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In this lecture we investigate a variety of topics that you are probably
familiar with, but need to touch on nonetheless. These include:

1 Multicollinearity

2 Coefficient interpretation with log transformations.

3 Dummy / Indicator Variables

4 Nonlinearities.
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Multicollinearity

So, what is multicollinearity?

So, why is this important?

1

2

3
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Multicollinearity

In a very real sense, the importance of multicollinearity, and its perception
as a “problem” in econometrics, is overblown.

For example, OLS estimators are still unbiased, consistent and efficient in
the presence of high (but not perfect) collinearity.

Goldberger (1991) likens the problem of multicollinearity to
micronumerosity - the “problem” of having a small sample size.

A series of interesting (and entertaining) quotes on this issue are taken
from his book:
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Multicollinearity

“The extreme case, ‘exact micronumerosity’ arises when n = 0,
in which case the sample estimate of µ is not unique ... The
extreme case is easy enough to recognize. “Near
micronumerosity” is more subtle, and yet very serious. It arises
when the rank condition n > 0 is barely satisfied ... ”

He continues by noting the similarity of consequences with
multicollinearity ...

“The consequences of micronumerosity are serious. Precision of
estimation is reduced ... Investigators will sometimes be led to
acccept the hypothesis µ = 0 ... even though the true situation
may be not that µ = 0 but that the sample data have not
enablesd us to pick µ up. The estimate of µ will [also] be very
sensitive to the sample data ...
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Multicollinearity
Finally, he suggests some tests for micronumerosity ...

Tests for the presence of micronumerosity require the judicious
use of various fingers. Some researchers prefer a single finger,
others use their toes, still others let their thumbs rule. A
generally reliable guide may be obtained by counting the number
of observations. Most of the time in econometric analysis, when
n is close to zero, it is also far from infinity.

While these are entertaining, they illustrate that:
1 The problems associated with small sample sizes are like those

associated with multicollinearity.
2 Multicollinearity does not violate any of our fundamental

assumptions; it is simply a feature of the regression model itself.
Large standard errors are not “wrong” or “misleading” as the
coefficient estimates should vary a lot from sample to sample.
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While multicollinearity may be bad, in the sense that individual t-statistics
are small, leading the applied researcher to update his/her beliefs about
the publishability of the work and subsequently wanting to throw
himself/herself out the window, it can also aid in inference, (e.g.,
prediction), as the following example suggests:
Suppose:

and, to fix ideas, set σ2 = 1. In addition, suppose that the explanatory
variables have been scaled so that:

In this case,

since the off-diagonal,
∑

i x1ix2i is the sample correlation, denoted as ρ.
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Multicollinearity: Example

It follows that

Thus, for the purposes of getting a “small” variance for β̂1 and β̂2, we
would want to set ρ = 0.
However, consider the parameter

With very little work, we can show:

For this parameter, it is clear that ρ > 0 leads to increased precision!
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Multicollinearity: Example

Note that this logic translates to the exercise of prediction. To this end,
suppose we wish to predict y when x1 and x2 equal the same value, say c .
(Note this is not completely unreasonable given our initial scaling of the
data). Then,

at which point the preference for a small variance associated with

becomes clear. This argument also extends to general problems of
prediction.
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Consider two different regressions:

yi = β1 + β2Educi + ui

yi = θ1 + θ2Educi + θ3Educ2
i + θ4Educ3

i + θ5Educ4
i + εi

. regress lwage educat 
 
      Source |       SS       df       MS              Number of obs =    1260 
-------------+------------------------------           F(  1,  1258) =   95.89 
       Model |  31.5149966     1  31.5149966           Prob > F      =  0.0000 
    Residual |  413.464976  1258  .328668502           R-squared     =  0.0708 
-------------+------------------------------           Adj R-squared =  0.0701 
       Total |  444.979972  1259  .353439215           Root MSE      =   .5733 
 
------------------------------------------------------------------------------ 
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      educat |   .0602839   .0061563     9.79   0.000     .0482061    .0723616 
       _cons |   .9014239   .0790132    11.41   0.000     .7464117    1.056436 
------------------------------------------------------------------------------ 
 
. regress lwage educat educat2 educat3 educat4 
 
      Source |       SS       df       MS              Number of obs =    1260 
-------------+------------------------------           F(  4,  1255) =   26.63 
       Model |  34.8081566     4  8.70203915           Prob > F      =  0.0000 
    Residual |  410.171816  1255  .326830132           R-squared     =  0.0782 
-------------+------------------------------           Adj R-squared =  0.0753 
       Total |  444.979972  1259  .353439215           Root MSE      =  .57169 
 
------------------------------------------------------------------------------ 
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      educat |  -.1293852   .9497547    -0.14   0.892    -1.992667    1.733897 
     educat2 |   .0233402   .1400233     0.17   0.868    -.2513654    .2980458 
     educat3 |  -.0015552   .0087018    -0.18   0.858    -.0186269    .0155166 
     educat4 |    .000042   .0001941     0.22   0.829    -.0003388    .0004229 
       _cons |   1.602221   2.250264     0.71   0.477    -2.812474    6.016916 
------------------------------------------------------------------------------ 
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In the simple regression model, education looks “clearly significant.”

