# Refractory Gout: An overview of pathogenesis and treatment

Gordon K. Lam, MD, FACR

NorthEast Rheumatology

Medical Director, Northern Region Research Center

**Carolinas Healthcare System** 

#### **Disclosures**

- 1. Horizon Pharma, Plc: Research; Speaker Bureau
- 2. Takeda Pharmaceuticals USA, Inc.: Speaker Bureau; Advisory Board

#### **Objectives**

- To review the etiopathogenesis of gout as a chronic, progressive, inflammatory arthritis
- To differentiate the treatment of acute gout flares vs. chronic gouty arthropathy
- To discuss the management of refractory gout
- To facilitate collaboration between podiatrists and rheumatologists in the management of gout patients

#### **Gout definition**

- An inflammatory arthritis caused by the deposition of monosodium urate (MSU) crystals in synovial fluid and other tissues
  - Crystal deposition occurs when serum uric acid (SUA) concentration exceeds its solubility
  - As gout progresses, crystal deposition can occur anywhere in the body
  - Chronic disease can lead to sequelae including:
    - Bone erosions
    - Tophi
    - Chronic pain
    - Joint deformities
    - Loss of function
    - Disability



| Temperature   | Calculated Urate Solubility (mg/dL)* |  |
|---------------|--------------------------------------|--|
| 37°C (98.6°F) | 6.8                                  |  |
| 35°C (95.0°F) | 6.0                                  |  |
| 30°C (86.0°F) | 4.5                                  |  |

#### Gout is a chronic, progressive disease



Adapted from Edwards NL. Gout. A. Clinical features. In: Klippel JH, Stone JH, Crofford LJ, White PH, eds. *Primer on the Rheumatic Diseases*. 13th ed. New York: Springer; 2008:241-249.

#### Prevalence

- Gout is the most common form of inflammatory arthritis
- Est. prevalence in U.S. 2007-2008:
  3.9% (8.3 million)
- Prevalence is increasing worldwide
- Incidence is greater in men than in women
- Incidence increases with age
  - Mainly due to proportional decline in renal function
- Refractory gout estimated to be 2% of all gout patients



Reprinted from Mikuls TR et al. Ann Rheum Dis. 2005;64(2):267-272

#### **Spectrum of Gout**

#### Estimated number of affected persons in the US



## **Etiopathogenesis of Gout**





Pathogenesis of acute gouty arthritis

#### Regulation of uric acid





### **Causes of hyperuricemia**

| Under-excreters of urate (~90%)                                                                                                               |                                                                                           | Overproducers of urate (~10%)                                                                                                                                         |                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clinical Disorders                                                                                                                            |                                                                                           | Inherited Enzyme Defects                                                                                                                                              |                                                                                                                                                                |
| <ul><li>Chronic renal failure</li><li>Lead nephropathy</li><li>Polycystic kidney disease</li></ul>                                            | <ul><li>Hyperparathyroidism</li><li>Hypothyroidism</li><li>Diabetes insipidus</li></ul>   | <ul> <li>HPRT deficiency</li> <li>Increased PRPP synthetase</li> <li>Glucose 5 phosphatase deficiency (glycogenosis I)</li> </ul>                                     |                                                                                                                                                                |
| -                                                                                                                                             |                                                                                           | Clinical Disorders Leading to Purine Overproduction                                                                                                                   |                                                                                                                                                                |
| nephropathy  • Medullary cystic kidney disease  • HTN  • Dehydration  • Salt restriction  • Starvation                                        |                                                                                           | Myeloproliferative disorders Lymphoproliferative disorders Polycythemia vera Malignant diseases                                                                       | Hemolytic disorders Psoriasis Obesity Tissue hypoxia Glycogenosis III, V, VII                                                                                  |
| Drugs or Dietary Habits                                                                                                                       |                                                                                           | Drugs or Dietary Habits                                                                                                                                               |                                                                                                                                                                |
| <ul> <li>Diuretics</li> <li>Low doses of salicylates</li> <li>Ethambutol</li> <li>Pyrazinamide</li> <li>Laxative abuse (alkalosis)</li> </ul> | <ul><li>Levodopa</li><li>Methoxyflurane</li><li>Cyclosporine</li><li>Tacrolimus</li></ul> | <ul> <li>Ethanol</li> <li>Diet rich in purines</li> <li>Pancreatic extract</li> <li>Fructose</li> <li>Nicotinic acid</li> <li>Ethylamino-1,3,4-thiadiazole</li> </ul> | <ul> <li>4-Amino-5-imidazole carboxamide riboside</li> <li>Vitamin B12 (patients with pernicious anemia)</li> <li>Cytotoxic drugs</li> <li>Warfarin</li> </ul> |

Becker MA, Jolly M. Clinical gout and the pathogenesis of hyperuricemia. In: Koopman WJ, Moreland, LW, eds. *Arthritis & Allied Conditions*. 15th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2005:chap 113.

