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Abstract 

Subterranean animals are highly specialized for life underground, having 

converged on regressive traits such as on loss of eyes/vision and pigmentation. 

Despite centuries of study, understanding the evolutionary processes and genetic 

basis for regressive characters is still the subject of considerable debate, with two 

main evolutionary drivers at the forefront: natural selection and neutral evolution. 

An assemblage of independently-evolved beetle species (Dytiscidae), from a 

subterranean archipelago in Western Australia, converged on eye/vision loss, 

providing a powerful system to explore the genetic basis of adaptive and 

regressive evolution in parallel. I conducted a behavioural light-dark study of six 

subterranean beetle species in the genera Paroster and Limbodessus, and revealed 

evidence for one light avoiding species. This study suggested that highly 

troglomorphic beetles may have evolved from an ancestor that exhibited negative 

phototaxis as a pre-adaptation to living in permanent darkness. To investigate 

whether genes specifically involved in vision showed patterns of neutral 

evolution, I carried out exon capture analyses on a suite of phototransduction 

genes, from a total of 36 beetle species (32 stygobionts and 4 surface beetles). I 

found evidence for pseudogenisation of six genes in multiple species, supporting 

the neutral theory. Finally, an 18 base pair deletion and a shared stop codon were 

found in the long wavelength opsin gene of a phylogenetic sister triplet of beetle 

species from one calcrete. I sequenced long wavelength opsin in other Paroster 

species and mapped the mutations to a robust multi-gene phylogeny, to show that 

the mutation was unique to these three sister species. These analyses provide 

strong evidence that the three species evolved underground from a common 
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ancestor that was already adapted to living underground. My studies add to the 

growing body of evidence supporting the neutral theory as the mode of eye 

regression and the potential for speciation underground, and further highlight 

that subterranean dytiscids provide a unique model system for exploring 

fundamental questions on the evolution of subterranean animals. 
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not the most intelligent that survives. 

It is the one that is the most adaptable to 
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Chapter 1: The evolution of subterranean diving 

beetles (Dytiscidae) from Western Australia 
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Highly perplexing, subterranean animals have endlessly interested researchers in 

many fields of study, such as taxonomy, evolution, genetics, behaviour, 

development, and physiology, to name a few. Convergent trait regression, such as 

eye and pigmentation loss, has particularly generated a lot of attention, however, 

no clear mechanism of how regression occurs has yet to be agreed on. This 

introductory chapter outlines the current views in regressive evolution studies, 

focussing on subterranean species with regressed eyes, and highlights studies 

which support the various theories. Background studies of phototaxis (light 

perception), the process of vision, and the genes involved in this specific trait are 

presented. Information on our study group, the subterranean diving beetles of 

Western Australia, and speculation on possible modes of speciation in this group 

are presented, and finally the aims of the project are outlined. 

 

REGRESSIVE EVOLUTION 

The loss or simplification of a trait(s), now referred to as regressive evolution, has 

played a role in the evolution of many organisms (Fong et al. 1995; Jeffery 2009). 

However, the mechanisms behind the regression of traits has remained unclear and 

highly debated. Beginning in 1859, Darwin (in the Origin of Species, 1859) described 

trait loss (e.g. loss of eyes in cave animals) using Lamarckian theory of use and 

disuse, as a driver of their evolution. Given the lack of knowledge of genetics at the 

time, Darwin could provide no better explanation for both eye and pigmentation 

loss in cave animals, which perplexed him. However, as the genetic basis for natural 

selection was developed in the 20th century (Fisher 1930), the Lamarckian theory 
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was discarded, and replaced with revised Darwinian theories (Espinasa and 

Espinasa 2008). Subsequently, the field divided into those supporting neutral 

evolution theory (Wilkens 2010 and references therein) and those supporting 

natural selection (Jeffery 2009 and references therein), as mechanisms of regressive 

evolution (Fig. 1). Additionally, some researchers hypothesize that both neutral 

theory and natural selection are likely acting together on the regression of traits 

(Borowsky 2013), however, this view is not widely shared.  

 

 

Figure 1: Selectionist, neutral and nearly neutral theories, where selection theory assumes that all 
mutations will affect fitness and be advantageous or deleterious. Neutral theory considers that 
neutral mutations exceed those that are advantageous, and therefore, neutral sites influence the rate 
of molecular evolution. Not considered here, the nearly neutral theory is a more recent extension of 
neutral theory, where some mutations will have a slight positive or negative effect on fitness (from 
Bromham and Penny 2003). 
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Neutral mutation theory 

Neutral theory of evolution has remained a popular theory for explaining 

regressive evolution, as its principle mechanism relies on the accumulation of 

random mutations in genes specifically associated with the regressed trait. Under 

relaxed selection, it is theorised that alleles will accumulate random mutations 

through genetic drift (Kimura 1984). These mutations (e.g. insertions, nonsense 

mutations, and nonsynonymous changes) will accumulate in protein coding genes 

that are not under functional constraints, altering the amino acid sequence of the 

encoded protein. Thus over time, the gene(s) will encode non-functional protein(s), 

with mutations that prevent proper folding and interactions with other pathways 

or functions (Leys et al. 2005). Therefore, neutral evolution can potentially be 

identified by the presence of pseudogenes (non-functional genes through the 

accumulation of amino acid changing, nonsense and frameshift mutations) or 

pseudo-like genes (genes that are under neutral evolution, but have had insufficient 

time for mutations to be fixed) in the place of once functional genes (Tierney et al. 

2015). 

Research into the genes involved in a particular regressed trait, have become 

instrumental in studying how regressive evolution occurs, on which neutral 

evolution studies rely heavily upon. Several important factors can be used to 

provide evidence for neutral evolution: relaxation of selection based on ratios of 

nonsynonymous to synonymous mutations in related genes, variability of 

regressed traits both genetically and phenotypically, and loss of function 

mutations/pseudogenes (Li et al. 1981; Li et al. 1985; Yang and Bielawshi 2000; Hurst 
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2002; Wilkens 2010). Neutral evolution, as a basis for regressive evolution, has 

gained support mainly through research on the loss of pigmentation in cave 

animals, using the highly studied model, Astyanax cavefish; with over 40 years of 

detailed research on the ecology, genetics, and evolution of this group. In general, 

pigmentation genes in the cavefish were found to contain numerous function-

altering mutations, likely due to a relaxation of selection (Jeffery 2009 and references 

therein). Quantitative trait loci (QTL) for melanophore abundance in Astyanax 

mexicanus display high levels of variability, supporting recurrent genetic drift and 

neutral mutation (Protas et al. 2007). Loss of function mutations were first found in 

globin genes in the 1980s (Proudfoot and Maniatis 1980; Liebhaber et al. 1985). The 

first loss of function mutations in subterranean vision genes (three frameshifts and 

numerous stop codons) were found in an interphotoreceptor retinoid binding 

protein gene (vision gene) in the blind marsupial mole, leading to the conclusion 

that molecular changes in genes under relaxed selective constraints, influenced the 

regressed trait of vision (Springer et al. 1997). In another study on various 

subterranean mole species, researchers found several phototransduction (long 

wavelength opsin and short wavelength sensitive 1) pseudogenes, which were 

significantly correlated with lower levels of light dependence, and an increased 

number of retinal pseudogenes (Emerling and Springer 2014), implying a relaxation 

of selection on the unneeded vision genes. Uniquely, non-functional rhodopsin has 

been found in at least three amblyopsid cavefish lineages (Teleostei: 

Amblyopsidae), with several other lineages displaying a functional rhodopsin but 

with increased rates of nonsynonymous mutations when compared to surface 

lineages, suggesting a repeated loss of selective constraint in this gene (Niemiller et 
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al. 2012). Research conducted on 11 subterranean diving beetle (Dytiscidae) species 

from Western Australia, identified increased sequence evolution and missense 

mutations, including frameshifts and stop codons, in a pigmentation-specific 

(cinnabar) gene, when compared to the functional gene copies from surface relatives, 

indicative of pseudogenes (Leys et al. 2005). Finally, a general lack of opsin gene 

(phototransduction specific gene) transcription was recently uncovered among the 

subterranean Dytiscidae when compared to surface relatives, providing evidence 

that the genes had been inactivated and lending support for the neutral evolution 

hypothesis (Tierney et al. 2015).  

 

Natural selection 

In 1858, Charles Darwin and Alfred Russel Wallace unveiled the theory of natural 

selection, which has remained the foundation concept in evolutionary studies. 

Natural selection is the inheritance by offspring, of a trait or traits that are either 

advantageous, or the removal of negative traits that are detrimental to fitness and 

survival. It is most likely that natural selection has driven the evolution of adaptive 

traits required by cave animals (Yoshizawa et al. 2012), however, the mechanism 

behind the regression of traits conflicts even among the Selectionists. Consequently, 

two main hypotheses have emerged from the natural selection theory, each with 

their own set of supporting research: direct natural selection and indirect natural 

selection.  
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Direct natural selection: positive and negative 

Direct selection refers to the selection on genes that directly affect a particular trait, 

consequently inferring a survival or fitness benefit (Lande and Arnold 1983; Jeffery 

2009). Initially observed by Darwin in the wing-loss of island beetles (1859) and 

again by means of eye loss in cavefish (Sadoglu 1967), direct natural selection was 

used to describe the survival advantage that these animals may have gained by 

losing unneeded traits. Two alternative hypotheses have been proposed to explain 

trait loss under direct selection; positive and negative selection. Positive selection 

describes an inherent benefit due to the loss of a trait (e.g. energy gain; Protas et al. 

2007), while in negative selection the trait is not beneficial to the individual and can 

impede reproduction or reduce fitness (e.g. eyes can get damaged and possibly 

infected in lightless environments; Jeffery 2009 and references therein). However, 

studies advocating direct selection as a basis for loss of eyes in subterranean animals 

have been widely rejected based on flaws in the methods, reasoning, and conflicting 

results from other studies (Wilkens 2010; Protas et al. 2007; Dufton et al. 2012; 

Yoshizawa et al. 2015; Wilkens 2016 and references therein). The most popular 

theory surrounds the idea of energy conservation as an explanation for the 

reduction of the eye in Astyanax cavefish (Moran et al. 2015). The difficulty in 

accepting this theory is that eyeless cave animals are also found in some energy rich 

environments, so it does not seem to be an adequate theory to explain eye loss 

generally (Wilkens 2016; Wilkens and Strecker 2017). It has been found that juvenile 

Astyanax cavefish begin developing an eye before losing it as adults, however, this 

has been linked with development in the forebrain (Jeffery 2005; Pottin et al. 2011), 

and therefore is likely not to result from direct selection.  
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Indirect natural selection: pleiotropy and linkage 

Indirect natural selection involves cases where the genes involved in a regressed 

trait are directly involved in, or closely linked to genes associated with, unrelated 

traits that are beneficial for survival or reproduction (Lande and Arnold 1983; 

Rétaux and Casane 2013; Pechmann et al. 2015). Additionally, pleiotropy is when 

one gene affects several traits, while linkage is when multiple genes are inherited 

together because they are close together on a chromosome.  Therefore, the direct 

increase in frequency of alleles at one gene may occur simply because the gene is 

closely linked to beneficial alleles at a second gene (Plate 1910; Barr 1968; Stearns 

2010). The indirect natural selection hypothesis has recently gained favour in eye 

regression studies, following developmental genetic analyses of the model cavefish 

Astyanax fasciatus (Jeffery 2008 and references therein). Many studies on the 

regression of eyes in Astyanax cavefish, point towards a suite of pleiotropic and 

linked interactions. Specifically, it has been suggested that eye regression could be 

involved in or linked with an increase in taste buds (Jeffery et al. 2000), an 

enlargement of the olfactory pit (Yamamoto et al. 2004), brain alterations, including 

increased darkness competence (Menuet et al. 2007), and cave-adapted metabolism 

modifications (Borowsky and Wilkens 2002), among others. However, most of these 

cases have been argued against for a variety of reasons. A study by Yamamoto et al. 

