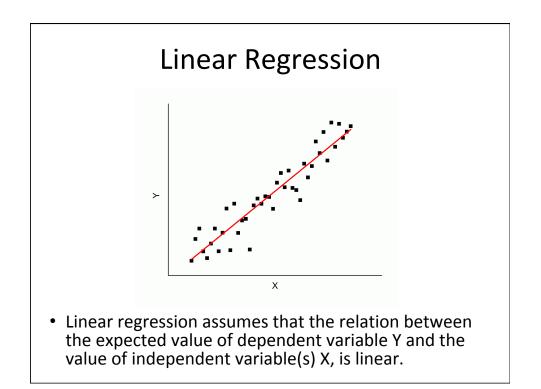
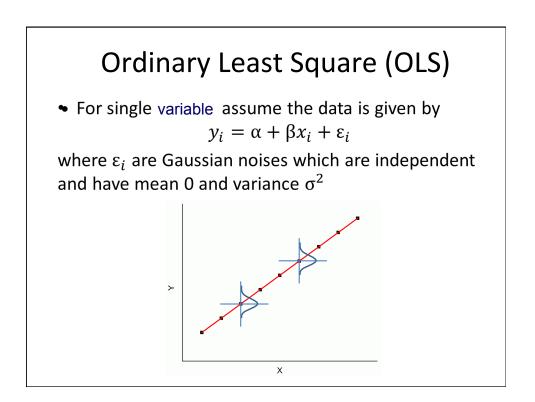
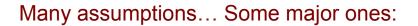
Regression

Mark Craven and David Page Computer Sciences 760 Spring 2018

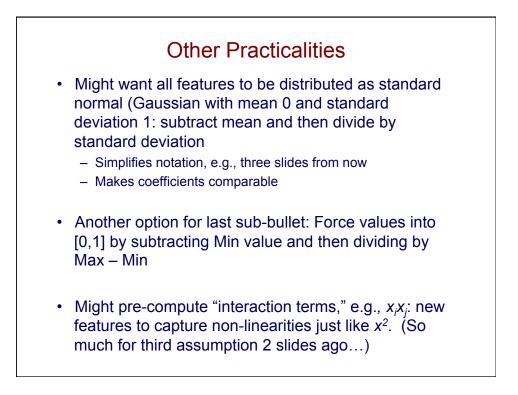
www.biostat.wisc.edu/~craven/cs760

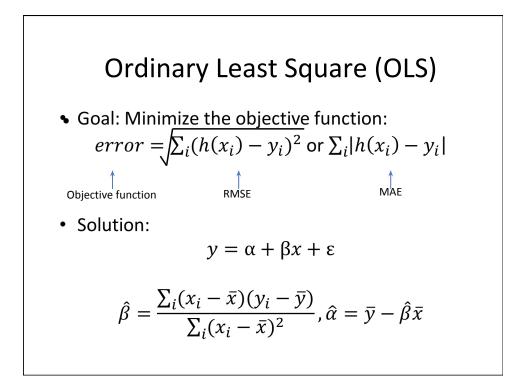




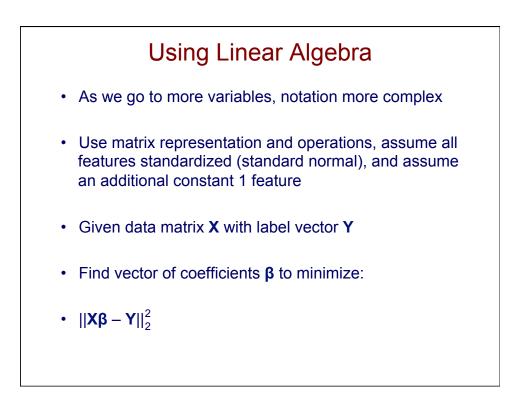


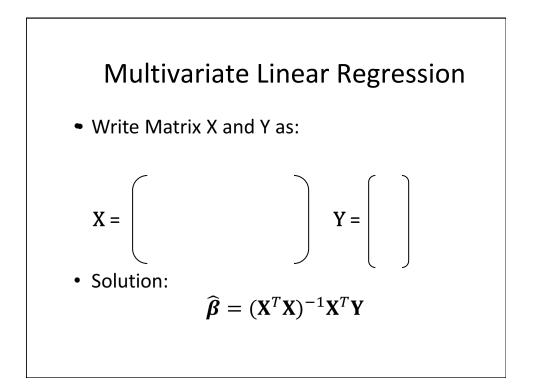
- · Linear relationship
 - Can partially address by taking square, cube, exponential, square root, or logarithm of x's or y
 - If modify y, also modifies variance...
- Homoscedasticity (same variance)
- Independence of input features



