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Regression 
 

Mark Craven and David Page 
Computer Sciences 760 

Spring 2018 

www.biostat.wisc.edu/~craven/cs760 

Goals for the lecture 

you should understand the following concepts 
•  linear regression 
•  RMSE, MAE, and R-square 
•  ridge regression (L2 penalty) 
•  Lagrange multipliers 
•  convex functions and sets 
•  lasso (L1 penalty): least absolute shrinkage and 

selection operator 
•  lasso by proximal method (ISTA) 
•  lasso by coordinate descent 
•  logistic regression and penalized logistic regression 
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Many assumptions… Some major ones: 

•  Linear relationship 
–  Can partially address by taking square, cube, 

exponential, square root, or logarithm of x’s or y 
–  If modify y, also modifies variance… 
 

•  Homoscedasticity (same variance) 

•  Independence of input features 

Other Practicalities 
•  Might want all features to be distributed as standard 

normal (Gaussian with mean 0 and standard 
deviation 1: subtract mean and then divide by 
standard deviation 
–  Simplifies notation, e.g., three slides from now 
–  Makes coefficients comparable 

•  Another option for last sub-bullet: Force values into 
[0,1] by subtracting Min value and then dividing by 
Max – Min 

•  Might pre-compute “interaction terms,” e.g., xixj: new 
features to capture non-linearities just like x2.  (So 
much for third assumption 2 slides ago…) 
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Some Terminology You May Hear 

•  Squared error is one loss function 

•  Loss function is a real valued function associating a 
cost with an outcome (a prediction and actual value 
pair) 

•  Empirical risk is average loss over training data set 

•  Empirical Risk Minimization (ERM) is a general 
principle of finding the model in our language with 
lowest empirical risk 
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Using Linear Algebra 

•  As we go to more variables, notation more complex 

•  Use matrix representation and operations, assume all 
features standardized (standard normal), and assume 
an additional constant 1 feature 

•  Given data matrix X with label vector Y 

•  Find vector of coefficients β to minimize: 

•  ||Xβ – Y|| 2 
2 

!kYjQp<gQ<jI� Q[I<g�.IOgIhhQ][

� �



2/9/18	

6	

Evaluation Metrics for Numeric Prediction 

•  Root mean squared error (RMSE) 

•  Mean absolute error (MAE) – average error 

•  R-square (R-squared) 
 
•  Historically all were computed on training data, and 

possibly adjusted after, but really should cross-
validate 

R-square(d) 

•  Formulation 1: 

•  Formulation 2: square of Pearson correlation 
coefficient r.  Recall for x, y: 
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Some Observations 
•  R-square of 0 means you have no model, R-square 

of 1 implies perfect model (loosely, explains all 
variation) 

•  These two formulations agree when performed on the 
training set 

•  The do not agree when we do cross-validation, in 
general, because mean of training set is different 
from mean of each fold 

•  Should do CV and use first formulation, but can be 
negative! 

Great things about OLS regression 

•  Closed-form solution: fast!! 

•  Works well when given a small number of carefully 
chosen variables (say < 50) 

•  Works well even if some assumptions not fully satisfied 

•  Models are understandable 

•  Method is understood by non-stats/ML folks 
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February 2009 

International Warfarin Pharmacogenetics Consortium 
iwpc@pharmgkb.org 

Estimation of the Warfarin Dose 
with  

Clinical and Pharmacogenetic Data 

  International Warfarin 
Pharmacogenetics Consortium 

  (IWPC) 

  New England Journal of Medicine, 
February 19, 2009, vol. 360, no. 8  

 
February 2009 

International Warfarin Pharmacogenetics Consortium 
iwpc@pharmgkb.org 

“In Milestone, FDA Pushes Genetic Tests 
Tied to Drug,” Wall Street Journal, 2007  
Initial dosing (warfarin package insert)  
“The dosing of COUMADIN must be individualized 
according to patient’s sensitivity to the drug as 
indicated by the PT/INR….. It is recommended 
that COUMADIN therapy be initiated with a dose 
of 2 to 5 mg per day with dosage adjustments 
based on the results of PT/INR determinations. 
The lower initiation doses should be considered 
for patients with certain genetic variations in 
CYP2C9 and VKORC1 enzymes as well as for 
elderly and/or debilitated patients….”  

http://www.fda.gov/cder/foi/label/2007/009218s105lblv2.pdf 
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February 2009 