(2009) which involved a classical crossing of Astyanax cavefish and surface fish, 

eventually produced F3 hybrids that showed an inverse relationship between eye 

size and taste buds/jaw size, leading to the conclusion that constructive traits were 

likely involved in the regression of eyes. As explained by Wilkens (2016), F3 hybrids 

were inappropriate to use, as they are derived from a single F2 hybrid, which only 
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represents a small portion of the overall variability. The F2 hybrids would have been 

the proper specimens to analyse for such an association study (Wilkens 2016). 

Additionally, the taste bud and eye traits sort independently during meiosis (i.e. 

the developmental genes involved operate in separate pathways and so selection 

acting on one trait is unlikely to affect both traits simultaneously; Wilkens 2016). 

Subsequent study into the connection of constructive and regressive traits revealed 

little to no correlation in: lens ablation studies (Dufton et al. 2012), Quantitative Trait 

Loci (QTL) analyses of taste buds (Schemmel 1967; Protas et al. 2007), crossing 

analyses of number of teeth (Protas et al. 2007), jaw size, nose pit size, or mouth 

width (Wilkens 2010), to name a few (See Wilkens 2016 for review). 

 

Difficulties distinguishing the neutral and selection hypothesis for 

regressive evolution 

Based on the literature to date, no clear evidence has been generated to conclusively 

support either neutral or selective processes as the main evolutionary force in the 

regression of traits. The major problem with attempting to explain the regression of 

traits lies in the conflicting results generated for different genes, among different 

traits, and between different species. In a recent study on marine snails (family 

Solariellidae; Sumner-Rooney et al. 2016), evidence was found to support at least 

seven eye degeneration pathways. Therefore, the path to eye reduction for closely 

related species is not predictable. Evolutionary developmental analyses may 

provide insights into how eyes and vision are being lost in the early stages of 

regressive evolution in specific recently-evolved cases. However, they are not likely 
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to be helpful when investigating the actual mode of evolution (i.e. neutral evolution 

or purifying selection) acting specifically on different genes involved in regressed 

traits. Such genes may remain intact for substantial periods of time, until chance 

deleterious mutations occur and become fixed in populations by genetic drift. On 

average, nucleotide substitutions in multicellular organisms occur at an 

approximate rate of 10-9 to 10-8 base substitutions/site/generation (Lynch 2010). 

Therefore, in the case of subterranean animals, hundreds of thousands to millions 

of years may be required to generate the chance mutations required to assess 

whether genes associated with a regressed trait, such as vision, are subject to neutral 

evolution or purifying selection.  

Pseudogenisation, the process by which a functional gene evolves into a non-

functional gene through neutral processes, may be essential to regressive evolution 

of traits, however, pseudogenes can be difficult to identify for a multitude of 

reasons (see Podlaha and Zhang 2010 for a review). First, pseudogenes are difficult 

to define in some cases; some pseudogenes can be adaptive. The human cysteine-

aspartic protease 12 (CASPASE12) is involved in the suppression of immune 

response to endotoxins, and most humans (~90%) have a mutation that inserts a 

premature stop codon (Wang et al. 2006). Through epidemiological studies, it was 

determined that this mutation is associated with a reduced incidence of severe 

sepsis (Saleh et al. 2004), suggesting positive selection. Additionally, pseudogenes 

may have typical mutations (e.g. indels and frameshifts) expected of a non-

functional gene, but show unusual patterns of evolution consistent with chimeric 

function (i.e. exon shuffling following RNA processing may create a functional 

isoform; Podlaha and Zhang 2010). The alcohol dehydrogenase gene in Drosophila 
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has been duplicated, with the pseudogene copy containing many protein-altering 

mutations (Begun 1997). However, it also contains a lower rate of nucleotide 

substitutions in exons than introns, and the silent substitution rate is higher than 

the replacement rate, consistent with chimeric genes (Begun 1997). Finally, technical 

issues can arise in attempting to isolate an ‘old’ pseudogene as the mutations it has 

accumulated may make it very difficult to both PCR amplify and sequence or to 

confidently assign the sequences to the correct gene. It is possible that both selective 

and neutral processes could be involved in the regression of traits in subterranean 

animals, however, additional research is required to provide insight into this 

perplexing evolutionary phenomenon. 

 

PHOTOPHOBIC BEHAVIOUR IN SUBTERRANEAN 

ANIMALS 

Photophobic behaviour, the act of avoiding light, was speculated to have promoted 

many subterranean animals to seek out and even thrive in darkness (Timmermann 

and Plath 2009; Borowsky 2011). Subterranean lineages of animals residing in close 

proximity to ambient surface light may use negative phototaxis (light avoidance), 

as a way to reduce entering the light habitat where they may be exposed to 

increased predation and/or competition for resources (Langecker 2000; Borowsky 

2011). Subterranean animals with highly reduced or even absent eyes have been 

found to have strong negative phototactic responses, such as in a cave beetle 

(Ptomaphagus hirtus; Friedrich et al. 2011), crustaceans (Borowsky 2011; Fišer et al. 

2016), a roundworm (Caenorhabditis elegans; Edwards et al. 2008), salamanders 
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(Taylor 1972), cavefish (Tarttelin et al. 2012, and references therein) and mole rats 

(Kott et al. 2010). 

 Extraocular photoreceptors, light sensitive structures found outside the eye, 

are likely responsible for the majority of negative phototactic responses in the 

eyeless subterranean animals. A study on the eyeless crayfish, Orconectes australis 

packardi, found that they likely perceive light through the caudal ganglion of the 

brain (Wilkens and Larimer 1976). Similarly, the blind larvae of D. melanogaster have 

light responses that have been linked to simple neurons (Xiang et al. 2010). In some 

arthropods, the optic lobes and the ventral nerve cord may be the most important 

locations for extraocular photoreceptors (Fleissner and Fleissner 2003), which was 

found to be the case in eyeless cave amphipods, Niphargus frasassianus, N. ictus 

(Borowsky 2011), and other Niphargus species (Fišer et al. 2016). Not much data exist 

on this interesting ability, however, an improved understanding of what genes are 

involved in eye regression will help to elucidate the mechanism behind phototaxis. 

 

THE EVOLUTION OF EYES IN SUBTERRANEAN ANIMALS 

Central to the regressive evolution debate, eye reduction, or loss, in subterranean 

animals has been at the forefront. Eyes remain an exceptional trait for regressive 

evolutionary studies as they have been well characterized at the biochemical, 

physiological, and structural level, and they are evolutionarily conserved (Speiser 

et al. 2014). A massive body of research on eyes has been generated (Freund et al. 

1996), making it an ideal trait for comparative studies.  
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The general mechanism behind sight 

The eyes and process of vision of most animals can be divided into two main 

categories: “non-compound”, as found in vertebrates and some invertebrates, and 

“compound”, as can be found in insects and some other arthropods. The familiar 

non-compound eye, or simple eye, is composed of one surface (most commonly a 

refractive cornea; Land and Fernald 1992). The singular surface directs light into the 

back of the eye where a signal is directed to the suprachiasmatic nuclei. Ultimately, 

the nuclei control the pupillary light reflex, and relay information on to the brain. 

Simple eyes, contrary to their name, are not actually simple; at least five different 

types of eye forms have evolved independently (Nilsson 1989). In general, the retina 

contains thousands of photoreceptors called cone cells (responsible for day vision) 

and rod cells (responsible for peripheral and night vision), which are the 

photosensitive areas of the eye.  

Structurally different from the simple eye, the convex compound eye is 

composed of many ommatidia, each with its own ability to refract light. Thousands 

of ommatidia may be present in one eye, all providing input from a slightly 

different angle. The brain is then able to piece together all the input to form an 

image. The compound eye can also be subdivided into several different eye forms, 

however, the same few cellular components of the ommatidia have been conserved 

from type to type: the cornea, a cone, a rhabdom, and a pigment screen (Hardie and 

Stavenga 1989). In general, one ommatidia can be made up of four cone cells: ~eight 

retinula cells, one rhabdom, which is the photosensitive structure, and the cornea 

that sits on top as the protective layer (Land and Nilsson 2002).  
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The vision of animals, in both compound and non-compound eyes, is 

enabled by the transduction of photons into neural impulses. Light photons of 

specific wavelengths are absorbed by a visual pigment and, through complicated 

chemical signalling, the photon eventually results in an electrical signal to the brain 

(Fig. 2; Montel 2012 for review of visual transduction). These visual pigments are 

responsible for the absorption of light and convert the light into an electrical 

response, which is essential in the visual signalling pathway (Hardie and Stavenga 

1989; Henze et al. 2012). 

 

Figure 2: Schematic drawing of a horizontal section of the adult Drosophila visual system, including 
the retina, lamina, lobula and lobula plate (amended from Sato et al. 2013). 

 

Genes involved in eye regression 

Genes involved in eye development and function have been extensively studied 

(Jeffery 2008 and references therein; Jeffery 2009 and references therein), providing 

candidate genes for regressive evolutionary research. Functional eyes are mediated 
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by a variety of genes encoding proteins that detect light (opsins and 

cryptochromes), absorb light (pigment synthesis enzymes), refract light (lens 

crystallins), as well as various transcription factors required for development of 

eyes and light interacting structures (Zattara et al. 2017). Developmental genes are 

likely important in the loss of eyes in some species (e.g., Astyanax fasciatus; Jeffery 

2009 and references therein), therefore, it is possible that modified expression of 

these genes could switch off eye development without negative consequences to 

other genes. Therefore, the main focus of my project is to study the genes 

specifically involved in the process of vision, rather than the developmental genes 

associated with building an eye (see Friedrich et al. 2011 for a list of important 

phototransduction genes).  

 

Light detecting opsin genes 

Opsin genes are central to the process of vision. They are G-protein coupled 

transmembrane receptors usually located in the photoreceptor cells in both the non-

compound eye of vertebrates and compound eye of arthropods. Although both are 

referred to as opsins, those found in the compound eye of insects can be quite 

distinct (Figure 1 from Terakita 2005 for molecular phylogeny of the opsin family) 

from those found in the non-compound eye (Hill et al. 2002). It is thought that there 

are, at minimum, two main lineages of opsin genes in the evolutionary history of 

vertebrates and invertebrates, where the diversification of one ancestral opsin gene 

led to the distinct opsin genes now found in the compound eye (Velarde et al. 2005). 