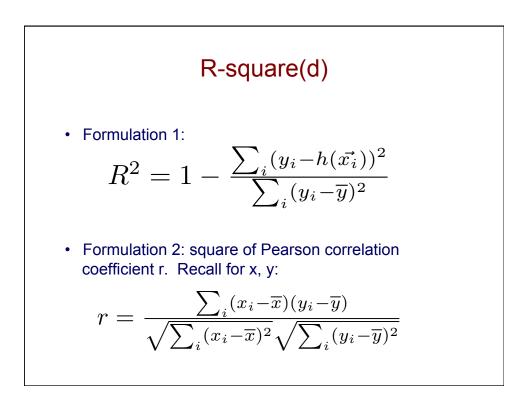


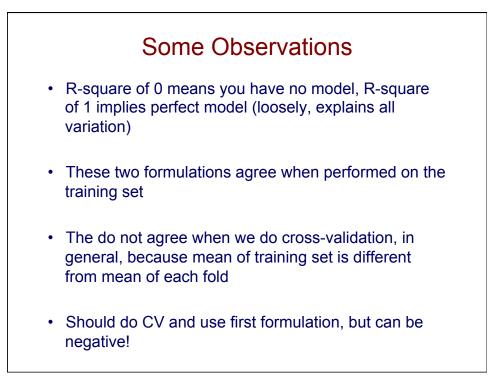


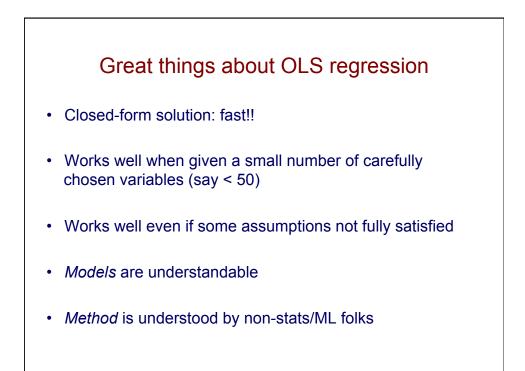


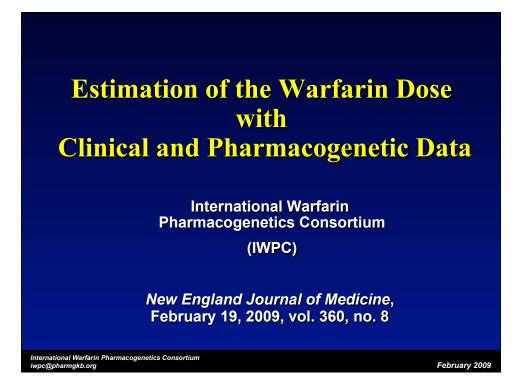


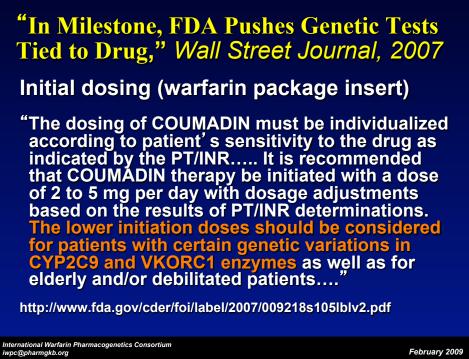
- Root mean squared error (RMSE)
- Mean absolute error (MAE) average error
- R-square (R-squared)
- Historically all were computed on training data, and possibly adjusted after, but really should crossvalidate