#### **Joints**







#### **Tendons**



#### Bursae



**Ears** 



### **Kidneys**



Urate deposition and fibrosis

#### Mitral valve



# Small intestine Mimicking a tumor



### Urate burden extends beyond visible tophi



- In addition to visible tophi, MSU crystals can accumulate anywhere in the body
- In a study of 20 patients with gout, significant differences in urate deposits were detected with dual-energy computed tomography (DECT) versus physical examination
  - Only 25% of tophi were detected on physical exam versus DECT

Deposition of MSU crystals detected using DECT (displayed in green). Images courtesy of Dr. Jürgen Rech. Individual patient presentations may vary.

### Duel Energy CT (DECT) imaging of urate deposition

DECT imaging show that a majority of gout patients have non-visible tophi



In a DECT study of 40 patients with non-tophaceous gout, 95% had urate deposits present

Bongartz T, et al. Ann Rheum Dis. 2014;74:1072-1077.

#### All gout is technically tophaceous

- Systemically, urate crystal deposition initiates the formation of a tophus<sup>4</sup>
- Gout patients are tophaceous by the time the first attack occurs
- Tophi start as small monosodium urate (MSU) aggregates that can only be visualized microscopically

Tophi formation can occur throughout the body, including in organs<sup>3,4,6</sup>



Schett G, et al. RMD Open. 2015;1:e000046.11

#### **Crystal-induced systemic inflammation**



- Macrophage takes in MSU crystals by phagocytosis
- 2. Activation of NALP3 Inflammasome triggers IL-1ß
- 3. Release of IL-1ß triggers neutrophil recruitment and extravasation into the joint space
- 4. Neutrophil activation leads to the release of proinflammatory compounds

# Tophi induces chronic inflammation that can cause bone erosion



- Urate crystal build-up can lead to inflammation and potential destruction of surrounding tissue
- Deposition of urate crystals can lead to destructive skeletal changes

### Consequences of untreated or refractory disease

#### Treated for osteoarthritis



Photo courtesy of Dr. Brian Mandell, Cleveland Clinic

#### Treated for rheumatoid arthritis



Photo courtesy of Dr. N Lawrence Edwards, Univ. of Florida





- Invasive surgical intervention
  - Risks and drawbacks
    - High complication rates
      - Delayed wound healing
      - Sepsis/necrosis
      - Potential for worsening
  - Last resort

#### Gout management approach





Treat the acute flare rapidly with an antiinflammatory agent<sup>4</sup>

# INITIATE Urate-lowering Therapy



Initiate urate-lowering therapy to achieve serum urate level <6 mg/dL<sup>2,3,5</sup>



Initiate concomitant antiinflammatory prophylaxis to prevent mobilization flares<sup>1,4</sup>



Continue urate-lowering therapy to reduce the risk of future flares and

crystal deposits4

**MAINTAIN** 

Treatment to

Control sUA



Use for up to 6 months while serum urate levels normalize<sup>1</sup>

# Maintaining SUA <6 mg/dL is associated with reduced risk of recurrent gout flares



## Treatment of gout



Josh Billings

# Appropriate Management of Gout Requires Control of Both Symptoms and Urate Burden

- In order to achieve optimal patient outcomes, it is important to address 2 processes simultaneously
  - Controlling flares and symptoms
  - Reducing the excess body burden of urate



Adequate treatment of excess urate burden may lead to improvement in clinical manifestations<sup>32</sup>

#### Classes of urate-lowering therapies

#### **Small molecules**

- xanthine oxidase inhibitors
  - 1. allopurinol
  - 2. febuxostat
- uricosurics
  - 1. probenecid
  - 2. lesinurad

#### **Biologic**

pegloticase

#### **Purine catabolism**



#### **2012 ACR Gout Treatment Guidelines**





<sup>\*</sup> Titrated to maximum appropriate dose

# Management of refractory gout







#### Definition of refractory gout

- Symptomatic gout in which conventional uratelowering therapies are contraindicated or the maximum medically appropriate dosage of these therapies does not control hyperuricemia
  - Recurrent and disabling gout flares
  - Chronic gout arthropathy with or without bony erosions
  - Visible progressive tophi
  - Progressive physical disability
  - Poor health-related quality of life

The combination of severe gout, high burden of comorbidities, and polypharmacy can make refractory gout challenging to manage

# Patients With Refractory Gout Fail to Achieve Target SUA Levels With Oral ULTs

- Becker, MA, et al. N Engl J Med. 2005;353:2450-2461:
  - 79% of patients (n=251) on 300 mg allopurinol/day did not meet target sUA <6.0 mg/dL
  - 47% of patients (n=255) on 80 mg febuxostat/day for 52 weeks did not meet target sUA<6.0 mg/dL</li>
- In about 200,000 gout patients, conventional oral uratelowering agents fail to achieve target uric acid levels