International Warfarin Pharmacogenetics Consortium 
iwpc@pharmgkb.org 

Age, height  and weight 

 

 
February 2009 

International Warfarin Pharmacogenetics Consortium 
iwpc@pharmgkb.org 

Weekly dose by age 
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February 2009 

International Warfarin Pharmacogenetics Consortium 
iwpc@pharmgkb.org 

Weekly dose by VKORC1 -1639 genotype 

 

 
February 2009 

International Warfarin Pharmacogenetics Consortium 
iwpc@pharmgkb.org 

Statistical Analysis 

  Derivation Cohort  
• 4,043 patients with a stable dose of warfarin and 
target INR of 2-3 mg/week 

• Used for developing dose prediction models 
Validation Cohort 
• 1,009 patients (20% of dataset) 
• Used for testing final selected model 

Analysis group did not have access to validation 
set until after the final model was selected 
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February 2009 

International Warfarin Pharmacogenetics Consortium 
iwpc@pharmgkb.org 

Numerical modeling methods used 
  Included, among others  

• Support vector regression 
• Regression trees 
• Model trees 
• Multivariate adaptive regression splines 
• Least-angle regression 
• Lasso 
• Logarithmic and square-root transformations  
• Direct prediction of dose 

Least-squares linear regression modeling method 
was best according to criterion yielding the lowest 
mean absolute error 

 
• Predicted the square root of the dose 
• Incorporated both genetic and clinical data 
 

 
February 2009 

International Warfarin Pharmacogenetics Consortium 
iwpc@pharmgkb.org 

IWPC pharmacogenetic dosing algorithm 

  **The output of this 
algorithm must be 
squared to compute 
weekly dose in mg 

  ̂ All references to 
VKORC1 refer to 
genotype for 
rs9923231 
 

 
  5.6044  
-  0.2614  x Age in decades 
+  0.0087  x Height in cm 
+  0.0128  x Weight in kg 
-  0.8677  x VKORC1^ A/G 
-  1.6974  x  VKORC1 A/A 
-  0.4854  x VKORC1 genotype 

unknown 
-  0.5211  x CYP2C9 *1/*2 
-  0.9357  x CYP2C9 *1/*3 
-  1.0616  x CYP2C9 *2/*2 

-  1.9206  x CYP2C9 *2/*3 
-  2.3312  x CYP2C9 *3/*3 
-  0.2188 x CYP2C9 genotype 

unknown 
-  0.1092  x Asian race 
-  0.2760  x Black or African 

American 
-  0.1032  x Missing or Mixed 

race 
+  1.1816  x Enzyme inducer 

status 
-  0.5503  x Amiodarone status 
= Square root of weekly warfarin dose** 
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February 2009 

International Warfarin Pharmacogenetics Consortium 
iwpc@pharmgkb.org 

IWPC clinical dosing algorithm 

  **The output of this 
algorithm must be 
squared to compute 
weekly dose in mg 

 

 
 4.0376  
- 0.2546  x Age in decades 
+ 0.0118  x Height in cm 
+ 0.0134  x Weight in kg 
- 0.6752  x Asian race 
+ 0.4060 x Black or African American 
+ 0.0443 x Missing or Mixed race 
+ 1.2799  x Enzyme inducer status 
- 0.5695  x Amiodarone status  
= Square root of weekly warfarin dose** 

 

 
February 2009 

International Warfarin Pharmacogenetics Consortium 
iwpc@pharmgkb.org 

Model comparisons 
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•  Regression	is	prone	to	overfi9ng,	especially	when:	
•  there	are	a	large	number	of	features	or		
•  It’s	fit	with	high	order	polynomial	features	

•  RegularizaJon	helps	combat	overfi9ng	by	having	a	simpler	
model.	It	is	used	when	we	want	to	have:	

•  less	variaJon	in	the	different	weights	or	
•  smaller	weights	overall	or	
•  only	a	few	non-zero	weights	(and	thus	features	kept)	

•  RegularizaJon	is	accomplished	by	adding	a	penalty	term	to	
the	target	funcJon	that	is	being	opJmized	

•  Two	widely-used	types	–	L2	and	L1	regularizaJon.	
	

Regularized Regression	

	
• What	if	hundreds	or	thousands	of	variables?	