There are five main visual and non-visual opsins in invertebrates: long wavelength 

opsin (LWO), ultraviolet wavelength opsin (UVO), blue opsin (also known as short 
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wavelength blue; SWB), ciliary opsins, and rhabdomeric opsins such as rhodopsin. 

Visual opsins are directly involved in vision, while non-visual opsins are required 

for light perception (Delroisse et al. 2014) and aid in the regulatory function of light-

mediated processes such as circadian rhythm (Cavallari et al. 2011). 

Research into opsins in subterranean animals has revealed variable results 

over the many years of study. The first group to study the evolution of opsins in 

subterranean animals was Crandall and Hills (1997) who found functional 

rhodopsin in three genera of subterranean invertebrate crayfish, with no apparent 

differences in substitution rate between surface and subterranean species. Two 

distinct paralogs of middle wavelength opsin were discovered in surface and cave 

populations of the fish Gammarus minus, however, there were low levels of sequence 

variation and no relaxation of selection, based on the ratio of nonsynonymous to 

synonymous mutations (Carlini et al. 2013). Carlini et al. (2013) also performed 

expression analyses and found that levels of expression were significantly reduced 

in cave populations relative to surface populations, implying a possible pleiotropic 

function of middle wavelength opsin, unrelated to vision. In a separate study on 

freshwater crayfish, Stern and Crandall (2018) found a lowered expression of 17 

genes related to phototransduction (such as opsins and arrestins) in 10 subterranean 

species, compared to four surface species, however, all genes were intact (Stern and 

Crandall 2018).  In the head transcriptome of the subterranean beetle, Ptomaphagus 

hirtus, transcripts of phototransduction opsins were detected in their highly 

reduced eyes (Friedrich et al. 2011). These results suggested that there could be a 

functional role for retaining opsin proteins for light detection, circadian rhythm 

regulation or other similar processes (Friedrich et al. 2011). The embryos of the 



29 
 

recently evolved Astyanax fasciatus cavefish (Fumey et al. 2018) revealed continued 

expression of opsin genes as eye degeneration occurred, suggesting developmental 

or regulatory genes rather than structural genes, were the cause of eye regression 

(Langecker et al. 1993). Recently, the independent loss of functional rhodopsin was 

found in three anciently-evolved amblyopsid cavefish species, with several other 

cavefish lineages having functional copies, but with increased rates of 

nonsynonymous mutations (therefore relaxation of selection), suggesting neutral 

selection in all species (Niemiller et al. 2012). The loss of opsin transcripts was found 

in three subterranean beetle species (revised by Langille et al. unpublished) when 

compared to surface relatives, suggesting neutral regressive evolution (Tierney et 

al. 2015). Over time, opsin research has produced variable results based on specific 

genes, the system being studied, level of light dependence, and time of colonization 

underground, of which the final point might be the most important in terms of 

understanding the mechanisms involved with regressive evolution. It is theorised 

that a significant amount of time is required for opsin genes, and other vision genes, 

to accrue mutations under neutral evolution, that render their encoded proteins 

non-functional in subterranean species (Podlaha and Zhang 2010).  

 

Light screening genes: pigmentation of the eye 

The colour pigments of eyes are mediated by a large number of specific 

pigmentation genes. Pigment granules (small masses of pigment) can be found in 

the photoreceptors and, in the case of compound eyes, between ommatidia acting 

as insulation, and as carriers of ommochrome pigments, which are responsible for 



30 
 

eye colour and the regulation of light influx. In cave adapted animals, a reduction 

or loss of pigment of the eyes (if present) has been attributed to many different 

metabolic and ABC transporter complex genes (Ambegaokar and Jackson 2010; 

Khan et al. 2017; Mackenzie et al. 1999; Osanai-Futahashi et al. 2012). Metabolic genes 

are essential for biological functions, and in the case of eye pigmentation, are 

responsible for the production of pigment granules (Lloyd et al. 1998). Eye pigment 

compounds are transported by ABC transporter proteins which are encoded by 

ABC transporter complex genes. These proteins are essential for the movement of 

pigments within the compound eye (Jones and George 2004). 

An investigation into the eye regression of Phomaphagus hirtus, identified 

over 20 intact metabolic genes involved in the pigmentation of the eye (Friedrich et 

al. 2011). However, all of the ABC transporter complex genes (three were examined 

in his study) were not detected, leaving the authors to conclude that this species 

had likely lost the ability to produce eye pigmentation (Friedrich et al. 2011). In 

insects, cinnabar (metabolic gene) has also been studied in subterranean species 

(Leys et al. 2005; Reed and Nagy 2005). This gene plays a role in pigmentation of the 

eye by encoding for kynurenine 3-monooxygenase, an enzyme important for the 

synthesis of ommochromes (Wittkopp and Beldade 2009). Preliminary evidence 

suggested that cinnabar was a pseudogene in the subterranean Dytiscidae based on 

missense mutations and the rate of sequence evolution, when compared to surface 

relatives (Leys et al. 2005). Well studied in D. melanogaster and Tribolium castaneum 

(Lorenzen et al. 2002), the single copy cinnabar gene is unlikely to be involved in 

additional non-visual developmental pathways (Lorenzen et al. 2002), and 

therefore, could be an important gene in regressive evolutionary studies.  
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EYE REGRESSION IN CAVEFISH ASTYANAX 

The most popular study system, to date, for the study of eye regression has been 

the cavefish, A. fasciatus (Fig. 3).  This species has been described as both a great ‘lab 

rat’ and the ‘fruit fly of cave animals’ (Jeffery 2009). They are easily kept in 

laboratories, have a simple diet, spawn frequently and abundantly, embryos are 

large and clear, and many cave populations exist that have evolved independently 

from surface ancestors (Jeffery 2001, 2009). As a consequence of being the same 

species, the surface and cave forms are inter-fertile (Sadoglu 1957), allowing for 

hybrid cross experiments. Astyanax also shares a relatively close phylogenetic 

history with the zebrafish (Danio rerio), allowing for the vast information available 

on zebrafish, such as the genome and mapped chromosomes, to be utilized in 

Astyanax studies (Jeffery 2009). 

 

Figure 3: Astyanax fasciatus (mexicanus) surface fish on top and cavefish on bottom. Photographs by 
Yoshiyuki Yamamoto (from Ghysen et al. 2010). 
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 Despite all the benefits to using this very popular model fish in trait 

regression studies, there are some limitations to its use. Cave populations have 

evolved relatively recently (Fumey et al. 2018) and it is possible that intact genes 

may only reflect that there has been insufficient time to accumulate mutations that 

become fixed by genetic drift. Despite intensive study, the systematics of Astyanax 

remains confusing, as a wide variety of diploid chromosome number exists (Morelli 

et al. 1983), different types of B chromosomes can be found among the cells of 

different species, and Astyanax species have different distributions of repetitive 

DNAs (Fernandes and Martins-Santos 2005; Mantovani et al. 2005; Hashimoto et al. 

2008; Vicari et al. 2008; Daniel et al. 2012; Santos et al. 2013; Silva et al. 2013). The 150+ 

species of Astyanax do not form a monophyletic group based on morphological and 

molecular markers (Javonillo et al. 2010; Mirande 2010; Oliveira et al. 2011), as there 

exists species complexes (Moreira-Filho and Bertollo 1991; Artoni et al. 2006; Castro 

et al. 2015) and putative cryptic species (Pansonato-Alves et al. 2013). However, 

understanding the regression of traits relies on first understanding the inter-

relationships of different cave populations, whereby hybridization, commonly 

found in Astyanax, can affect how populations are grouped based on their shared 

allelic backgrounds (Panaram et al. 2005). Some populations of cavefish have 

individuals with eyes, intermediate forms, or eyeless forms (Avise and Selander 

1972; Mitchell et al. 1977; Romero 1985), and it is known that migration of surface 

forms into cave systems does occur (Bradic et al. 2013), although it is unclear if there 

has been gene flow between cave and surface forms (Wilkens and Strecker 2017). 

Finally, there are other excellent subterranean systems such as the isopod Asellus 

aquaticus (Verovnik et al. 2004; Protas et al. 2011; Konec et al. 2015), which could aid 
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in the neutral vs. selection debate of regressed traits, and these need to be 

considered and studied.  

 

SUBTERRANEAN ECOSYSTEMS IN AUSTRALIA 

Unlike the Northern Hemisphere, Australia did not experience significant 

glaciation, but rather became more arid and cool, and therefore it was thought that 

the biodiversity of subterranean fauna in Australia would be low (Moore 1964; 

Hamilton-Smith 1967; Barr 1973; Humphreys 2004).  However, once researchers 

began delving into groundwater systems, a plethora of stygofauna and troglofauna 

(subterranean aquatic and terrestrial species, respectively) were discovered 

(Humphreys 2006, 2008 and references therein, 2009; Boulton 2009). This 

subterranean fauna appears to be both extensive and novel in its diversity, with 

subterranean environments likely containing thousands of undescribed species. A 

previous assessment of Western Australian fauna estimated a total of ~4100 species 

of which only about ~19% are described or known (Guzik et al. 2011). 

 

Arid Australia and calcrete aquifers 

Under drying conditions, possibly of the Late Eocene to Early Oligocene (37-30 

million years ago (mya)), groundwater evaporated along palaeodrainages (Bowler 

1976), leading to the precipitation of a carbonate rock known as calcrete (Morgan 

1993). Individual calcrete bodies are proposed to have undergone karstification 

during a wet phase in the Miocene (30-10 mya), providing a suitable habitat for 
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subterranean fauna (Morgan 1993). Australia began the shift to an arid climate ~ 15 

mya during the Mid-Late Miocene (Morgan 1993; Sniderman et al. 2016) at which 

point the surface water dried up in central Western Australia. It is likely that ~3-6 

mya, Australia returned briefly to warm, and wet conditions (Byrne et al. 2008; 

Sniderman et al. 2016). However, this period was quickly followed by continued 

desiccation (Byrne et al. 2008). Within the Yilgarn region of Western Australia, over 

200 major (> 100km2) and hundreds of minor (< 100km2) calcretes are known, the 

whole region resembling a subterranean archipelago (Cooper et al. 2007). 

Individual calcrete bodies have been shown to represent closed island 

environments, as most of them are physically separated from each other by fine 

sediments, clays, and sand, as well as each containing endemic taxa (Guzik et al. 

2009). A combination of stygobiontic species and surface species, pre-adapted to life 

underground, are likely to have independently colonized calcretes (Leijs et al. 2012). 

Subsequent evolution within each separate calcrete led to speciation, resulting in 

the unique assemblages of species in each calcrete observed today (Cooper et al. 

2007). Molecular clock analysis suggest that there has been a lack of gene flow 

between stygobiontic species of separate calcretes and surface species from 

approximately 3-10 mya, although some groups may have colonized as early as the 

Mid-late Miocene (~15-24 mya) (Leys et al. 2003; Cooper et al. 2008; Guzik et al. 2008). 