Sundy JS, et al. JAMA. 2011;306(7):711-720

#### **Treatment options for Refractory Gout**

- Dose escalation of conventional urate lowering therapies:
  - allopurinol to 800 mg daily in divided doses
  - febuxostat to 160 240 mg daily
  - probenecid to 1000 mg daily in divided doses
  - lesinurad to 200 mg daily
- Combination therapy: xanthine oxidase inhibitor + uricosuric
- Lifestyle modifications
  - diet vitamin C
  - exercise losartan for diuretics
  - cherry extract
     fenofibrate for niacin
- avoidance of high fructose corn syrup
- low fat dairy products

- Biologic therapy
  - pegloticase

# Pegloticase: a biologic approved for the treatment of refractory gout

- pegloticase is a uric acid-specific enzyme, which is a PEGylated product that consists of recombinant modified mammalian urate oxidase (uricase)
- pegloticase achieves its therapeutic effect by catalyzing the breakdown of uric acid to allantoin
  - allantoin is more water soluble than uric acid and is readily excreted by the kidneys, leading to lowering of sUA levels
- the long-term safety & efficacy profile of pegloticase has been studied in patients receiving treatment for up to 3 years

#### **Uricase**



Figure courtesy of Toby Sannan and Christopher Hadad. Ohio State University.

#### **Purine catabolism**



#### Phase III trials - pegloticase

- Two replicate, multicenter, randomized, double-blind, placebo-controlled trials of 6 months duration
  - Subjects included adults with chronic gout refractory to conventional therapy
  - 8 mg pegloticase infusions were studied in two dose regimens (q2wks and q4wks) versus placebo

#### PRIMARY ENDPOINT

- Percentage of plasma uric acid (PUA) responders versus placebo
- Complete Responders
  - Patients who achieved PUA concentration
     6 mg/dL for at least 80% of the time
     during both months 3 and 6
- Incomplete Responders
  - Patients who did not sustain uric acid levels <6 mg/dL throughout the trial</li>
  - Patients who withdrew before the final visit

#### **SECONDARY ENDPOINT**

- Complete resolution (CR) of tophi
- Defined as 100% resolution of at least 1 target tophus, with no new or progressive tophi

#### Phase III trials – Baseline characteristics

- Patient characteristics
  - Mean age: 55 (23-89)
  - Predominantly male (82%)
  - Mean BMI: 33 kg/m
- Patient disease characteristics
  - Mean disease duration: 15 years
  - Mean baseline sUA: 10 mg/dL
  - Mean flares: 10 in prior 18 months (7 in past year)
    - 63% described flares as severe/crippling
  - 71% with visible tophi

#### Pooled Pivotal Trials Results: Complete Responders



• These patients maintained sUA levels below 6 mg/dL 80% of the time at months 3 and 6 versus 0% for placebo (*P*<0.001)

#### Pooled Pivotal Trials Results: Incomplete Responders



 These patients achieved a significant reduction in sUA for a mean of 7 weeks, allowing some clearance of the urate burden (P<0.001).</li>
 The response was not durable; therefore, they did not meet the primary endpoint.

71% of patients had 1 or more tophi at the baseline of the study







#### SECONDARY ENDPOINT<sup>1,2</sup>

#### Complete resolution of tophi

Defined as 100% resolution of at least 1 target tophus, with no new or progressive tophi





These results include patients who experienced a complete response as well as patients who experienced an incomplete response in the primary endpoint<sup>3</sup>

• 45% (18/40) of patients treated with pegloticase (q2wk) achieved a complete resolution of their target tophus versus 8% (2/25) of patients receiving placebo (P=0.002)















#### DECT imaging: Resolution of tophi after pegloticase

DECT Imaging of Tophi (Green) in a Responder



**Before Treatment** 

After Treatment

DECT Imaging of Tophi (Green) in a Partial Responder



**Before Treatment** 



**After Treatment** 

#### **Safety: Adverse events**

## Most Common Serious Adverse Reactions Occurring in at Least 5% of Patients Treated With pegloticase

| Adverse Reaction<br>(Preferred Term) | Pegloticase 8 mg q2wk<br>(N=85) na (%) | Placebo<br>(N=43) n (%) |
|--------------------------------------|----------------------------------------|-------------------------|
| Gout flare                           | 65 (77)                                | 35 (81)                 |
| Infusion reaction                    | 22 (26)                                | 2 (5)                   |
| Severe infusion reaction*            | 4 (5)                                  | 0 (0)                   |

 Other most common adverse reactions occurring in at least 5% of patients treated with pegloticase: nausea, contusion or ecchymosis, nasopharyngitis, constipation, chest pain, and vomiting