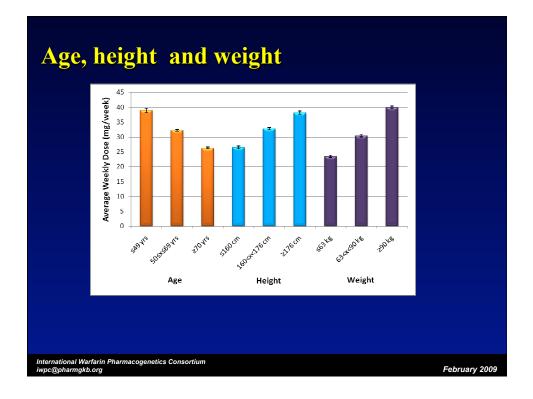


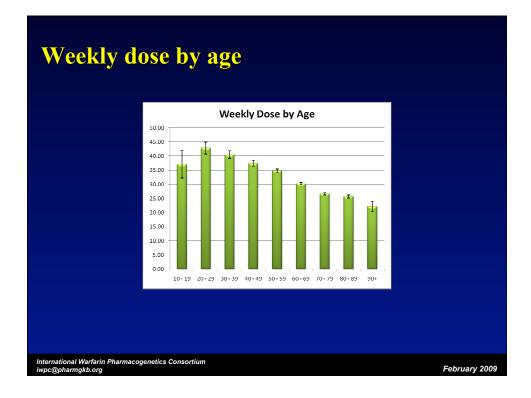




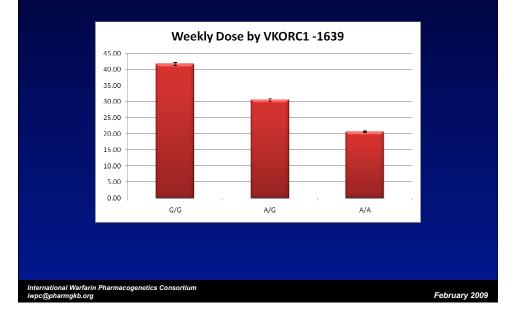


February 2009





Weekly dose by VKORC1 -1639 genotype



Statistical Analysis

Derivation Cohort

- 4,043 patients with a stable dose of warfarin and target INR of 2-3 mg/week • Used for developing dose prediction models

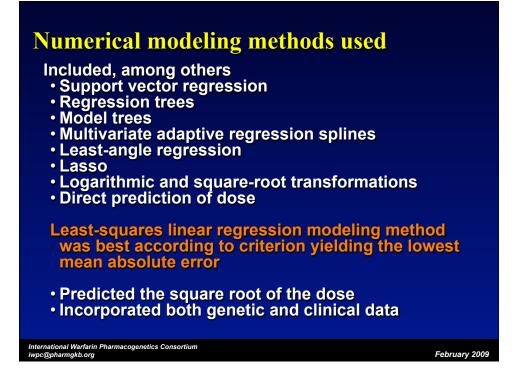
Validation Cohort

International Warfarin Pharmacogenetics Consortium iwpc@pharmgkb.org

- 1,009 patients (20% of dataset)
 Used for testing final selected model

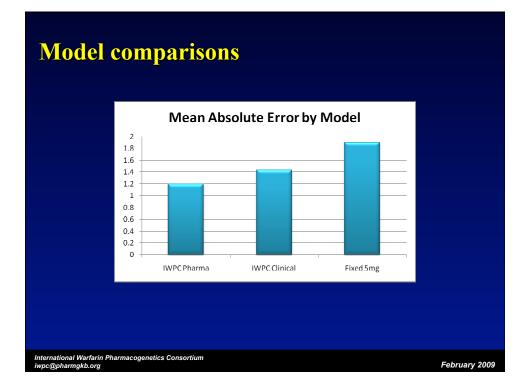
Analysis group did not have access to validation set until *after* the final model was selected