This colonization time loosely coincided with the major period of aridity of the 

Australian continent (Bowler 1976; Sniderman et al. 2016).    
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Stygofauna and troglofauna in calcretes 

The stygofauna of the Yilgarn calcretes, comprises obligate subterranean 

groundwater invertebrates such as crustaceans and water beetles (Humphreys 

2008). These calcrete habitats have been described as biodiversity hotspots 

(Bradford et al. 2014). The current stygofauna and troglofauna (the latter not treated 

here) assemblages include various species of Amphipoda (Williams and Barnard 

1988; Bradbury and Williams 1997; King et al. 2012), Isopoda (Taiti and Humphreys 

2001; Wilson 2003; Cooper et al. 2008; Guzik et al. in press), Coleoptera (Eberhard et 

al. 2016; Watts and Humphreys 2009 and references therein), Copepoda (Karanovic 

and Cooper 2012 and references therein), Diplura (Koch 2009), Myriapoda 

(Edgecombe 2005), and Arachnida (Guzik et al. 2011 and references therein; 

Harrison et al. 2014).  

Calcrete habitats generally provide similar ecological conditions that remain 

relatively stable (Humphreys 2009), despite being unconnected to each other. In the 

Yilgarn calcretes there are two major groups of amphipods found in the calcrete 

aquifers: Paramelitidae (Williams and Barnard 1988), and Chiltoniidae (originally 

treated as Hyalidae; King et al. 2012).  Different species of Chiltoniidae are located 

in the more southern, saline areas, while species of Paramelitidae are located in 

more northern, less saline areas, as they originated from a freshwater lineage 

(Williams and Barnard 1988). Distinct assemblages of stygobitic isopods have been 

discovered in ~25 calcretes to date with most, if not all, species falling into the genus 

Haloniscus (undescribed species; Cooper et al. 2008). Investigations into copepods 

have intrigued researchers as they appear to be quite diverse in the calcrete system, 
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though not well studied taxonomically. A total of 12 species, one subspecies, and 

three cryptic species have been described from only a few calcretes to date 

(Karanovic 2004; Karanovic and Cooper 2012; Karanovic et al. 2015). Approximately 

100 species of dytiscids from the tribes Bidessini and Hydroporini, have been 

identified (Fig. 4; Leys et al. 2003), with usually between one to three endemic and 

different-sized species per calcrete (Watts and Humphreys 2009 and references 

therein). The wide variety of families found within a single calcrete (Humphreys 

2004, 2008), illustrate how diverse underground Australia really is.  

 

Figure 4: Examples of morphology and size variation in Paroster where species b and c are 
sympatric sister species. (a) P. couragei; (b) P. macrosturtensis; (c) P. microsturtensis; (d) P. 
arachnoides; (e) P. macrocephalus; and (f) P. byroensis (amended from Leys and Watts 2008). 
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Subterranean diving beetles: An excellent candidate system for 

future regressive evolutionary studies 

Of the subterranean stygofauna, the predatory diving beetles (Dytiscidae) have 

been found in more than 45 calcretes, with over 100 beetle species described to date 

(Watts and Humphreys 1999, 2000, 2001, 2003, 2004, 2006). This makes these beetles, 

the most diverse known assemblage of subterranean dytiscids in the world (Balke 

et al. 2004; Guzik et al. 2009). In general, subterranean dytiscid species have typical 

arthropod cave troglomorphy: reduced or absent eyes, vestigial or fused wings, and 

reduced pigment in the body (Watts and Humphreys 2009 and references therein). 

The diving beetles are short range endemics, with over 75% of species having 

evolved-independently from surface ancestors. The remaining 25% of species are 

sympatric species pairs or triplets, as identified through phylogenetic analysis (Fig. 

5; Leijs et al. 2012). Based on molecular clock estimates, the beetles likely became 

isolated in the calcretes between 3 and 10 mya (Leys et al. 2003; Leys and Watts 

2008). 
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Figure 5: Mitochondrial molecular phylogeny and lineage through time plot of subterranean diving 
beetles. (a): Molecular phylogeny with sympatric sister pairs (blue boxes) shown, and posterior 
probabilities near branches. Red lines indicate terminal branches leading to a subterranean species, 
black lines indicate surface lineages, and green lines indicate subterranean lineages from aquifers 
outside of the Yilgarn region. (b): Lineage-through-time plot for surface (black) and subterranean 
(red) lineages showing the high number of ancestral species (20+) during the major radiation of 
diving beetles ~3-7 Mya (from Leijs et al. 2012). 
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 The sympatric sister species, are highly important as they likely give a time 

point of when the species were actually underground and how they may have 

speciated. It has been theorized that a common ancestor to the sister species in 

Western Australia, either speciated underground or colonized the same calcrete 

several times at different time periods. Mathematical modelling supported 

underground speciation (Leys et al. 2012), although in practice these are difficult 

hypotheses to distinguish between. For example, sympatric troglobiont spider 

(Dysdera) species of the Canary Islands have segregation of body types (i.e. small, 

medium, and large body size), cheliceral modifications, and genetic and 

morphological similarity leading to the suggestion that they evolved underground 

in sympatry (Arnedo et al. 2007). Additionally, monophyletic lineages of cave beetle 

taxa (Leiodidae and Trechinae; Faille et al. 2010; Ribera et al. 2010) were found from 

the Western Mediterranean, suggesting that they speciated underground. 

However, it is difficult to confirm speciation using phylogenetic methods due to the 

potential extinction of surface ancestors during major climatic events (e.g. 

glaciations) on the surface. For this reason, no studies have robustly confirmed post-

colonisation speciation occurring within subterranean systems. 

 The subterranean dytiscid beetles of the Yilgarn region in Western Australia 

represent an ideal system for regressive evolutionary studies for many reasons. 

First, molecular clock analyses suggest that most beetles in this system have been 

isolated from the surface and other calcretes for over three million years (Leys et al. 

2003. The temporal and spatial isolation of calcretes (Poulson and White 1969), 

provides simple, stable populations (Humphreys 2009), however, water 

fluctuations and the structure of the calcretes may make them quite dynamic at the 
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population level (Bradford et al. 2013; Humphreys 2008). The large number of 

independently-evolved subterranean beetle species and closely related surface 

lineages persistent in coastal regions of Australia (original surface ancestors most 

likely extinct; Cooper et al. 2007), allow for large comparative genomic-level 

investigations into trait regression and other evolutionary ecology/history 

questions. In 2015, the transcriptomes of three subterranean beetle species 

(representing the three known genera, Paroster, Neobidessodes and Limbodessus) and 

two surface beetle species were generated and opsins (UV, long-wavelength, and 

ciliary-type) were identified (Tierney et al. 2015). Two subterranean species showed 

a parallel loss of these genes (Fig. 6), as might be expected for neutrally evolving 

pseudogenes. However, the absence of transcription, does not necessarily imply the 

absence of a functional gene and, therefore, a more extensive investigation is 

required to determine the pseudogene status of these genes. 
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AIMS 

Subterranean diving beetles (Dytiscidae) endemic to groundwater calcretes of 

Western Australia exhibit convergent traits typical of troglomorphic arthropods, 

including loss of eyes, pigmentation and wings. The aims of this project were 

threefold: 1) to test the phototactic responses of subterranean diving beetles from 

two calcretes in the Yilgarn, 2) to sequence vision-specific genes from a large 

assemblage of diving beetles and test the hypothesis that they are evolving under 

neutral evolution, and 3) to utilise vision-specific genes to investigate how 

subterranean beetles speciated (i.e. underground or via multiple colonisations by 

surface species).  

I carried out the first aim by exposing six different subterranean beetle 

species to a light-dark choice test, to identify if they have a preference for light, dark, 

or neither. As they are eyeless, they were expected to have zero preference and, 

therefore, be found in the light and dark equally. The second aim involved 

investigating the molecular evolution of photo-transduction genes from a wide 

sampling of surface and subterranean dytiscid beetles, including sister species pairs 

and triplets, to test whether neutral gene evolution is associated with the loss of 

vision in blind cave animals. As beetles have been underground, isolated from the 

light for millions of years, a neutral evolution hypothesis leads to the prediction 

that random mutations should accumulate and vary from species to species, and 

only be present in genes specifically associated with the regressed trait of vision. 

The final aim utilised the ~25% of subterranean beetle species that may not have 

evolved independently from surface species (as evidenced by the existence of 

sympatric sister species). Therefore, following the discovery of opsin pseudogenes 
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in the subterranean beetles, I investigated whether these genes could be used to test 

the hypothesis of speciation underground. I also attempted to clarify the 

phylogenetic placement of subterranean beetle species from the genus Paroster in a 

robust multigene phylogeny, with the purpose of confirming the presence of 

sympatric sister species, and ultimately deducing how they speciated (i.e. 

speciation underground or multiple colonisations from the same or related surface 

species).  Overall, my research highlights how the dytiscid beetles and calcrete 

system provides a unique model system for exploring the highly debated topics of 

trait regression and modes of speciation in subterranean animals. 

The following empirical research chapters are presented in manuscript 

format and will, therefore, contain some repetition within the introduction and 

discussion sections. Each chapter also contains differing formats as required by the 

journals in which I intend to submit. However, I aimed to create a thesis with as 

much continuity as possible, while still presenting adequate information in each 

section for each chapter to be stand alone manuscripts. The final chapter is a 

discussion of all research chapters together, with implications for furture research. 
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Chapter 2: How blind are they? Phototactic 

responses in stygobiont diving beetles 

(Coleoptera: Dytiscidae) from calcrete aquifers 

of Western Australia 
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Due to its size, Appendix 1 and 2 can be found at the 

end of this thesis in Appendix 3, for easier reading. 
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Abstract  

Most subterranean species are assumed to have evolved from surface ancestors following 

colonisation of a cave system, and there are few confirmed cases of speciation in 

underground habitats or sympatric speciation within a cave. Numerous endemic 

subterranean diving beetle species, from the calcrete archipelago in Western Australia 

have independently evolved following colonisation by surface ancestors. However, the 

presence of sympatric sister species raises the possibility of speciation underground within 

a single calcrete aquifer. We explored this hypothesis by using the neutrally evolved gene, 

long wavelength opsin (lwop) from 32 subterranean and surface species in the genus 

Paroster. We identified a unique 18 bp deletion and a missense mutation leading to a stop 

codon in the long wavelength opsin gene (lwop) that was shared between a subterranean 

sister-species triplet, and a 2 bp insertion in lwop shared by a pair of species from adjacent 

calcretes. In both these cases, a common ancestor likely had these vision-gene altering 

mutations, implying that their ancestor was already adapted to living underground. The 

analyses of genes undergoing pseudogenisation, such as opsin genes in blind cave animals, 

provides a unique way of testing modes of speciation in subterranean animals. 
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Introduction  

The Climate-relict (CRH) and adaptive-shift hypotheses (ASH) are the two most common 

hypotheses used to explain speciation of subterranean animals (Howarth 1973; Holsinger 

2000; Rivera et al. 2002; Wessel et al. 2007). CRH was first used to describe the evolution 

of cave species from continental temperate ecosystems (Holsinger 1988, 2000; Peck and 

Finston 1993), whereby surface species colonized cave environments and became isolated 

from surface populations when climatic fluctuations, such as glaciation or aridification, 

rendered surface populations extinct, a process of allopatric speciation. ASH was first used 

to describe a diverse tropical cave fauna, where cave species were found alongside closely 

related surface species (Howarth 1987; Rouch and Danielopol 1987; Desutter-Grandcolas 

and Grandcolas 1996). Under the ASH, cave species evolved by active colonisation of 

cave environments and divergent natural selection in parapatry with surface populations, 

ultimately resulting in reduced gene flow and parapatric speciation. CRH and ASH explain 

many cases of cave species evolution, however, the presence of sympatric sister species in 

some cave taxonomic groups raises the question of whether speciation may potentially 

occur underground from cave ancestors (Guzik et al. 2009; Faille et al. 2010; Ribera et al. 