#### Safety: Adverse events

- Most infusion reactions (IRs) occur when sUA levels are >6 mg/dL
- If sUA levels increase to >6 mg/dL on therapy, patient is likely to have anti-pegloticase antibodies, hence an increased risk of infusion reactions
- If sUA is monitored closely and subjects do not receive pegloticase after the sUA has returned to >6 mg/dL, most IRs could be avoided

|                                       | Pegloticase 8 mg q2wks<br>N = 22 |
|---------------------------------------|----------------------------------|
| sUA >6 mg/dL before infusion reaction | 20/22 (91%)                      |
| sUA <6 mg/dL                          | 1/22 (4.5%)                      |
| Infusion reaction at first dose*      | 1/22 (4.5%)                      |

#### Safety: Infusion reactions (IRs) and anaphylaxis

- During the pivotal clinical trials, IRs were segmented by severity mild, moderate, or severe
- IRs occurred in 26% (22/85) subjects treated with pegloticase 8 mg every 2 weeks compared to 5% (2/43) of subjects treated with placebo
- There were 4 cases (5%) of severe IRs identified by physicians that were retrospectively reclassified as anaphylaxis by the FDA\*
- Of the 4 cases reclassified as anaphylaxis, 3 likely would have been prevented using the pegloticase sUA stopping rules
- \* Diagnostic criteria (post-hoc FDA analysis using NIAID/FAAN criteria):
  - Skin or mucosal tissue involvement, and either airway compromise and/or reduced blood pressure with or without associated symptoms, and a temporal relationship to pegloticase or placebo injection with no other identifiable cause

#### Safety:

- No patients with IRs required intubation, mechanical ventilator support, vasopressors, or hospitalization.
- There were no infusion-related deaths.

#### **Safety: Post-hoc analysis**



Most Infusion Reactions Occurred When sUA >6 mg/dL

# Pre-infusion sUA Levels Are a Powerful Marker for Predicting IRs



#### Using SUA as a predictive biomarker

#### Stopping rule:

- Check a SUA 48 hours before the next pegloticase infusion:
  - If SUA <6 mg/dL, infusion can be given</li>
  - If SUA >6 mg/dL, consider discontinuing treatment, particularly when 2 consecutive sUA levels >6 mg/dL are observed

If this stopping rule is utilized, the majority of infusion reactions can be avoided

No other biologic in Rheumatology has a predictive biomarker

#### Safety: Pre-infusion protocol

## Infusion Premedication

- Antihistamine the night before and morning of each infusion
- Acetaminophen morning of each infusion
- Corticosteroid prior to each infusion

## Gout Flare Prophylaxis

- Colchicine, NSAID, or both
- Initiated 1 week before first infusion
- Recommended for at least the first 6 months of therapy

#### **Oral ULT**

 Discontinue before starting pegloticase

It is important to measure sUA levels prior to infusion

#### Collaboration between podiatrists & rheumatologists

- Latest treatment options mark a watershed moment in the management of gout
- Podiatrists role in gout management today is now more critical than ever
  - Increased emphasis on comprehensive, collaborative, and correlated care amongst healthcare providers
  - "First responders" of gout flares
  - Surgical management of refractory tophaceous gout
  - Missing link between a patient's PCP and rheumatologist

#### Collaboration between podiatrists & rheumatologists

Lansdowne et al. Journal of Foot and Ankle Research (2015) 8:14 DOI 10.1186/s13047-015-0071-z



RESEARCH Open Access

## Perceived barriers to the management of foot health in patients with rheumatic conditions

Nina Lansdowne, Angela Brenton-Rule, Matthew Carroll and Keith Rome\*

#### Results

- 56 podiatrists responded to web-based survey
- Results demonstrated poor integration of podiatrists into multidisciplinary teams
- Only 16% reported being part of an established multidisciplinary team
- 95% expressed interest in professional development for the podiatric management of arthritic conditions

#### **Conclusions**

 There are barriers in the involvement of podiatrists in the management of people with rheumatic conditions

# Overcoming barriers between podiatrists and rheumatologists in the care of gout patients

- Identify a local rheumatologist who has a common interest in gout
- Foster collaborative relationship
  - Direct contact for referrals and timely consultations
  - Dual podiatry-rheumatology clinics
  - Develop co-management strategy
    - Delineation of roles
    - Identification of common ground
  - Joint community outreach

#### **Summary**

- Gout is a chronic, progressive arthritis caused by hyperuricemia with associated chronic inflammation
- Body urate burden extends beyond clinically and physically apparent tophi
- Gout can be difficult to treat, beyond management with xanthine oxidase inhibitors and uricosurics
- Pegloticase is the first biologic and only FDA-approved treatment option for patients with chronic refractory gout
- Pegloticase can be an effective option for patients with chronic refractory gout

## Thank you