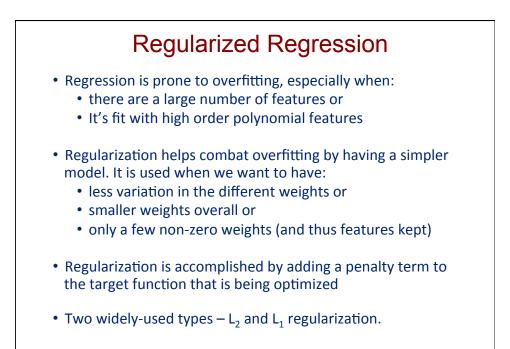
February 2009

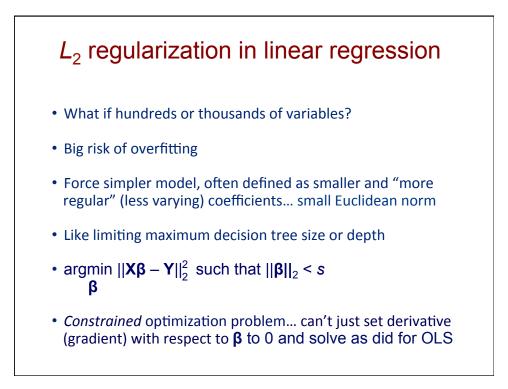


		5.6044		
	-	0.2614 x	Age in decades	
	+	0.0087 x	Height in cm	
e output of this	+	0.0128 x	Weight in kg	
	-	0.8677 x	<i>VKORC1</i> [^] A/G	
rithm must be	-	1.6974 x	<i>VKORC1</i> A/A	
ared to compute		0.4854 x	VKORC1 genotype unknown	
ekly dose in mg	-	0.5211 x	CYP2C9 *1/*2	
	-	0.9357 x	CYP2C9 *1/*3	
		1.0616 x	CYP2C9 *2/*2	
	-	1.9206 x	CYP2C9 *2/*3	
references to	-	2.3312 x	CYP2C9 *3/*3	
ORC1 refer to		0.2188 x	CYP2C9 genotype unknown	
	-	0.1092 x	Asian race	
otype for 923231	-	0.2760 x	Black or African American	
	-	0.1032 x	Missing or Mixed race	
	+	1.1816 x	Enzyme inducer status	
	-	0.5503 x	Amiodarone status	
	=	Square root of weekly warfarin dose**		

IWPC clinical dosin	g alş	gorithr	n	
**The output of this				
**The output of this		4.0376		
algorithm must be	-	0.2546 x	Age in decades	
squared to compute	+	0.0118 x	Height in cm	
	+	0.0134 x	Weight in kg	
weekly dose in mg	-	0.6752 x	Asian race	
,	+	0.4060 x	Black or African American	
	+	0.0443 x	Missing or Mixed race	
	+	1.2799 x	Enzyme inducer status	
	-	0.5695 x	Amiodarone status	
	=	Square root	of weekly warfarin dose**	
ternational Warfarin Pharmacogenetics Consortium rpc@pharmqkb.org			February	v 20i



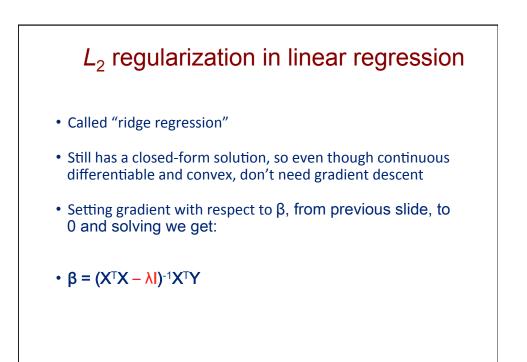




Lagrange Multipliers

To maximize f(x) such that g(x) < sinstead maximize: $f(x) + \lambda(g(x) - s)$

- $-\lambda$ is Lagrange multiplier
- Resulting optimization task is unconstrained
- To find β to minimize $||\mathbf{X}\beta \mathbf{Y}||_2^2$ s.t. $||\beta||_2 < s$:
- find $\boldsymbol{\beta}$ to minimize $||\mathbf{X}\boldsymbol{\beta} \mathbf{Y}||_2^2 + \lambda (||\boldsymbol{\beta}||_2 s)$
- In practice since we tune hyperparameter $\lambda_{,}$ s doesn't matter, so problem becomes: find **\beta** to minimize $||\mathbf{X}\boldsymbol{\beta} - \mathbf{Y}||_{2}^{2} + \lambda ||\boldsymbol{\beta}||_{2}$



Simple Lagrange Multipliers Example (Thanks Wikipedia!)