2010; Leijs et al. 2012). 

Previous research suggested cave species would be unlikely to undergo adaptive 

evolution underground because of reduced genetic and phenotypic variation, and, 

therefore, were unlikely to speciate inside cave systems (Poulson and White 1969). 

However, since the advancement of molecular research, it has been shown that cave 

species may have considerable genetic diversity as a consequence of range and population 

expansion (Barr 1968; Stepien et al. 2001; Buhay and Crandall 2005; Finlay et al. 2006; 

Lejeusne and Chevaldonné 2006; Guzik et al. 2009). Few studies have examined the post-

colonisation speciation process within subterranean systems. Sympatric cave spider 
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(Dysdera) species of the Canary Islands have segregation of body types (i.e. small, 

medium, and large body size) and cheliceral modifications, leading authors to conclude 

prey specialization (Arnedo et al. 2007). This prey specialization along with genetic and 

morphological similarity (in the specific case of D. hernandezi and D. esquiveli), suggest 

they evolved underground in sympatry (Arnedo et al. 2007). Studies based on beetles 

(Leiodidae and Trechinae; Faille et al. 2010; Ribera et al. 2010) have uncovered large 

monophyletic lineages of cave taxa, implying speciation underground rather than multiple 

colonisations by surface ancestors, the latter being the traditionally accepted theory. The 

problem with this, and other such studies, is that it is difficult to confirm speciation 

underground using only phylogenetic methods due to the possibility that the apparent 

monophyly of subterranean taxa resulted from extinction of their surface ancestors (e.g. 

resulting from climatic events such as glaciations; Juan et al. 2010). 

In Western Australia, a huge network of groundwater calcretes can be found, which 

are ~10m thick carbonate deposits formed by the evaporation of water within 

palaeodrainage channels (Humphreys 2001). These calcretes contain a diverse assemblage 

of subterranean invertebrates (Humphreys 2006, 2008 and references therein; Boulton 

2009; Humphreys et al. 2009), including the world’s most diverse group of subterranean 

diving beetles (Coleoptera, Dytiscidae) (Balke et al. 2004). The subterranean diving 

beetles are short range endemics with over 100 described species in more than 45 

individual calcretes (Watts and Humphreys 2009 and references herein). Each isolated 

groundwater system contains beetle species which have evolved distinct size variation 

(small, medium and/or large), with one to five beetle species per calcrete (Watts and 

Humphreys 2009 and references therein). Molecular clock analyses suggest that beetle 

species have been isolated underground for 3 to 10 million years (Leijs et al. 2012), likely 

following a period of aridity in Australia (Sniderman et al. 2016). Each beetle species has 

evolved typical cave traits observed in many subterranean systems; notably eye and 
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pigmentation loss, and they respire directly from the water (Watts and Humphreys 2009; 

Jones et al. 2019).  

The subterranean beetle system provides an interesting case for study, because 

while ~75% of species evolved independently from surface ancestors, likely via the 

climate-relict hypothesis, ~25% did not (Cooper et al. 2002; Leys et al. 2003; Leijs et al. 

2012); there are 13 known cases of sympatric sister species (Leijs et al. 2012). These sister 

species have segregation of body types, which suggests niche partitioning within calcretes, 

and the possibility that they evolved underground via sympatric speciation (Cooper et al. 

2002; Leys et al. 2003; Leys and Watts 2008). However, it is also possible that they 

evolved following multiple colonisation events from the same surface ancestor or a related 

species. Mathematical modelling suggests evolution underground to be more plausible 

than the latter hypothesis, particularly for the case of sympatric sister triplets (Table 1 for 

sister species groups; Leijs et al. 2012). However, the mathematical model relied upon the 

assumption that surface ancestors were widespread, which may not be the case if species 

evolved from an interstitial ancestor that remained in the vicinity of the calcrete after each 

colonisation event. It is also possible that mitochondrial DNA (mtDNA) introgression 

among related species may account for the apparent monophyly of species within a 

calcrete (Hubbs 1955; Taylor and McPhail 2000; McDonald et al. 2008; Langille 2014).  

Here we apply a phylogenetic and gene discovery approach to investigate the 

hypothesis that sympatric sister species in the genus Paroster speciated underground from 

a stygobiont ancestor. Specifically, we aim to: 1) confirm the sister species status of these 

taxa using phylogenetic analyses of nuclear gene markers, and 2) investigate the molecular 

evolution of a predicted neutral gene marker (long wavelength opsin gene) to determine 

whether there are shared mutations indicative of a relaxation of selection in the common 

ancestor of sympatric sister species.  
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Methods  

Taxon collection 

DNA samples of 28 subterranean diving beetle species and four surface species from the 

genus Paroster (Coleoptera; Dytiscidae), were obtained from South Australia Museum 

(SAM) and Western Australia Museum (WAM) collections (Table 1). DNA from the 

subterranean dytiscid species Limbodessus palmulaoides was used as an outgroup for 

phylogenetic analyses. The subterranean species represented in these analyses were 

originally collected from 15 different calcretes representing six separate palaeodrainages 

(Table 1; Fig. 1). 

Table 1: List of all subterranean species used in this study with location information 

Drainage Palaeovalley Calcrete Species Field 

number 

ABTC 

Western Gascoyne Milgun Station P. hamoni R055 78583 

   P. milgunensis R054 78582 

  Three Rivers Station P. plutonicensis R402 78975 

 Lyons Mount Augustus P. tetrameres R211 78765 

 Murchison Bryo West P. arachnoides R106 78660 

   P. byroensis R124 78678 

   P. dingbatensis R121 78675 

  Innouendy P. copidotibae R120 78674 

   P. innouendyensis R118 78672 

  Karalundi P. skaphites R116 78670 

   P. stegastos R148 78702 

  Moorarie P. verucosus R128 78682 

  Moorarie Bin Bin P. bulbus R105 78659 

Inland Carey Melrose Station P. darlotensis R345 78918 

   P. melrosensis R346 78919 

 Ngalia Basin: N.T. Central Mount Wedge P. spnMtWedge R357 78930 

   P. wedgeensis R233 78787 

  Napperby P. macrocephalus R038 78566 

   P. napperbyensis R064 78592 

  Newhaven Camel Well P. pentameres R224 78778 

   P. spnCamelWell R358 78931 

  Newhaven Homestead P. newhavenR401 R401 78974 

   P. newhavenensis R063 78591 

 Raeside Pinnacles Station P. elongates R026 78554 

   P. fortispina R179 78733 

  Sturt Meadows P. macrosturtensis R271 78844 

   P. mesosturtensis R354 78927 

   P. microsturtensis R352 78925 

Surface VIC 18km W Casterton P. gibbi R061 78589 

 WA Camel Stock P. michaelseni R135 78689 

 WA 6km S Pinjarra P. niger R372 78945 

 SA 12km N Forreston P. nigroadumbratus - 78584 

Inland Carey Mount Windarra L. palmulaoides - - 

*Sympatric sister species, based on mtDNA analyses, are highlighted in grey; the 

outgroup, L. palmulaoides sample is from Hyde et al. 2018. ABTC refers to the Australian 

Biological Tissue Collection at the South Australian Museum. 
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Figure 1: All calcrete locations in Western Australia used in this study highlighted in black 

with inset a. representing a sympatric sister triplet of species from the Sturt Meadows 

calcrete: Paroster macrosturtensis, P. mesosturtensis, and P. microsturtensis, in 

descending order.  

 

Shotgun sequence data for primer design 

Whole genomic shotgun libraries generated by Hyde et al. (2018), produced 12.2 million 

sequences from L. palmulaoides, 14.6 million from P. macrosturtensis, 1.0 million from P. 

mesosturtensis, and 4.6 million from P. microsturtensis. The raw data from each species 

were BLASTn analysed for long wavelength opsin (lwop) using full length lwop cDNA 

sequence data derived from the surface species Paroster nigroadumbratus (Tierney et al. 

2015). We chose lwop as it is a photoreceptor gene specifically involved in the regressed 

vision trait in subterranean beetles and therefore, it is predicted to be evolving neutrally 

(i.e. it may have protein code altering missense and/or nonsense mutations). Lwop genomic 

sequences were identified from P. macrosturtensis (one sequence of length 476 bp) and P. 

microsturtensis (four overlapping sequences with a total length of 476 bp). These Paroster 

lwop sequences were aligned with cDNA sequence data from P. nigroadumbratus in 
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Geneious v.10.2.6 (Kearse et al. 2012) using default settings in the plugin ClustalW 

(Larkin et al. 2007). Assembled lwop fragments revealed a protein altering 18 base pair 

deletion and stop codon shared by the sister species P. macrosturtensis and P. 

microsturtensis, not found in the surface species. Primers were designed from conserved 

lwop exon regions of each species: forward (labelled G2743) 5’-

GAAGAATATGCGAGAACAGG-3’ and reverse (labelled G2744) 5’-

GGCAAGRGGAGTGATGTTC-3’, with a melting temperature of 50OC and 52OC 

respectively (Table 2).  

 

Table 2: All primers for each gene used in this study. SAM – South Australian Museum 

Locus 

name 

Forward (5’ to 3’) followed by Reverse (3’ to 5’) Primer 

symbol 

Ta 

(oC) 

Reference 

argk F-GATTCTGGAGTCGGNATYTAYGCNCCYGAYGC AK183F 53 Wild & Maddison 2008 

 R-GCCNCCYTCRGCYTCRGTGTGYTC AK939R   
cn F-AAYTAYYTNCAYATHTGGCC - 48.8 Lorentzen et al. 2002 

 R-RTARTTRTACATNGC -   
 F-ACNTTYATGATGATHGC - 48.8 Lorentzen et al. 2002 

 R-TCCAYRTAATTRTACAT5GCCAR5TC -   
COI F-CAACATTTATTTTGATTTTTTGG PatCOIF 48 Simon et al. 1994 

 R-TCCAATGCACTAATCTGCCATATTA PatCOIR   
lwop F-GAAGAATATGCGAGAACAGG G2743 65x10, 

55x20 

Kathy Saint (SAM) 

 R-GGCAAGRGGAGTGATGTTC G2744  
topo F-GAGGACCAAGCNGAYACNGTDGGTTGTTG TP675F 55 Wild & Maddison 2008 

 R-GGWCCDGCATCDATDGCCCA TP932R   
wg F-ATGCGTCAGGARTGYAARTGYCAYGGYATGTC Wg550F 53 Wild & Maddison 2008 

 R-CACTTNACYTCRCARCACCARTG WgAbR   

Ta = annealing temperature 

 

Laboratory methods, sequence editing and alignment 

The following gene regions were chosen for amplification: wingless (wg), topoisomerase 

(topo), arginine kinase (argk), cinnabar (cn), cytochrome c oxidase I (COI), and long 

wavelength opsin (lwop) (see Table 2 for primer information). Standard PCR amplification 

included 1x PCR buffer (Applied Biosystems), 0.2 mM of each dNTP, 6 pM of each 

primer, and 0.5 U of immolase enzyme (Bioline Reagents Ltd) in a 25 μL reaction volume. 

