Regression \#8: Loose Ends

Econ 671

Purdue University

- In this lecture we investigate a variety of topics that you are probably familiar with, but need to touch on nonetheless. These include:
(1) Multicollinearity
(2) Coefficient interpretation with log transformations.
(3) Dummy / Indicator Variables
(4) Nonlinearities.

Multicollinearity

So, what is multicollinearity?

So, why is this important?
(1)
(2)
(3)

Multicollinearity

In a very real sense, the importance of multicollinearity, and its perception as a "problem" in econometrics, is overblown.

For example, OLS estimators are still unbiased, consistent and efficient in the presence of high (but not perfect) collinearity.

Goldberger (1991) likens the problem of multicollinearity to micronumerosity - the "problem" of having a small sample size.

A series of interesting (and entertaining) quotes on this issue are taken from his book:

Multicollinearity

"The extreme case, 'exact micronumerosity' arises when $n=0$, in which case the sample estimate of μ is not unique ... The extreme case is easy enough to recognize. "Near micronumerosity" is more subtle, and yet very serious. It arises when the rank condition $n>0$ is barely satisfied ... "

He continues by noting the similarity of consequences with multicollinearity ...
"The consequences of micronumerosity are serious. Precision of estimation is reduced ... Investigators will sometimes be led to acccept the hypothesis $\mu=0 \ldots$ even though the true situation may be not that $\mu=0$ but that the sample data have not enablesd us to pick μ up. The estimate of μ will [also] be very sensitive to the sample data ...

Multicollinearity

Finally, he suggests some tests for micronumerosity ...

Tests for the presence of micronumerosity require the judicious use of various fingers. Some researchers prefer a single finger, others use their toes, still others let their thumbs rule. A generally reliable guide may be obtained by counting the number of observations. Most of the time in econometric analysis, when n is close to zero, it is also far from infinity.

While these are entertaining, they illustrate that:
(1) The problems associated with small sample sizes are like those associated with multicollinearity.
(2) Multicollinearity does not violate any of our fundamental assumptions; it is simply a feature of the regression model itself. Large standard errors are not "wrong" or "misleading" as the coefficient estimates should vary a lot from sample to sample.

While multicollinearity may be bad, in the sense that individual t-statistics are small, leading the applied researcher to update his/her beliefs about the publishability of the work and subsequently wanting to throw himself/herself out the window, it can also aid in inference, (e.g., prediction), as the following example suggests:

Suppose:

and, to fix ideas, set $\sigma^{2}=1$. In addition, suppose that the explanatory variables have been scaled so that:

In this case,
since the off-diagonal, $\sum_{i} x_{1 i} x_{2 i}$ is the sample correlation, denoted as ρ.

Multicollinearity: Example

It follows that

Thus, for the purposes of getting a "small" variance for $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$, we would want to set $\rho=0$.
However, consider the parameter

With very little work, we can show:

For this parameter, it is clear that $\rho>0$ leads to increased precision!

Multicollinearity: Example

Note that this logic translates to the exercise of prediction. To this end, suppose we wish to predict y when x_{1} and x_{2} equal the same value, say c. (Note this is not completely unreasonable given our initial scaling of the data). Then,
at which point the preference for a small variance associated with
becomes clear. This argument also extends to general problems of prediction.

Consider two different regressions:

$$
\begin{aligned}
& y_{i}=\beta_{1}+\beta_{2} E d u c_{i}+u_{i} \\
& y_{i}=\theta_{1}+\theta_{2} E d u c_{i}+\theta_{3} E d u c_{i}^{2}+\theta_{4} E d u c_{i}^{3}+\theta_{5} E d u c_{i}^{4}+\epsilon_{i}
\end{aligned}
$$

- regress lwage educat

Source	SS	df MS			Number of obs $=1260$	
					F (1, 1258)	$=95.89$
Model	31.5149966	1	31.5149966		Prob $>\mathrm{F}$	$=0.0000$
Residual	413.464976	1258	. 328668502		R-squared	$=0.0708$
					Adj R-squared	$=0.0701$
Total	444.979972	1259	. 353439215		Root MSE	$=.5733$
1wage	Coef.	Std.	rr. t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf.	Interval]
educat	. 0602839	. 0061	$563 \quad 9.79$	0.000	. 0482061	. 0723616
_cons	. 9014239	. 0790	13211.41	0.000	. 7464117	1.056436

. regress lwage educat educat2 educat3 educat4

Source \|	SS	df	MS
Model	34.8081566	4	8.70203915
Residual	410.171816	1255	.326830132
Total	444.979972	1259	.353439215

Number of obs	$=1260$	
F $(4$, 1255	$=$	26.63
Prob $>$ F	$=0.0000$	
R-squared	$=0.0782$	
Adj R-squared	$=0.0753$	
Root MSE	$=.57169$	
[95\% Conf.	Interval]	
-1.992667	1.733897	
-.2513654	.2980458	
-.0186269	.0155166	
-.0003388	.0004229	
-2.812474	6.016916	

| _cons \| 1.602221 | 2.250264 | 0.71 | 0.477 | -2.812474 | 6.016916 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- In the simple regression model, education looks "clearly significant."
- In the second model, however, education does not appear related to wages, as none of the coefficients are statistically significant.
- This, however, is an artifact of multicollinearity. The relevant question to ask is if all of the education variables are jointly equal to zero.