•  Big	risk	of	overfi9ng	

•  Force	simpler	model,	oXen	defined	as	smaller	and	“more	
regular”	(less	varying)	coefficients…	small	Euclidean	norm	

•  Like	limiJng	maximum	decision	tree	size	or	depth	

•  argmin ||Xβ – Y||   such that ||β||2 < s 

•  Constrained	opJmizaJon	problem…	can’t	just	set	derivaJve	
(gradient)	with	respect	to	β to 0 and solve as did for OLS	

L2 regularization in linear regression	

β 
2 
2 
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Lagrange Multipliers 

To maximize f(x) such that g(x) < s 
 instead maximize: f(x) + λ(g(x) – s) 

– λ is Lagrange multiplier 
– Resulting optimization task is unconstrained 

– To find β to minimize ||Xβ – Y||   s.t. ||β||2< s: 
–  find β to minimize ||Xβ – Y||  + λ (||β||2 – s) 
–  In practice since we tune hyperparameter λ, 

s doesn’t matter, so problem becomes: 
   find β to minimize ||Xβ – Y||  + λ||β||2 

2 
2 

2 
2 

2 
2 

	
•  Called	“ridge	regression”	

•  SJll	has	a	closed-form	soluJon,	so	even	though	conJnuous	
differenJable	and	convex,	don’t	need	gradient	descent	

•  Se9ng	gradient	with	respect	to	β, from previous slide, to 
0 and solving we get: 

•  β = (XTX – λI)-1XTY 

L2 regularization in linear regression	
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Simple Lagrange Multipliers Example 
(Thanks Wikipedia!) 

Minimize f(x,y) = x + y such that x2 + y2 = 1 
Note that constraint is: g(x,y) = x2 + y2 – 1 
 
 

Read as 
AND } 

Can work out that the 
constrained maximum 
is  
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Logistic Regression: Motivation	

•  Linear	regression	was	used	to	fit	a	linear	model	to	the	
feature	space	in	order	to	predict	conJnuous	response	

•  Suppose	response	is	binary;	predict	posiJve	if	linear	
funcJon	exceeds	some	value:	step	funcJon	

	
•  But	also	want	to	produce	a	probability	that	a	feature	will	
take	a	parJcular	value	given	other	features	
	 		
	 	 	P(Y	=	1	|	X)	

	
•  So,	extend	linear	regression	for	classificaJon;	no	closed-
form	soluJon	anymore,	so	need	to	do	gradient	descent	

	

Logistic (Sigmoid) Function	

	 	 
	 					 

										 

	 

y 

x 
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The Algorithmic Approach 
•  Instead of squared error, want to minimize probability 

(according to model) of incorrect class 

•  So error E is 1 – probability of correct class 

•  Probability of data according to model is likelihood of 
model; probability of correct class is conditional 
likelihood (more on likelihood in Bayes nets) 

•  No closed form solution for w; we will have to rely on 
gradient descent to minimize E (more in neural nets) 

Gradient descent in weight space 

w1

w2        

Error 

on each iteration 
•  current weights define a 

point in this space 
•  find direction in which 

error surface descends 
most steeply 

•  take a step (i.e. update 
weights) in that direction  

gradient descent is an iterative process aimed at finding a minimum in the 
error surface 
 

34 
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Gradient descent in weight space 

w1

w2        

Error 

−
∂E
∂w1

−
∂E
∂w2

∇E(w) = ∂E
∂w0

,  ∂E
∂w1

,  !,  ∂E
∂wn

⎡

⎣
⎢

⎤

⎦
⎥

Δw = −η  ∇E w( )

Δwi = −η  ∂E
∂wi

calculate the gradient of E: 

take a step in the opposite direction 

35 

Logistic Regression Algorithm	
•  		

Error	in	
esJmate 

, 

, 

, 

, 
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More on Gradient Descent 
•  Gradient descent yields an optimal solution if the 

minimization problem is convex 
 
•  Can compute gradient at once over all examples 

(batch) or compute from one example at a time 
(stochastic gradient descent, where stochastic part is 
next example randomly chosen) 

 

 Convexity (from Bubeck, 2015)	

1

Introduction

The central objects of our study are convex functions and convex sets
in Rn.

Definition 1.1 (Convex sets and convex functions). A set X µ Rn is
said to be convex if it contains all of its segments, that is

’(x, y, “) œ X ◊ X ◊ [0, 1], (1 ≠ “)x + “y œ X .