Minimize f(x,y) = x + y such that $x^2 + y^2 = 1$ Note that constraint is: $g(x,y) = x^2 + y^2 - 1$

$$egin{aligned} \mathcal{L}(x,y,\lambda) &= f(x,y) + \lambda \cdot g(x,y) \ &= x + y + \lambda (x^2 + y^2 - 1) \end{aligned}$$

Now we can calculate the gradient:

$$egin{aligned}
abla_{x,y,\lambda}\mathcal{L}(x,y,\lambda) &= \left(rac{\partial\mathcal{L}}{\partial x},rac{\partial\mathcal{L}}{\partial y},rac{\partial\mathcal{L}}{\partial\lambda}
ight) \ &= \left(1+2\lambda x,1+2\lambda y,x^2+y^2-1
ight) \end{aligned}$$

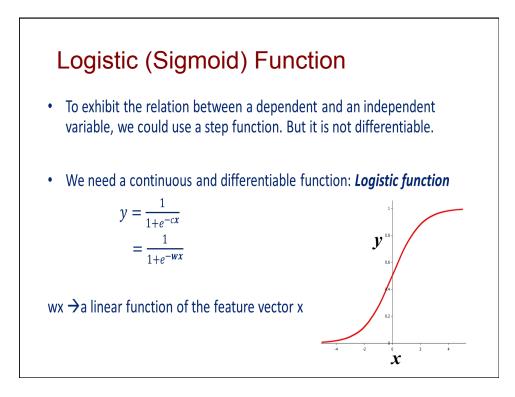
$$\begin{split} \nabla_{x,y,\lambda}\mathcal{L}(x,y,\lambda) &= 0 \quad \Leftrightarrow \quad \begin{cases} 1+2\lambda x=0\\ 1+2\lambda y=0\\ x^2+y^2-1=0 \end{cases} \textbf{Read as}\\ x = y = -\frac{1}{2\lambda}, \quad \lambda \neq 0. \end{split} \\ \text{By substituting into the last equation we have:}\\ \frac{1}{4\lambda^2} + \frac{1}{4\lambda^2} - 1 = 0,\\ \text{so}\\ \lambda = \pm \frac{1}{\sqrt{2}}, \end{cases} \quad \begin{array}{l} \text{Can work out that the constrained maximum}\\ \text{is } \sqrt{2} \end{cases} \\ \text{which implies that the stationary points of \mathcal{L} are}\\ \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, -\frac{1}{\sqrt{2}}\right), \quad \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, \frac{1}{\sqrt{2}}\right). \end{split}$$

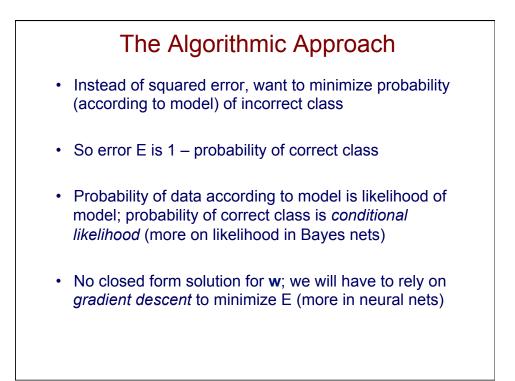
Logistic Regression: Motivation

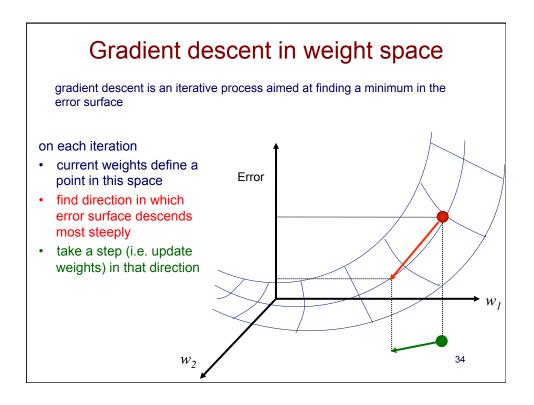
- Linear regression was used to fit a linear model to the feature space in order to predict continuous response
- Suppose response is *binary;* predict positive if linear function exceeds some value: step function
- But also want to produce a probability that a feature will take a particular value given other features