In fact, we calculate a χ_{4}^{2} statistic equal to 106.5 for the joint null hypothesis that $\theta_{2}=\theta_{3}=\theta_{4}=\theta_{5}=0$.

Multicollinearity

We close this discussion with a general derivation that cleanly reveals the "problem" of multicollinearity. Consider a regression equation that has been transformed into deviation from means:
where x_{1} is a scalar and z_{i} a vector. We then have:

Using the partitioned inverse theorem to select off the $(1,1)$ element of this matrix, we obtain:

Multicollinearity

Continuing,
where R_{1}^{2} is the R-squared value from a regression of x_{1} on all the Z 's. (To see this last point, recall our earlier derivation of R^{2} in the lecture notes).

Thus, high values of R_{1}^{2} lead to high variances (the multicolinearity problem). Conversely, lots of variation in x_{1} mitigates the variance.

Interpretations with Common Transformations

Models with logarithmic transformations on the dependent and independent variables are ubiquitous in applied work and thus it is useful to pause and explain how to interpret coefficients in such cases.

As a benchmark, consider a model without any transformations:

$$
y_{i}=\beta_{1}+\beta_{2} x_{2 i}+\cdots+\beta_{k} x_{k i}+\epsilon_{i}
$$

It is clear in such a situation that β_{j} represents a marginal effect - the expected change in y corresponding to a unit change in x_{j} (holding all else constant):
thus producing its interpretation.

Interpretations with Common Transformations

Now, consider a model in which both the dependent and all the explanatory variables have logarithmic transformations:

To see the interpretation here, it is useful to take the differential of both sides of this equation, noting that $d[f(x)]=f^{\prime}(x) d x$. Thus,
or
yielding
-

Interpretations with Common Transformations

The left hand side of the last equation is a partial elasticity - the percentage change in y corresponding to a percentage change in x_{j} (holding all else constant). Thus, in log-log models, the coefficients represent (partial) elasticities.

$$
\text { Example : } \log \text { CoffeeDemanded }=.77-.253 \log \text { Price. }
$$

This would indicate that the demand for coffee is price-inelastic.

Perhaps equally common is the case where the dependent variable has a log transformation, but the independent variables do not:

Performing a similar operation, we obtain:
which rearranges to:
or $100 \beta_{j}$ represents the percentage change in y corresponding to a unit change in x.

$$
\text { Example : } \widehat{\text { LogWage }}=2.2+.12 \text { Education. }
$$

That is, an added year of schooling increases your wages by 12 percent, on average.

Interpretations with Common Transformations

Also note that other parameters of interest can be obtained via simple manipulations of this formula.

For example, in the log-levels model, we can re-arrange things to obtain:

Evaluated at $y=10$, for example, this would imply that an added year of schooling increases your (hourly) wage by about $\$ 1.20$ on average.

Finally, similar (and obvious) manipulations can be performed to provide the correct interpretation when the explanatory variables are measured in logs while the dependent variable is measured in levels.

Dummy Variables and Interactions

- Dummy variables (or indicator variables) represent a useful way to represent qualitative information in a quantitive way.
- For example, one can control for variation across race, gender or region of residence through the creation of dummy variables.
- Often data sets will code such information in a way that is not directly useful to the econometrician. For example, gender may be listed as "F" or "M" while region of residence may be coded as, say, 1-4, denoting the East, West, North and South, respectively.

Dummy Variables and Interactions

When dummy variables are used, one must take care to interpret the parameters correctly. To see this, consider two models:

$$
\begin{aligned}
& y_{i}=\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+\beta_{3} D_{3 i}+u_{i} \\
& y_{i}=\alpha_{1}+\alpha_{2} \tilde{D}_{2 i}+\alpha_{3} \tilde{D}_{3 i}+v_{i}
\end{aligned}
$$

where

Model 1	Model 2
$D_{1}=I(E d<12)$	
$D_{2}=I(E d=12)$	$\tilde{D}_{2}=I(E d \geq 12)$
$D_{3}=I(E d>12)$	$\tilde{D}_{3}=I(E d>12)$