A function f : X æ R is said to be convex if it always lies below its
chords, that is

’(x, y, “) œ X ◊ X ◊ [0, 1], f((1 ≠ “)x + “y) Æ (1 ≠ “)f(x) + “f(y).

We are interested in algorithms that take as input a convex set X
and a convex function f and output an approximate minimum of f
over X . We write compactly the problem of finding the minimum of f
over X as

min. f(x)
s.t. x œ X .

In the following we will make more precise how the set of constraints X
and the objective function f are specified to the algorithm. Before that

232
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(Non-)Convex Function or Set 	

Epigraph (Bubeck, 2015)	

1.2. Basic properties of convexity 235

We introduce now the key notion of subgradients.

Definition 1.2 (Subgradients). Let X µ Rn, and f : X æ R. Then
g œ Rn is a subgradient of f at x œ X if for any y œ X one has

f(x) ≠ f(y) Æ g€(x ≠ y).

The set of subgradients of f at x is denoted ˆf(x).

To put it di�erently, for any x œ X and g œ ˆf(x), f is above the
linear function y ‘æ f(x)+g€(y≠x). The next result shows (essentially)
that a convex functions always admit subgradients.

Proposition 1.1 (Existence of subgradients). Let X µ Rn be convex,
and f : X æ R. If ’x œ X , ˆf(x) ”= ÿ then f is convex. Conversely
if f is convex then for any x œ int(X ), ˆf(x) ”= ÿ. Furthermore if f is
convex and di�erentiable at x then Òf(x) œ ˆf(x).

Before going to the proof we recall the definition of the epigraph of
a function f : X æ R:

epi(f) = {(x, t) œ X ◊ R : t Ø f(x)}.

It is obvious that a function is convex if and only if its epigraph is a
convex set.

Proof. The first claim is almost trivial: let g œ ˆf((1 ≠ “)x + “y), then
by definition one has

f((1 ≠ “)x + “y) Æ f(x) + “g€(y ≠ x),
f((1 ≠ “)x + “y) Æ f(y) + (1 ≠ “)g€(x ≠ y),

which clearly shows that f is convex by adding the two (appropriately
rescaled) inequalities.

Now let us prove that a convex function f has subgradients in the
interior of X . We build a subgradient by using a supporting hyperplane
to the epigraph of the function. Let x œ X . Then clearly (x, f(x)) œ
ˆepi(f), and epi(f) is a convex set. Thus by using the Supporting
Hyperplane Theorem, there exists (a, b) œ Rn ◊ R such that

a€x + bf(x) Ø a€y + bt, ’(y, t) œ epi(f). (1.2)
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•  Show	for	all	real	a	<	b	and	0	≤	c	≤	1,	
	 	f(ca	+	(1-c)b)	≤	c	f(a)	+	(1-c)	f(b)		for	following:	

	

•  f(x)=|x|	
•  f(x)=x2	
•  Not	so	for	f(x)=x3	

•  In	general	x	could	be	a	vector	x	

•  For	gradient	descent,	also	want	f(x)	to	be	
conJnuous	differenJable	

•  For	|x|	we	need	proximal	methods,	subgradient	
methods,	or	coordinate	descent		

	

		 		

Comments on basic logistic regression	

•  LogisJc	Regression	is	a	linear	classifier	
	
•  LogisJc	Regression	opJmized	by	using	condiJonal	
likelihood	

•  no	closed-form	soluJon	
•  Error	funcJon	is	conJnuous	differenJable	–	can	
always	compute	gradient	

•  convex	->	find	global	opJmum	with	gradient	ascent	
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•  		

L1 regularization	
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2/9/18	

23	

 �//$��+I[<Yjs�<h�<�0IgZ�Q[�$��

Obtained by taking Langrangian.  Even for linear 
regression, no closed-form solution.  Ordinary gradient 
ascent also does not work because no derivative.  Fastest 
methods now FISTA and (faster) coordinate descent. 

Proximal Methods 

•  f(x) = g(x) + h(x) 
– g is convex, differentiable 
– h is convex and decomposable, but not 

differentiable 
– Example: g is squared error, h is lasso 

penalty – sum of absolute value terms, one 
per coefficient (so one per feature) 

– Find β to minimize ||Xβ – Y||  + λ||β||1 
2 
2 { { 

g                 h 
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Proximal Operator: Soft-Thresholding 

ISTA
Consider lasso criterion

f(x) =
1

2

ky �Axk2
| {z }

g(x)

+

.

