^{-1}(a-t) \cdot s_{v}(t) \equiv 0 \quad \bmod q, \quad a=1,2, \ldots, p-2 \tag{32}
\end{equation*}
$$

The first q equations in (32) then lead to a quadratic homogeneous system modulo q. Let the matrices $\Omega_{i} \in M\left(\mathbb{F}_{q}, q-i\right), i=0,1$, be defined by:

$$
\Omega_{i}=\left(\omega^{-1}(a-t)\right)_{a, t=0}^{q-1-i}, \quad i=0,1
$$

Then Ω_{1} is a submatrix of Ω_{0}, which is the system matrix of the first q equations in the system (32). Note that Ω_{1} is a Toeplitz matrix and it has the characteristic polynomial $X^{q-1}+1$ - as results by applying an usual method of numerical analysts for such matrices. The method consists in completing the matrix into a $2(q-1) \times$ $2(q-1)$ circulant matrix, whose eigenvalues are then $\xi_{2(q-1)}^{k}$, where $\xi_{2(q-1)}$ is a primitive $2(q-1)$-th root of unity over \mathbb{F}_{q} (i.e. the quadratic root of a generator of $\left.\mathbb{F}_{q}\right)$ and $k=0,1, \ldots, 2(q-1)-1$. One verifies that the odd powers are eigenvalues of Ω_{1}, which leads to the claimed characteristic polynomial. In particular, Ω_{1} is a regular matrix and since $\Omega_{0} \mathbf{x}=\mathbf{0}$ allows the constant vector as solution, it follows that this is also the only solution. But then $s_{v}(t)$ is the constant vector, for $t=0, \ldots, q-1$; since $s_{v}(0)=0$ and

$$
\sum_{t=0}^{q-1} s_{v}(t)=\sum_{t=0}^{q-1}\left(\left[\frac{(t+1) v}{p}\right]-\left[\frac{t v}{p}\right]\right)=\left[\frac{q v}{p}\right]=\left[\frac{1+(q-u) p}{p}\right]=q-u>0
$$

We reached a contradiction, which completes the proof of the Theorem.
Remark 2. The careful reader may have noted that we started from a redundant system of equations, which allowed for the substitution $a \rightarrow p-a$ and we obtained a non redundant system of rank $q-1$. This may seem surprising, especially if $q-1>\frac{p-1}{2}$. However tracing back the use of $s_{v}(t)=s_{v}(t+q)$, one notes that (31) is invariant under the above substitution, while (32) is not.

The Theorem 1 is tailored for the needs of the proof of Catalan's equation. The Proposition 2 allows for more general results and raises more general questions then the Theorem, questions and results which shall be presented separately.

The general question is the following: given $\ell, n=\ell \cdot n^{\prime}$ like in the previous section and if $\mathbf{T} \subset \mathbb{F}_{\ell}\left[G_{n}\right]$ is one of the supports $\operatorname{supp}\left(A_{\ell}\right), \operatorname{supp}\left(F_{\ell}\right)$, is it possible that \mathbf{T} a full \mathbb{Q} - rational component of $\mathbb{F}_{\ell}[G]$? Further manipulation of the fundamental system (29) together with heuristics similar to the one above (and the one used by Washington in [Wa] for analysing the likeliness of Vandiver's conjecture), suggest that this fact should never happen, independently of the size of ℓ, n^{\prime}, as long as the degree of the rational components is at least 3. In lack of a proof, we conject it is impossible and will investigate this conjecture in future works.
Conjecture 1. Let ℓ, n be like in the previous section and $\mathbf{T} \subset \mathbb{F}_{\ell}[G]$ be one of $\operatorname{supp}\left(A_{\ell}\right), \operatorname{supp}\left(F_{\ell}\right)$. Let

$$
g(X) \in \mathbb{Z}[X] \quad \text { with } \quad g(X) \left\lvert\, \frac{X^{\varphi(n)}-1}{X^{2}-1}\right.
$$

be an irreducible factor of degree at least 3 and let

$$
\mathfrak{X}_{g}=\left\{\chi \in G: g(X) \equiv 0 \quad \bmod \left(\ell, f_{\chi}(X)\right)\right\} .
$$

Then $\cup_{\chi \in \mathfrak{X}_{q}} M_{\chi} \not \subset \mathbf{T}$.
Acknowledgments: I thank Francisco Thaine for his suggestions and encouragement shown during the development of this paper.

References

[Go] Fernando Q. Gouvêa: p-adic Numbers, An Introduction, Second Edition, Springer Universitext (1991).
[La] Lang, S.: Algebra, Third Edition, Springer 2002, Graduate Texts in Mathematics 211
[Le] Leopoldt, H. W.: Uber Einheitengruppe und Klassenzahl reeller abelscher Zahlkörper, Abhandlungen der Deutschen Akademie der Wissenschaftern, Berlin, Kl. Math. Nat. 1953, no. 2 (1954).
[Lo] Long, R. : Algebraic number theory, Marcel Dekker, Series in Pure and Applied Mathematics (1977).
[Mi] P. Mihăilescu: Primary Cyclotomic Units and a Proof of Catalan's Conjecture, J. reine angew. Math. 572 (2004), pp. 167-195.
[Ono] Takashi Ono: Algebraic Number Theory, Academic Press.
[Wa] L. Washington: Introduction to Cyclotomic Fields, Second Edition, Springer (1996), Graduate Texts in Mathematics 83.
(P. Mihăilescu) Gesamthochschule Paderborn

E-mail address, P. Mihăilescu: preda@upb.de

[^0]: ${ }^{1}$ Free after Georges Moustaki