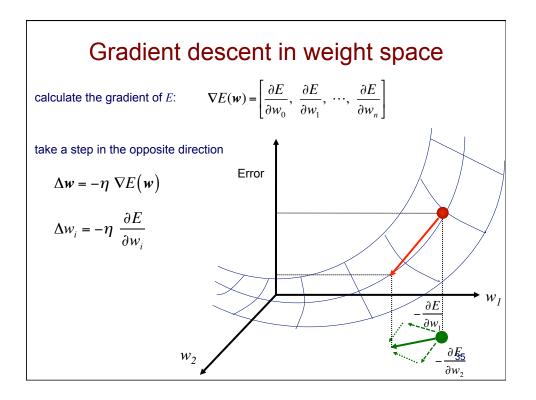
$$\mathsf{P}(\mathsf{Y}=1\mid\mathsf{X})$$

• So, extend linear regression for classification; no closedform solution anymore, so need to do gradient descent









Logistic Regression Algorithm • The conditional log likelihood is given by $l(w) = ln(\prod_j P(y_{(j)} | x_{(j)}, w))$, where $j \neq j^{th}$ sample • Need to find 'w' that maximizes the conditional log likelihood $a^{rg max}_{w} ln(\prod_j P(y_{(j)} | x_{(j)}, w))$ • Can use gradient ascent $w_i^{new} \coloneqq w_i + \eta \frac{\partial l(w)}{\partial w_i}$, where $\eta \neq$ learning rate parameter, $i \neq i^{th}$ feature • The derivative comes out to: $\frac{\partial l(w)}{\partial w_i} = \sum_j x_{i(j)} \left(y_{(j)} - P(y_{(j)} = 1 | x_{(j)}, w) \right)$ • This gives us the gradient ascent rule: $w_i^{new} \coloneqq w_i + \eta \sum_j x_{i(j)} (y_{(j)} - P(y_{(j)} = 1 | x_{(j)}, w))$ • This gives us the gradient ascent rule: $w_i^{new} \coloneqq w_i + \eta \sum_j x_{i(j)} (y_{(j)} - P(y_{(j)} = 1 | x_{(j)}, w))$ Frror in estimate

- Gradient descent yields an optimal solution if the minimization problem is *convex*
- Can compute gradient at once over all examples (batch) or compute from one example at a time (*stochastic* gradient descent, where stochastic part is next example randomly chosen)

Convexity (from Bubeck, 2015)

Definition 1.1 (Convex sets and convex functions). A set $\mathcal{X} \subset \mathbb{R}^n$ is said to be convex if it contains all of its segments, that is

 $\forall (x,y,\gamma) \in \mathcal{X} \times \mathcal{X} \times [0,1], \ (1-\gamma)x + \gamma y \in \mathcal{X}.$

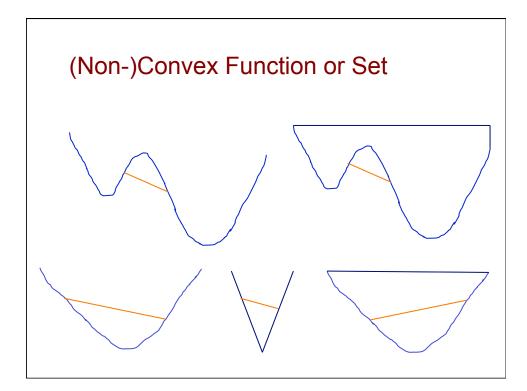
A function $f:\mathcal{X}\to\mathbb{R}$ is said to be convex if it always lies below its chords, that is

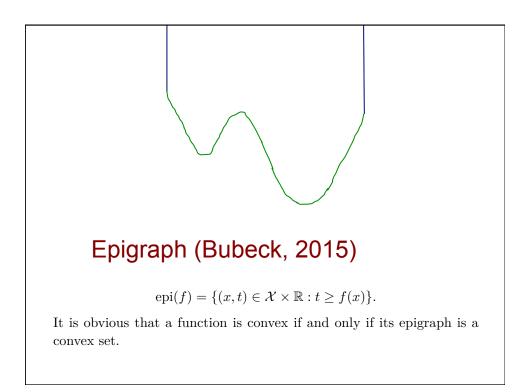
 $\forall (x, y, \gamma) \in \mathcal{X} \times \mathcal{X} \times [0, 1], \ f((1 - \gamma)x + \gamma y) \le (1 - \gamma)f(x) + \gamma f(y).$