PCRs were carried out on an Eppendorf Thermal Cycler for (every gene except lwop) 1 
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cycle of 95ºC for 10 minutes (min) (5 min for COI), followed by 35 cycles of 95ºC for 30 

seconds (s), primer specific temperature (Table 2) for 30 s, and 72ºC for 90 s (45 s for 

COI). Each profile ended with a final incubation step at 72ºC for 10 min (5 min for wg and 

topo) and 25ºC for 1 min. The lwop gene consisted of a touchdown profile, with 1 cycle of 

95ºC for 10 min, followed by 10 cycles of 95ºC for 30 s, 65ºC for 30 s, 70ºC for 45 s, and 

25 cycles of 95ºC for 30 s, 55ºC for 30 s, 72ºC for 45 s, with a final extension of 72ºC for 

10 min and 25ºC for 1 min. PCR products were purified using a Multiscreen 384 vacuum 

well PCR plate (Millipore Sigma). Sequencing was performed using the ABI Prism 

BigDye Terminator Cycle sequencing kit (PE Applied Biosystems) with 10 L reaction 

volumes according to manufacturer’s protocol, and subsequently followed by a clean-up 

using a Multiscreen 384 vacuum well SEQ plate (Millipore Sigma). Sequencing reactions 

were sent to Australian Genome Research Facility (AGRF, Adelaide, Australia) who used 

capillary separation and AB GeneMapper software to generate sequence data. 

 All sequences were edited and aligned, by gene, in Geneious v.10.2.6 using default 

settings in the plugins Muscle (Edgar 2004) and ClustalW. All sequences were verified 

using NCBI’s (https://www.ncbi.nlm.nih.gov/) BLASTn program. Additional gene regions 

of COI and lwop were sourced from NCBI and included in all further analyses 

(Supplementary Table 1). Sequence data from the outgroup, L. palmulaoides, were sourced 

from Genbank and genomic data (Hyde et al. 2018; Hyde et al. unpublished; 

Supplementary Table 1) for all six genes used in this study.  

 

Phylogenetic analyses 

Bayesian phylogenies were constructed using MrBayes v.3.2.6 (Huelsenbeck and Ronquist 

2001; Ronquist and Huelsenbeck 2003) for each gene, for all genes concatenated, and all 

nuclear genes concatenated. The two concatenated gene alignments were analysed using 

PartitionFinder2 v. 2.1.1 (Guindon et al. 2010; Lanfear et al. 2012; Lanfear et al. 2016) in 
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Anaconda v.2.0 – Python v.2.7 (https://anaconda.com; https://docs.python.org/release/2.7/) 

to find an optimum partitioning scheme (Table 3). We used these partitions and models 

(General Time Reversable- GTR) in MrBayes to construct a 50% posterior probability 

tree, derived from two independent runs of four chains (one cold) and using a burn-in of 

25%.  Noninformative priors, unlinked parameters, and variable rates were all selected. 

The convergence of runs was assessed by identifying values of effective sample size 

(ESS), viewing likelihood plots, and by assessing the average standard deviation of split 

frequencies. TreeAnnotator v.2.4.7 was used to compile all trees and derive a maximum 

clade credibility tree. Final gene trees were viewed and prepared for publication in FigTree 

v.1.4.3 (Rambaut 2012).  

 

Table 3: Optimum partitioning scheme for concatenated gene alignments 

Type of data Full dataset Nuclear dataset 

Number of 

partitions 

3 4 

Ideal model 1 GTR+I+G 

2 GTR+G 

3 GTR+I+G 

1 GTR+I+G 

2 GTR+G 

3 GTR+I+G 

4 GTR+G 

Partitions 

composed of 

1 topo-pos1, 2/argk-pos1, 2 

2 topo-pos3/argk-pos3/lwop-pos2, 

3/cn-pos2, 3 

3 wn-pos1, 2, 3/lwop-pos1/cn-pos1 

1 COI-pos1, 3/argk-pos2 

2 COI-pos2 

3 topo-pos1, 2/wn-pos1, 2, 3/argk-

pos1/lwop-pos1, 2/cn-pos-1, 2 

4 topo-pos3/argk-pos3/lwop-

pos3/cn-pos3 

pos = reading frame position 

 

Lwop 

An alignment of lwop was generated by assembling all available sequences using 

Geneious and default settings in the plugins Muscle (Edgar 2004) and ClustalW. The lwop 

alignment was used to visually identify indels (insertions and deletions) and stop codons 

shared between different species. We mapped all shared lwop indels and nonsense 

https://anaconda.com/
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mutations between sister species to both phylogenies (nuclear genes only and all genes), 

which included all species used in this study.  

 

Results 

Phylogenetic analyses 

A total of 137 new nuclear gene sequences of 3407 bp (1135 amino acids) total, was 

produced for 32 species of Paroster diving beetles (Supplementary Table 2). A total of 

eight trees were generated, one per each gene, and a concatenated data set with and 

without CO1, which contained most subterranean Paroster species from calcretes in 

Western Australia (Fig. 2; Fig. 3; Sup. 1).  
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Figure 2: Bayesian phylogenetic tree based on all concatenated nuclear genes with 

posterior probability support values on nodes. * indicates species with a shared 18 bp 

deletion and stop codon mutation in their lwop genes (see Fig. 4), while + indicates species 

with a shared 2 bp insertion (GC). A blue mark indicates the branch where the mutation 

must have occurred, based on analyses of related taxa. Red branches indicate a 

subterranean species, while black indicate a surface species. Tree was rooted with the 

outgroup L. palmulaoides. Species with calcrete information found in Table 1 and Figure 

1. 
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Figure 3: Bayesian phylogenetic tree based on all concatenated genes, including COI, with 

posterior support on nodes. * indicates locations with 18 bp deletion and stop codon 

mutation, while + indicates locations with 2 bp insertion (GC). A red mark indicates the 

branch where the mutation must have occurred. Red branches indicate a subterranean 

species, while black indicate a surface species. Tree was rooted with the outgroup L. 

palmulaoides. Species with calcrete information found in Table 1 and Figure 1. 
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Only one group of sympatric sister species were strongly supported 

phylogenetically on all phylogenies. The three species from Sturt Meadows (P. 

macrosturtensis, P. mesosturtensis, and P. microsturtensis) were shown to be 

monophyletic with a posterior probability of > 0.80. The two species from Milgun Station 

(P. hamoni and P. milgunensis), which were shown to be monophyletic in a previous study 

(Leijs et al. 2012) were supported in most single gene phylograms where we had data for 

both species (Supplementary Table 2) with a posterior probability of > 0.58. Paroster 

hamoni and P. milgunensis were also supported in both phylograms based on concatenated 

datasets (Figure 2, 3) with a posterior probability of 0.43 (nuclear gene phylogeny) and 

0.99 (full concatenated gene phylogeny). 

 

lwop analyses 

We sequenced a fragment of lwop (204 bp) from a total of 13 different subterranean 

species and two surface species (Fig. 4). In addition to the sympatric sister species triplet 

from Sturt Meadows, we acquired lwop data for the phylogenetically close P. fortispina, P. 

copidotibae, P. verrucosus, P. plutonicensis, and P. stegastos, as well as the monophyletic 

P. dingbatensis and P. innouendyensis, and more phylogenetically distant species P. 

wedgensis, P.darlotensis, and P.melrosensis. Upon visual inspection of the lwop gene 

alignment, several shared mutations were revealed (Fig. 4). The sympatric sister species 

triplet P. macrosturtensis, P. mesosturtensis, and P. microsturtensis shared an 18 bp 

deletion at position 97 in the alignment as well as a mutation at position 124 that resulted 

in a stop codon in P. macrosturtensis and P. microsturtensis and a loss of 88 amino acids 

(P. mesosturtensis had a deletion of 11 bp at position 59, resulting in a frameshift mutation 

that changed the reading frame of the protein, and removed the stop codon). Paroster 

dingbatensis and P. innouendyensis also shared a 2 bp insertion (GC) at position 121, the 

latter leading to a frameshift in the encoded protein and a stop codon at position 152. All 
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shared mutations were mapped to the nuclear phylogeny (Fig. 2). Both sets of mutations 

were not found in other related species outside the monophyletic groups and, therefore, 

mapped to the most recent common ancestor of each group. We also found significant 

changes in lwop of other subterranean species (Fig. 4). In P. verrucosus, we found an 

insertion of 3 bp at position 34 and a deletion of 9 bp at position 76. In P. copidotibae, we 

found a mutation from G to A (second nucleotide in codon) at position 125 that resulted in 

a stop codon, and a deletion of 1 bp at position 180. Finally, we found a deletion of 30 bp 

at position 143 in P. stegastos, and a deletion of 1 bp at position 88 in P. plutonicensis. A 

total of seven species had stop codons in this small 204 bp region of lwop, resulting in a 

truncation of the encoded protein. It was difficult to PCR-amplify lwop for many of the 

subterranean species, with only 13 out of 28 successful (Supplementary Table 2). A total 

of nine subterranean species had major indels and nonsense mutations in lwop sequences 

(see Fig. 4), which we attributed to relaxed selection. It is, therefore, likely that the low 

success rate for lwop PCR-amplifications resulted from primer sites having too much 

sequence variation to allow annealing of the primers. 
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Discussion  

The climate-relict and adaptive shift hypotheses, are the generally accepted theories for the 

evolution of cave species, and it is widely accepted that most subterranean species evolved 

directly from surface ancestors (Mayr 1963; Holsinger 1988, 2000; Coyne 1992; Rice and 

Hostert 1993; Peck and Finston 1993; Leys et al. 2003; Juan et al. 2010). Our study 

provides strong evidence to support the hypothesis that at least five subterranean diving 

beetle species evolved from a stygobiont ancestor that speciated underground. Using 

phylogenetic analyses of nuclear gene data, we confirmed the previously designated 

sympatric sister species in the genus Paroster (Leijs et al. 2012), a sister triplet at the Sturt 

Meadows calcrete and, in part, a sister pair from the Milgun Station calcrete (Fig. 2, 3). 

We also used a novel approach, analysing a phototransduction gene, lwop, that is evolving 

under neutral evolution (see chapter 4), and identified a unique deletion and nonsense 

mutation that were shared only by a sister species triplet from the Sturt Meadows calcrete. 

This finding provides strong evidence that their common ancestor was a stygobiont, living 

in darkness within the calcrete, and hence they evolved by speciation underground. 