.
�kxk1
| {z }
h(x)

Prox function is now

prox

t

(x) = argmin

z2Rn

1

2t
kx� zk2 + �kzk1

= S
�t

(x)

where S
�

(x) is the soft-thresholding operator,

[S
�

(x)]
i

=

8
><

>:

x
i

� � if x
i

> �

0 if � �  x
i

 �

x
i

+ � if x
i

< ��

8

Sλ(x) = 
for all i 

We typically apply this to coefficient vector β.   

Iterative Shrinkage-Thresholding 
Algorithm (ISTA) 

•  Initialize β; let η be learning rate 
•  Repeat until convergence 

– Make a gradient step of: 
 β ç Sλ(β – ηXT(Xβ – y)) 
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Coordinate Descent 
•  Fastest current method for lasso-penalized linear or 

logistic regression 

•  Simple idea: adjust one feature at a time, and 
special-case it near 0 where gradient not defined 
(where absolute value’s effect changes) 

•  Can take features in a cycle in any order, or randomly 
pick next feature (analogous to Gibbs Sampling) 

•  To “special-case it near 0” just apply soft-thresholding 
everywhere 

 

Coordinate Descent Algorithm 
•  Initialize coefficients 
•  Cycle over features until convergence: 

–  For each example i and feature j, compute “partial residual”: 

 
 

–  Compute least-squares coefficients of these residuals (as we 
did in OLS regression): 

 
 

–  Update βj by soft-thresholding, where for any term T, “T+” 
denotes min(0,A): 

           βj ! Sλ(β ) 

useR! 2009 Trevor Hastie, Stanford Statistics 18

Coordinate descent for the lasso

minβ
1

2N

∑N
i=1(yi −

∑p
j=1 xijβj)2 + λ

∑p
j=1 |βj |

Suppose the p predictors and response are standardized to have
mean zero and variance 1. Initialize all the βj = 0.

Cycle over j = 1, 2, . . . , p, 1, 2, . . . till convergence:

• Compute the partial residuals rij = yi −
∑

k ̸=j xikβk.

• Compute the simple least squares coefficient of these residuals
on jth predictor: β∗

j = 1
N

∑N
i=1 xijrij

• Update βj by soft-thresholding:

βj ← S(β∗
j , λ)

= sign(β∗
j )(|β∗

j |− λ)+

(0,0)

λ

useR! 2009 Trevor Hastie, Stanford Statistics 18

Coordinate descent for the lasso

minβ
1

2N

∑N
i=1(yi −

∑p
j=1 xijβj)2 + λ

∑p
j=1 |βj |

Suppose the p predictors and response are standardized to have
mean zero and variance 1. Initialize all the βj = 0.

Cycle over j = 1, 2, . . . , p, 1, 2, . . . till convergence:

• Compute the partial residuals rij = yi −
∑

k ̸=j xikβk.

• Compute the simple least squares coefficient of these residuals
on jth predictor: β∗

j = 1
N

∑N
i=1 xijrij

• Update βj by soft-thresholding:

βj ← S(β∗
j , λ)

= sign(β∗
j )(|β∗

j |− λ)+

(0,0)

λ

* 
j 
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Comments on penalized regression 

•  L2-penalized regression also called “ridge regression” 

•  Can combine L1 and L2 penalties: “elastic net” 

•  L1-penalized regression is especially active area of 
research 

 
–  group lasso 
–  fused lasso 
–  others 

•  		

L2 regularization in logistic regression	
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•  Linear	and	logisJc	regression	prone	to	overfi9ng	

•  RegularizaJon	helps	combat	overfi9ng	by	adding	a	
penalty	term	to	the	target	funcJon	being	opJmized	

•  L1	regularizaJon	oXen	preferred	since	it	produces	sparse	
models.	It	can	drive	certain	co-efficients(weights)	to	zero,	
performing	feature	selecJon	in	effect	

•  L2	regularizaJon	drives	towards	smaller	and	simpler	
weight	vectors	but	cannot	perform	feature	selecJon	like	
L1	regularizaJon	

•  Few	uses	of	OLS	these	days…	e.g.,	Warfarin	Dosing	(NEJM	
2009)…	just	30	carefully	hand-selected	features	

	
	

More comments on regularization	