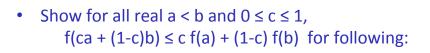
We are interested in algorithms that take as input a convex set \mathcal{X} and a convex function f and output an approximate minimum of f over \mathcal{X} . We write compactly the problem of finding the minimum of f over \mathcal{X} as

min. f(x)

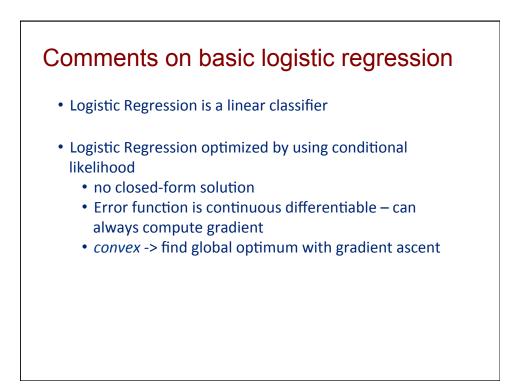
s.t. $x \in \mathcal{X}$.







- f(x)=|x|
- f(x)=x²
- Not so for f(x)=x³
- In general x could be a vector **x**
- For gradient descent, also want f(x) to be continuous differentiable
- For |x| we need proximal methods, subgradient methods, or coordinate descent

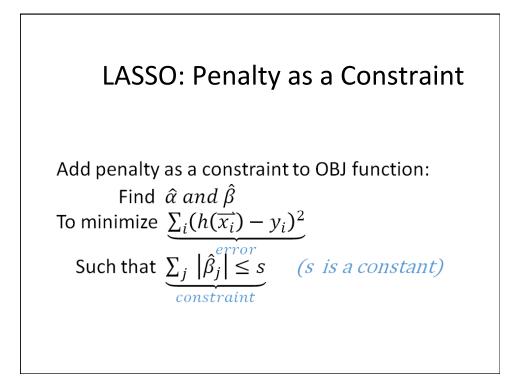


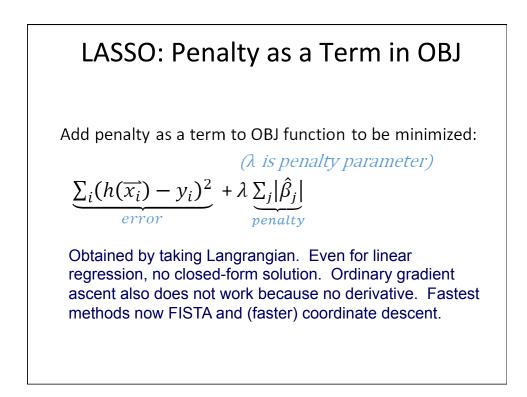
L_1 regularization

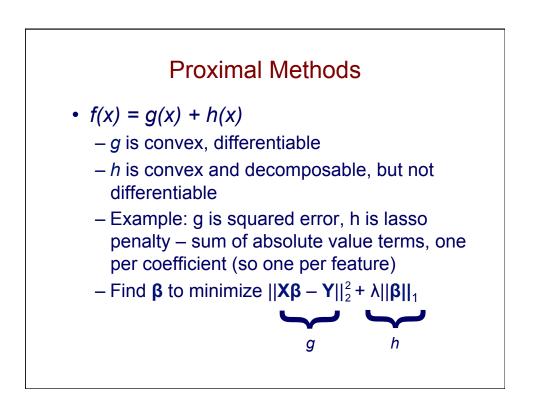
• L1 regularization uses 1-norm of the weight vector in the penalty term as shown:

 $\lambda ||w||_1$

- i.e., $\lambda \sum_{i} |w|_{i}$ where 'i' represents the ith feature
- Also called 'Lasso' penalty.
- Gradient ascent is no longer feasible since L1 norm is not differentiable.