In the second model, however, education does not appear related to
wages, as none of the coefficients are statistically significant.

This, however, is an artifact of multicollinearity. The relevant question
to ask is if all of the education variables are jointly equal to zero.

In fact, we calculate a χ2
4 statistic equal to 106.5 for the joint null

hypothesis that θ2 = θ3 = θ4 = θ5 = 0.
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Multicollinearity

We close this discussion with a general derivation that cleanly reveals the
“problem” of multicollinearity. Consider a regression equation that has
been transformed into deviation from means:

where x1 is a scalar and zi a vector. We then have:

Using the partitioned inverse theorem to select off the (1,1) element of
this matrix, we obtain:
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Multicollinearity

Continuing,

where R2
1 is the R-squared value from a regression of x1 on all the Z ’s. (To

see this last point, recall our earlier derivation of R2 in the lecture notes).

Thus, high values of R2
1 lead to high variances (the multicolinearity

problem). Conversely, lots of variation in x1 mitigates the variance.
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Interpretations with Common Transformations

Models with logarithmic transformations on the dependent and
independent variables are ubiquitous in applied work and thus it is useful
to pause and explain how to interpret coefficients in such cases.

As a benchmark, consider a model without any transformations:

yi = β1 + β2x2i + · · ·+ βkxki + εi

It is clear in such a situation that βj represents a marginal effect - the
expected change in y corresponding to a unit change in xj (holding all else
constant):

thus producing its interpretation.
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Interpretations with Common Transformations
Now, consider a model in which both the dependent and all the
explanatory variables have logarithmic transformations:

To see the interpretation here, it is useful to take the differential of both
sides of this equation, noting that d [f (x)] = f ′(x)dx . Thus,

or

yielding
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Interpretations with Common Transformations

The left hand side of the last equation is a partial elasticity - the
percentage change in y corresponding to a percentage change in xj
(holding all else constant). Thus, in log-log models, the coefficients
represent (partial) elasticities.

Example : ̂logCoffeeDemanded = .77− .253logPrice.

This would indicate that the demand for coffee is price-inelastic.
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Perhaps equally common is the case where the dependent variable has a
log transformation, but the independent variables do not:

Performing a similar operation, we obtain:

which rearranges to:

or 100βj represents the percentage change in y corresponding to a unit
change in x .

Example : ̂LogWage = 2.2 + .12Education.

That is, an added year of schooling increases your wages by 12 percent, on
average.
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Interpretations with Common Transformations

Also note that other parameters of interest can be obtained via simple
manipulations of this formula.

For example, in the log-levels model, we can re-arrange things to obtain:

Evaluated at y = 10, for example, this would imply that an added year of
schooling increases your (hourly) wage by about $1.20 on average.

Finally, similar (and obvious) manipulations can be performed to provide
the correct interpretation when the explanatory variables are measured in
logs while the dependent variable is measured in levels.
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Dummy Variables and Interactions

Dummy variables (or indicator variables) represent a useful way to
represent qualitative information in a quantitive way.

For example, one can control for variation across race, gender or
region of residence through the creation of dummy variables.

Often data sets will code such information in a way that is not
directly useful to the econometrician. For example, gender may be
listed as “F” or “M” while region of residence may be coded as, say,
1-4, denoting the East, West, North and South, respectively.
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Dummy Variables and Interactions

When dummy variables are used, one must take care to interpret the
parameters correctly. To see this, consider two models:

yi = β1D1i + β2D2i + β3D3i + ui

yi = α1 + α2D̃2i + α3D̃3i + vi

where

Model 1 Model 2
D1 = I (Ed < 12)

D2 = I (Ed = 12) D̃2 = I (Ed ≥ 12)

D3 = I (Ed > 12) D̃3 = I (Ed > 12)
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Dummy Variables and Interactions

The conditional expectations reveal the interpretation of the coefficients in
each model:

E (y |Dropout,Model1) = β1

E (y |Dropout,Model2) = α1

E (y |HSGrad ,Model1) = β2

E (y |HSGrad ,Model2) = α1 + α2
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Dummy Variables and Interactions

E (y |MorethanHS ,Model1) = β3

E (y |MorethanHS ,Model2) = α1 + α2 + α3

Thus, in Model 2, the α′s are interpreted as the gains (or losses) from
moving to the higher education group while the β’s are the average wages
for the given group.