Dummy Variables and Interactions

The conditional expectations reveal the interpretation of the coefficients in each model:

$$
\begin{aligned}
& E(y \mid \text { Dropout }, \text { Mode } 11)=\beta_{1} \\
& E(y \mid \text { Dropout, Mode/2 })=\alpha_{1}
\end{aligned}
$$

$$
\begin{aligned}
& E(y \mid \text { HSGrad, Mode } 11)=\beta_{2} \\
& E\left(y \mid \text { HSGrad, Mode/2) }=\alpha_{1}+\alpha_{2}\right.
\end{aligned}
$$

Dummy Variables and Interactions

$$
\begin{aligned}
E(y \mid \text { MorethanHS, Mode/1 }) & =\beta_{3} \\
E(y \mid \text { MorethanHS, Mode/2 }) & =\alpha_{1}+\alpha_{2}+\alpha_{3}
\end{aligned}
$$

Thus, in Model 2, the α^{\prime} s are interpreted as the gains (or losses) from moving to the higher education group while the β 's are the average wages for the given group.

Note that the interpretation of the coefficients changes across models, even though \tilde{D}_{3} and D_{3}, for example are the same variable.

Dummies and Interactions: Example 1

The STATA output clearly shows that the α 's are estimated as differences between the β 's. Wages are significantly larger when moving to the higher education group.

wage	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
D1	774.25	41.29344	18.75	0.000	693.2111	855.2889
D2	862.6718	19.54007	44.15	0.000	824.3241	901.0194
D3	1076.024	18.18003	59.19	0.000	1040.346	1111.703
tildeD2 tildeD3						
wage	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf	Interval]
tildeD2	88.42176	45.68329	1.94	0.053	-1.232276	178.0758
tildeD3	213.3525	26.68947	7.99	0.000	160.9741	265.7309
_cons	774.25	41.29344	18.75	0.000	693.2111	855.2889

Interaction

What is an interaction?

This is sometimes done to add flexibility to a regression model. However, most of the time, the interaction is added to enable the researcher to test some hypothesis of interest. Consider, for example the regression model:

$$
\log ^{\text {Wage }_{i}}=\beta_{1}+\beta_{2} \text { Fem }_{i}+\beta_{3} \text { Educ }_{i}+\beta_{4} \text { Fem }_{i} * \text { Educ }_{i}+\beta_{5} \text { Exper }_{i}+u_{i}
$$

What potentially interesting hypotheses would this enable us to test?

What would you conclude based on these results?

Nonlinearities

Nonlinearities are typically handled in a regression framework by including powers of the explanatory variables and including these as separate regressors. In a sense, this might be thought of as a special interaction.

Sometimes these are included to make the regression model more flexible, but if this is the case, researchers often tend to prefer nonparametric methods.

However, economic theory (and common sense) often suggests the inclusion of such variables to allow, for example, quadratic profiles of certain covariates. Consider, for example, the model below:

$$
\text { LogWage }_{i}=\beta_{1}+\beta_{2} \text { Fem }_{i}+\beta_{3} \text { Educ }_{i}+\beta_{4} \text { Exper }_{i}+\beta_{5} \text { Exper }_{i}^{2}+u_{i}
$$

with output presented on the following page:

When are the returns to experience at a maximum?

lwage \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Con	Interval]
female \|	-. 3371868	. 0363214	-9.28	0.000	-. 4085411	-. 2658324
educ I	. 0841361	. 0069568	12.09	0.000	. 0704692	. 0978029
exper I	. 03891	. 0048235	8.07	0.000	. 029434	. 0483859
exper2 I	-. 000686	. 0001074	-6.39	0.000	-. 000897	-. 0004751
_cons \|	. 390483	. 1022096	3.82	0.000	. 1896894	. 5912767

What if you wanted to test if return to experience profiles are different for men and women? To this end, you might want to estimate a model like:

$$
\begin{aligned}
\text { LogWage }_{i} & =\beta_{1}+\beta_{2} \text { Educ }_{i}+\beta_{3} \text { Exper }_{i}+\beta_{4} \text { Exper }_{i}^{2} \\
& +\beta_{5} F_{i}+\beta_{6} F_{i} * \text { Exper }_{i}+\beta_{7} F_{i} * \text { Exper }_{i}^{2}+u_{i}
\end{aligned}
$$

where F represents the Female Dummy.

What would be some hypothesis tests of interest?

When are wages highest for men? For Women? Do we see the same experience profiles for both genders?

lwage \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
educ \|	.0857402	.0068921	12.44	0.000	.0722004	.0992801
exper \|	.0543082	.0065378	8.31	0.000	.0414643	.067152
exper2 \|	-.000929	.0001447	-6.42	0.000	-.0012134	-.0006447
female \|	-.035051	.0800504	-0.44	0.662	-.1923137	.1222117
fexper \| -.0320967	.0094877	-3.38	0.001	-.0507357	-.0134578	
fexper2 \|	.0005158	.0002093	2.46	0.014	.0001046	.000927

Maximum Experience, Males: 29.2, Maximum Experience, Females: 26.9