Additionally, a shared two bp deletion in lwop, resulting in a frameshift mutation in the 

encoded protein, was shared by a pair of species from adjacent calcretes, providing 

additional support that their common ancestor was also a stygobiont. 

Our study also raises the possibility that the sister species triplet from the Sturt 

Meadows calcrete evolved by a process of sympatric speciation. As proposed by Coyne 

and Orr (2004), a series of four criteria can be used to decide if species are likely products 

of sympatric speciation: 1) the species must be largely or completely sympatric, and, 

crucially, that they were sympatric at the time of speciation, 2) the species must have 

substantial reproductive isolation, 3) the taxa must be sister groups, but not from 

hybridisation, and 4) the biogeographic and evolutionary history of the groups must make 

the existence of an allopatric phase very unlikely. Previous studies have presented 
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evidence for support of the second criterion, with strong evidence from both genetic and 

morphological analyses for reproductive isolation of the Sturt Meadows species (Watts and 

Humphreys 2006; Guzik et al. 2009). The first criterion is also strongly supported here. 

The shared deletion and nonsense mutation suggest their ancestor was a stygobiont, living 

within the confines of the Sturt Meadows calcrete, and that the three species were 

sympatric at the time of speciation (Fig. 4). Phylogenetic analyses of nuclear gene data 

also support the third criterion, that the three species form a sister group, that is unlikely to 

have resulted from hybridisation and introgression of mtDNA among related species, as 

there was phylogenetic concordance for nuclear and mitochondrial data. 

The final criterion for sympatric speciation, that the biogeographic and 

evolutionary history of the groups must make the existence of an allopatric phase very 

unlikely, is more difficult to support. Previous research showed evidence for fine-scale 

population structure in beetle species and amphipods within a 3.5 km2 section of the Sturt 

Meadows calcrete, possibly due to fluctuating water levels and the heterogeneious nature 

of the calcrete, and therefore, the possibility of micro-allopatric speciation can not be 

entirely ruled out (Guzik et al. 2009; Bradford et al. 2013). However, these periods of 

allopatry are likely to have been relatively short, with initially wet conditions in the early 

Pliocene, followed by 20,000 year cycles of wet and dry phases to the Late Pliocene when 

speciation most likely occurred (Byrne et al. 2008; Leijs et al. 2012; Sniderman et al. 

2016). Therefore, speciation with gene flow (parapatric or sympatric speciation) seems a 

more likely scenario. We suggest that divergent or disruptive selection likely drove size 

differences among beetles that simultaneously led to reproductive incompatibilities and 

assortative mating. Recent stable isotope analyses of the three Sturt Meadows beetles 

suggest that there are differences in their trophic niches (M. Sacco, Pers. Comm.), which 

may be associated with the disruptive selection.  
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Contrary to the results described above, we also found evidence of allopatric 

speciation underground for the common ancestor of P. dingbatensis and P. 

innouendyensis, each found in adjacent calcretes of the Murchison palaeodrainage system. 

Both species share protein altering mutations in lwop (Fig. 4), suggesting that their 

ancestor was a stygobiont. It is likely that past gene flow between the two calcretes (or 

fragmentation of a single calcrete into two calcretes) led to these two species having a 

common stygobiontic ancestor. This pattern of allopatric speciation is similar to that 

proposed for the evolution of numerous troglobiont taxa in the Leptodirini group of beetles 

(Faille et al. 2010; Ribera et al. 2010). Although it is difficult to entirely rule out the 

possibility that surface ancestors went extinct during glacial periods from the phylogenetic 

analyses conducted in these studies, our results suggest that speciation underground in 

these Pyrenean cave systems is entirely feasible. However, as explained by Leijs et al. 

(2012), despite speciation underground from a stygobiontic ancestor as the likely mode of 

speciation for the cases outlined above, we are unable to generalise this evolutionary mode 

for all other sympatric sister species groups of dytiscid beetles that are currently known.  

 

Conclusions 

Our study provides strong evidence that at least five subterranean beetle species have 

evolved underground from stygobiontic common ancestors. Our approach, using genetic 

markers that are subject to pseudogenisation through regressive evolution, provides a 

potentially powerful tool to unravel the nature of speciation in subterranean ecosystems. It 

also has the potential to enhance our understanding of evolutionary relationships and the 

biogeographic history of cave animals.  
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Summary 

Neutral evolution theory predicts that genes specific to the development/function of eyes 

in subterranean animals, living in permanent darkness, will evolve under relaxed selection, 

ultimately becoming pseudogenes. However, evidence for the role of neutral processes in 

the evolutionary loss of vision remains controversial. An assemblage of independently-

evolved beetle (Dytiscidae) species, from a subterranean archipelago in Western Australia 

converged on eye/vision loss, providing a powerful system to explore changes to the 

genome that accompany evolution in the dark. We provide evidence for the independent 

and parallel loss of key phototransduction genes from subterranean beetle species, proving 

that convergent regressive evolution can act on a common suite of genes. These genes, 

including arrestins, opsins, and trp-like, either contained loss of function mutations or 

elevated rates of evolution in their encoded proteins, indicative of pseudogenes. Our 

results provide strong evidence to support neutral evolution of phototransduction genes as 

a major contributing factor to the loss of vision in subterranean animals, re-igniting the 

centuries old debate. 
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MAIN 

Regressive evolution, the evolutionary process driving the loss of phenotypic traits, such 

as limbs in snakes, wings in birds and insects, eyes and pigment in subterranean animals, 

has long intrigued evolutionary biologists (Dawin 1857; Kimura 1983; Jeffery 2009). 

Charles Darwin, revered for his insight and intellect, struggled with the idea of regressed 

features, particularly in subterranean animals; “…As it is difficult to imagine that eyes, 

though useless, could be in any way injurious to animals living in darkness, their loss may 

be attributed to disuse…” (On the origin of species, 1857); an unexpected statement 

largely accepting Lamarckian theory. Incredibly, 161 years later, there is still considerable 

debate surrounding the evolutionary mode of trait loss, particularly eye/vision loss, in 

subterranean animals, with major theories largely based on NeoDarwinian selection or 

neutral evolution (Culver & Wilkens 2000; Espinasa & Espinasa 2008; Retaux & Casane 

2013). 

Selection theory, proposes that an advantage (positive or negative, direct or 

indirect)(Breder 1942; Sadoglu 1967; Jeffery et al. 2000; Yamamoto et al. 2003; Menuet et 

al. 2007; Protas et al. 2007; Jeffery 2009 and references herein) is gained by the species 

due to the loss of the trait or character. Conversely, neutral evolution theory suggests that 

traits are lost through random mutations and genetic drift in genes that are specifically 

associated with the regressed trait, as there is no longer directional or purifying selection 

acting upon them (Kimura 1968; Yokoyama et al. 1995; Wilkens 2004). Despite 

widespread acceptance that many parts of the genome are under the influence of neutral 

evolution (Lynch 2007; Ho et al. 2017; Kumar & Patel 2018; Yoder et al. 2018; Zhang 

2018), selection theory remains the most widely accepted theory in the context of eye 

regression in subterranean animals. 

The majority of eye regression research has focused upon the model cavefish 

Astyanax fasciatus, where a wealth of studies have provided highly informative insights 
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from a relatively recently evolved vertebrate lineage (Langecker et al. 1993; Wilkens et al. 

2003; Jeffery 2009; Fumey et al. 2018; Herman et al. 2018). However, these and other 

studies of recently-evolved cave animals may have failed to detect the evolutionary forces 

operating on ‘eye genes’ due to an insufficient time for the accumulation and fixation of 

deleterious mutations in these genes. Here we investigate a more ancient (> 3 million 

years) invertebrate system; the numerous (~100) and independently evolved (Cooper et al. 

2002; Leys et al. 2003; Leijs et al. 2012) subterranean diving beetles (Dytiscidae) from 

calcrete (carbonate) aquifers in Western Australia (Watts & Humphreys 2009 and 

references herein). These calcretes represent closed island-like systems, with more than 

200 existing calcrete bodies resembling a subterranean archipelago (Cooper et al. 2002). 

Each calcrete hosts a unique suite of aquatic subterranean taxa (stygobionts), including 

between one and three diving beetle species (Leys et al. 2003). The majority (71%) of 

species have independently evolved typical cave troglomorphies (i.e. loss of vision, wings 

and pigment), which collectively, provide an unrivalled opportunity for comparative 

genomic scale analyses of regressive trait evolution (Tierney et al. 2018). The additional 

29% of species, which form sister pairs or triplets with sympatric subterranean species, 

have potentially evolved underground from a stygobiontic ancestor (Leijs et al. 2012; 

Chapter 3).  

This study aims to investigate the molecular evolution of phototransduction genes 

from a wide sampling of surface and subterranean dytiscid beetles to test whether neutral 

gene evolution is associated with the loss of vision in blind cave animals. For genes under 

neutral evolution, our predictions are: 1) they should show evidence for loss of function 

mutations in the encoded proteins, through insertions or deletions (indels) and stop codons, 

and/or increases in the rate of evolution of amino acid changes, 2) there should be 

evidence for parallel neutral evolution, associated with different loss of function mutations, 

in phototransduction genes from phylogenetically independent subterranean lineages, 3) 
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neutral evolution should only occur in genes that are specific to the regressed trait (i.e. 

genes involved in other essential/developmental pathways would remain under purifying 

selection), and 4) recently evolved subterranean species may show no evidence for loss-of-

function mutations in their phototransduction genes, compared to anciently evolved 

subterranean species, due to an insufficient time to accumulate and fix mutations by 

genetic drift. 

 

Transcriptome analyses  

Transcriptome data were generated from five diving beetle species, including two surface 

(Allodessus bistrigatus and Paroster nigroadumbratus) and three subterranean 

(Limbodessus palmulaoides, Neobidessoides gutteridgei, and Paroster macrosturtensis) 

species and used to identify 19 specific phototransduction genes (Table 1; see Tierney et 

al. 2015 for transcriptome generation and assembly). An assessment of functionality 

revealed 10 genes showing either no detectable transcription or evidence for 

pseudogenisation (indels leading to stop codons in the encoded sequence) in subterranean 

species relative to surface species (Table 1): arrestin 1 (arr1), arrestin 2 (arr2), 

inactivation no afterpotential D (inaD), neither inactivation nor afterpotential C (ninaC), 

invertebrate c-opsin (c-opsin), long wavelength opsin (lwop), ultraviolet opsin (uvop), 

prominin (prom), transient receptor potential (trp), and transient receptor potential-like 

(trpl). The remaining nine phototransduction genes had open reading frames in both 

subterranean and surface species, each encoding highly conserved amino acid sequences, 

indicating that they are under purifying selection. Based on gene expression studies in 

Drosophila melanogaster (http://flybase.org/), we determined that these 9 genes are likely 

to be pleiotropic in the beetles (i.e. they are required for other biological functions, in 

addition to phototransduction; Supplementary Information: SI1) and hence they would not 

be likely candidates for neutral evolution. 

http://flybase.org/


106 
 

Table 1: A functionality evaluation of key phototransduction genes from 

transcriptome data. 
Photoreceptor genes Surface species Subterranean species 

Allodessus 

bistrigatus 

Paroster 

nigroadumbratus 

Limbodessus 

palmulaoides 

Neobidessodes 

gutteridgei 

Paroster 

macrosturtensis 

Arrestin 1   * *  

Arrestin 2   *  * 
Chaoptin *  *  * 

G protein gamma 30A   *  * 

G protein alpha 49B     * 

G protein beta 76C      

G protein-coupled receptor kinase 1  * * *  

inaC     * 

inaD * * *  * 

ninaC * * *  * 
No receptor potential A, type I  * *  * 

Opsin c-opsin    *  

Opsin ultraviolet      

Opsin long-wavelength * *    

Prominin * * *   
Rab-protein 6a      

Spacemaker (eyes shut)   * *  

Transient receptor potential * *    
Transient receptor potential-like * *   * 

 

        Gene present with an open reading frame;         Gene present but no open reading frame due to stop 

codons or indels;         No transcript was detected; * indicates only a partial coding sequence was present; 

Numeric values correspond with a particular transcriptome sequence from the original data; ninaC = Neither 

inactivation nor afterpotential C; ina* = Inactivation no afterpotential.  Data generated and adapted from 

Tierney et al. (2015) and unpublished data of authors SMT, SJBC, KMS, TB, JH, WFH & ADA. 