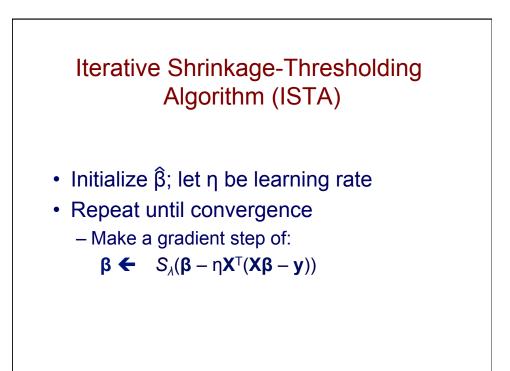


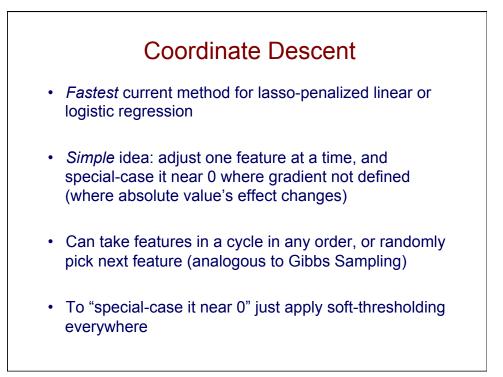


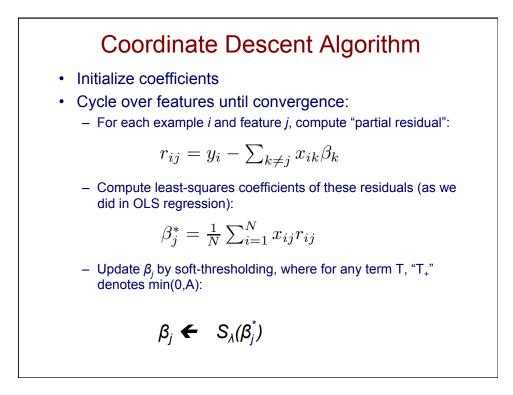
Proximal Operator: Soft-Thresholding

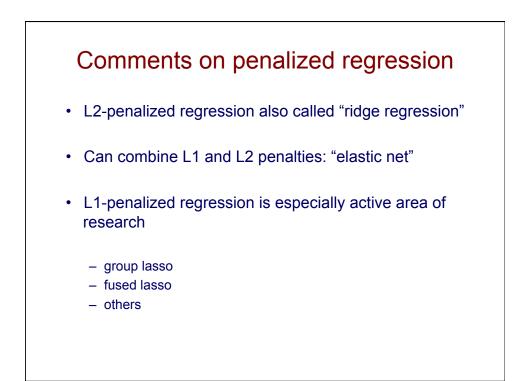
$$S_{\lambda}(\mathbf{x}) = \begin{cases} x_i - \lambda & \text{if } x_i > \lambda \\ 0 & \text{if } -\lambda \le x_i \le \lambda \\ x_i + \lambda & \text{if } x_i < -\lambda \end{cases}$$

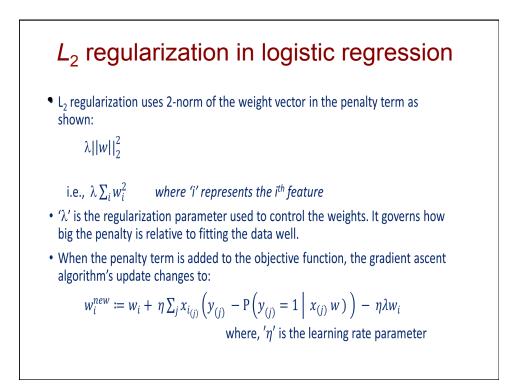
We typically apply this to coefficient vector β .











More comments on regularization

- Linear and logistic regression prone to overfitting
- Regularization helps combat overfitting by adding a penalty term to the target function being optimized
- L1 regularization often preferred since it produces sparse models. It can drive certain co-efficients(weights) to zero, performing feature selection in effect
- L2 regularization drives towards smaller and simpler weight vectors but cannot perform feature selection like L1 regularization
- Few uses of OLS these days... e.g., Warfarin Dosing (NEJM 2009)... just 30 carefully hand-selected features