Note that the interpretation of the coefficients changes across models,
even though D̃3 and D3, for example are the same variable.
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Dummies and Interactions: Example 1
The STATA output clearly shows that the α’s are estimated as differences
between the β’s. Wages are significantly larger when moving to the higher
education group.

 
. regress wage D1 D2 D3, noconst 
------------------------------------------------------------------------------ 
        wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+--------------------------------------------------------------- 
          D1 |     774.25   41.29344    18.75   0.000     693.2111    855.2889 
          D2 |   862.6718   19.54007    44.15   0.000     824.3241    901.0194 
          D3 |   1076.024   18.18003    59.19   0.000     1040.346    1111.703 
------------------------------------------------------------------------------ 
 
. regress wage tildeD2 tildeD3 
------------------------------------------------------------------------------ 
        wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+--------------------------------------------------------------- 
     tildeD2 |   88.42176   45.68329     1.94   0.053    -1.232276    178.0758 
     tildeD3 |   213.3525   26.68947     7.99   0.000     160.9741    265.7309 
       _cons |     774.25   41.29344    18.75   0.000     693.2111    855.2889 
------------------------------------------------------------------------------ 
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Interaction

What is an interaction?

This is sometimes done to add flexibility to a regression model. However,
most of the time, the interaction is added to enable the researcher to test
some hypothesis of interest. Consider, for example the regression model:

LogWagei = β1 + β2Femi + β3Educi + β4Femi ∗ Educi + β5Experi + ui .

What potentially interesting hypotheses would this enable us to test?
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What would you conclude based on these results?

 

------------------------------------------------------------------------------ 

       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      female |  -.2958839   .1787929    -1.65   0.099    -.6471275    .0553597 

        educ |   .0927793   .0089777    10.33   0.000     .0751423    .1104163 

    femaleEd |  -.0038152    .013975    -0.27   0.785    -.0312694    .0236391 

       exper |   .0094302   .0014518     6.50   0.000     .0065781    .0122823 

       _cons |   .4614994   .1267468     3.64   0.000     .2125017    .7104971 

------------------------------------------------------------------------------ 
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Nonlinearities

Nonlinearities are typically handled in a regression framework by including
powers of the explanatory variables and including these as separate
regressors. In a sense, this might be thought of as a special interaction.

Sometimes these are included to make the regression model more flexible,
but if this is the case, researchers often tend to prefer nonparametric
methods.

However, economic theory (and common sense) often suggests the
inclusion of such variables to allow, for example, quadratic profiles of
certain covariates. Consider, for example, the model below:

LogWagei = β1 + β2Femi + β3Educi + β4Experi + β5Exper2i + ui ,

with output presented on the following page:
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When are the returns to experience at a maximum?

 

------------------------------------------------------------------------------ 

       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      female |  -.3371868   .0363214    -9.28   0.000    -.4085411   -.2658324 

        educ |   .0841361   .0069568    12.09   0.000     .0704692    .0978029 

       exper |     .03891   .0048235     8.07   0.000      .029434    .0483859 

      exper2 |   -.000686   .0001074    -6.39   0.000     -.000897   -.0004751 

       _cons |    .390483   .1022096     3.82   0.000     .1896894    .5912767 

------------------------------------------------------------------------------ 

When are the returns to experience at a maximum? This can be obtained
by solving the equation

.0389− 2(.000686)Exper = 0

yielding Exper∗ ≈ 28.36.
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What if you wanted to test if return to experience profiles are different for
men and women? To this end, you might want to estimate a model like:

LogWagei = β1 + β2Educi + β3Experi + β4Exper2i

+ β5Fi + β6Fi ∗ Experi + β7Fi ∗ Exper2i + ui ,

where F represents the Female Dummy.

What would be some hypothesis tests of interest?
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When are wages highest for men? For Women? Do we see the same
experience profiles for both genders?

 

------------------------------------------------------------------------------ 

       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        educ |   .0857402   .0068921    12.44   0.000     .0722004    .0992801 

       exper |   .0543082   .0065378     8.31   0.000     .0414643     .067152 

      exper2 |   -.000929   .0001447    -6.42   0.000    -.0012134   -.0006447 

      female |   -.035051   .0800504    -0.44   0.662    -.1923137    .1222117 

      fexper |  -.0320967   .0094877    -3.38   0.001    -.0507357   -.0134578 

     fexper2 |   .0005158   .0002093     2.46   0.014     .0001046     .000927 

       _cons |   .2186471   .1078223     2.03   0.043     .0068253    .4304688 

------------------------------------------------------------------------------ 
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Maximum Experience, Males: 29.2, Maximum Experience, Females: 26.9
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