 

Targetted capture of candidate phototransduction genes 

We further evaluated the evolution of the phototransduction genes displaying 

evidence of pseudogenisation or an absence of transcription in subterranean species using 

targeted exon capture (Gnirke et al. 2009). We obtained exon sequence data for a total of 

32 distinct subterranean Limbodessus (22) and Paroster (10) species, including five groups 

of sympatric sister species from 20 unique calcretes, and eight genes: arr1, arr2, inaD, c-

opsin, lwop, uvop, trp, and trpl  (Fig. 1; Table 2). Capture success was high in the surface 

species, however, it was varied in the subterranean species (Table 2). The levels of missing 

data were not consistent across all eight genes for one species, or across one gene for all 32 

species, which implies that the capture success was mostly influenced by the presence of 

highly mutated genes and not the quality of the baits or the initial DNA. However, the 

absence of trp in all Paroster species and uvop in all Limbodessus species implies the baits 

may not have worked in these cases. Orthology with functional surface beetle copies of 

each gene was confirmed using BLAST and phylogenetic analyses (see Tierney at al. 2015 
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for methods unless otherwise modified and Supplementary Information: SI2, SI3, and SI4 

for results). We were unable to make an assessment on ninaC or prominin as no quality 

sequences were captured. 

 

 

 
 

Figure 1: Phylogenetic relationships and habitat distribution of subterranean beetles. 

a. Current phylogeny of the subterranean beetles from Leys et al. 2012, with blue boxes 

representing sympatric sister species groups, and coloured branches representing: 

subterranean species found inside the Yilgarn (red), surface species (black) and 

subterranean species found outside the Yilgarn (green). An example of a sympatric sister 

triplet of species (P. macrosturtnesis, P. mesosturtensis, and P. microsturtensis) endemic 

to the Sturt Meadows calcrete along the right hand side.  
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Table 2: A functionality evaluation of key phototransduction genes from exon 

capture data. 
   Genes  

 Calcrete Species arr1 arr2 inaD c-

opsin 

lwop uvop trp trpl 

 

Surface 

species 

N/A P. nigroadumbratus         

N/A P. gibbi 16 15 29 25  34  28 

N/A L. rivulus        47 

N/A L. compactus        39 

 
 

 

 

 

 

 
 

 

 
Subterranean 

Limbodessus 

 
Laverton Downs 

L. palmulaoides    33 12  11 45 

L. windarraensis    43   13 47 

L. lapostaae 74 20  43 21  12 61 

Paroo L. eberhardi*  68  18 55   67 

 L. pulpa*    31   27 68 

Mt Morgan L. cooperi 74    54  14 59 

 L. leysi 74   39   18 45 

Barwidgee L. barwidgeensis    20 29   42 

Uramurdah Lake L. hahni  14  67 23  14 43 

Hinkler Well L. hinkleri     72   61 

Lake Violet L. millbilliensis 40 11  54 55   67 

Miranda West L. mirandaae     40  12 53 

Cunyu: Sweetwaters L. cunyuensis 19 88 11 14 60  18 69 

L. silus*  15  30   15 36 

L. sweetwatersensis*  73   56   70 

Cunyu: SBF L. bialveus    27   14 47 

L. macrotarsus    57 14  21 50 

Melita L. melitaensis* 21 88  23 65  36 50 

 L. micromelitaensis* 88 86   63  14 45 

Bunnawarra L. microocular*        59 

L. micrommatoion*        64 

Cue L. cueensis 40   23 66  12 55 

 

 
 

 

Subterranean 
Paroster  

 

Sturt Meadows 

P. macrosturtensis* 15 38 13 82 66 58   

P. mesosturtensis*  51   59    

P. microsturtensis* 22 45  85 38    

Melrose Station P. darlotensis     18 90   

P. melrosensis         

Central Mt Wedge P. wedgeensis 31  13  42 63   

Moorarie P. verrucosus   28 61 66    

Innouendy P. copidotibae  56 13 81 75    

Milgun Station P. hamoni 43 87       

Three Rivers Station P. plutonicensis  34   58    

 

        Gene present with an open reading frame;         Gene present but no open reading frame due to stop 

codons or indels;        No orthologous sequence was detected; * indicates sister species; Numeric values 

correspond to the percentage of missing data in that gene, with missing data < 10% not recorded 

 

Pseudogene assessment  

When we compared the eight targeted orthologous genes from the subterranean species to 

that of the surface species (Table 2), we detected mutations indicative of pseudogenes; 

indels leading to frameshift mutations and stop codons, resulted in a truncation of the 

encoded proteins, in six genes: arr1, arr2, c-opsin, lwop, uvop, and trpl (Supplementary 

Information: SI5 for an example alignment). Importantly, each of these pseudogenes from 

each subterranean species contained its own unique combination of protein altering 
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mutations, with pseudogenisation occurring in parallel across multiple species (arr1 (20 

pseudogenes/ 32 different subterranean species sequenced), arr2 (17/29), c-opsin (17/28), 

lwop (22/31), uvop (2/3) and trpl (10/22); Table 2). Conversely, inaD and trp had full open 

reading frames (ORF) for all species in which the genes were detected: 32 and 22 

subterranean species, respectively (Table 2). Due to the missing data and poor capture 

success of uvop, we were unable to use it in any further analyses, although the data 

obtained suggest uvop has degraded to a significant extent in subterranean species. 

 

Tests of purifying selection and neutral evolution 

Given that a proportion of the phototransduction genes had open reading frames, we tested 

whether these genes had elevated rates of nonsynonymous nucleotide substitutions, or 

amino acid substitutions in the subterranean lineages, relative to surface lineages, 

indicative of neutral evolution. Relative rates of molecular evolution were examined in 

eight genes across five independent comparisons of subterranean species to surface 

species. A likelihood ratio test (LRT) was used to test the null hypothesis that two 

sequences evolve at equal rates when compared to an outgroup (Muse & Weir 1992). For 

analyses of nucleotide variation, 13 comparisons showed a faster rate in subterranean 

lineages than surface ones, with 6 being significantly faster (Table 3). LRT analyses of the 

genes lwop and trp were significant (i.e. the rate of evolution was faster in the subterranean 

lineage relative to the surface) in every case, except between L. rivulus and L. 

microocular, which were not significant for any gene. Similarly, amino acid pairwise 

overall relative rates between L. microocular and L. rivulus showed no significant 

differences in the rate of evolution of any gene, however, all other lwop and arr2 

comparisons were significant. Additionally, higher rates of amino acid evolution in 

subterranean lineages compared to surface ones, were found in 15 comparisons, with 11 

being significantly faster (Table 3). 
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Table 3: Phylogenetically independent tests of variation in overall substitution rate of 

subterranean lineages compared to surface lineages. 

 
Gene Lineage 1 (surface) Lineage 2 

(subter.) 

Outgroup 

(surface) 

Overall 

nucleotide LR 

dN LR Amino acid 

LR 

Amino acid  

p-value 

arr1 L. rivulus L. microocular L. compactus 0.071 1.018 >0.001 0.999 

L. compactus L. macrotarsus L. rivulus 0.509 10.49* 21.47 3.58e-6* 
P. nigroadumbratus P. melrosensis P. gibbi 0.450 0.617 31.11 2.43e-8* 

P. gibbi P. microsturtensis P. nigroadumbratus 10.79* 8.856* 1.464 0.226 

arr2 L. rivulus L. microocular L. compactus 1.001 0.607 >0.001 0.999 
L. compactus L. macrotarsus L. rivulus 2.992 0.436 44.49 2.55e-11* 

P. nigroadumbratus P. melrosensis P. gibbi - - - - 

P. gibbi P. microsturtensis P. nigroadumbratus 7.669* 6.637* 36.65 1.42e-9* 

inaD L. rivulus L. microocular L. compactus 0.139 0.359 1.361 0.243 

L. compactus L. macrotarsus L. rivulus 2.481 15.53* 0.002 0.961 

P. nigroadumbratus P. melrosensis P. gibbi 0.007 0.495 0.188 0.665 
P. gibbi P. microsturtensis P. nigroadumbratus 2.058 0.031 4.099 0.043* 

c-

opsin 

L. rivulus L. microocular L. compactus 1.032 0.163 2.718 0.099 

L. compactus L. macrotarsus L. rivulus 2.035 0.104 1.106 0.293 
P. nigroadumbratus P. melrosensis P. gibbi 2.038 0.121 0.616 0.432 

P. gibbi P. microsturtensis P. nigroadumbratus 0.926 0.608 7.973 0.005* 

lwop L. rivulus L. microocular L. compactus 0.129 0.547 0.009 0.924 
L. compactus L. macrotarsus L. rivulus 5.631* 0.871 9.578 0.002* 

P. nigroadumbratus P. melrosensis P. gibbi 3.863* 3.796* 25.80 3.78e-7* 

P. gibbi P. microsturtensis P. nigroadumbratus 13.37* 0.871 15.92 6.59e-5* 

trp L. rivulus L. microocular L. compactus 0.787 0.132 >0.001 0.999 

L. compactus L. macrotarsus L. rivulus 6.748* 21.83* 4.796 0.029* 

trpl L. rivulus L. microocular L. compactus 0.109 0.011 0.023 0.881 
L. compactus L. macrotarsus L. rivulus 0.430 0.967 6.012 0.014* 

 

subter. = subterranean; LR = Likelihood ratio, which tests the likelihood of the data fitting into a particular 

model in comparison to another; * denotes a significant p-value of < 0.05 

 

Site by site analyses in HyPhy (Fixed Effects Likelihood (FEL) and Single 

Likelihood Ancestor Counting (SLAC); Pond & Frost 2005) were used to infer 

nonsynonymous (dN) and sysnonymous (dS) substitution rates (collectively known as ω). 

Overall, FEL analyses showed that most genes (except for inaD and trp) in the 

subterranean lineages had an ω value close to 1 (ranging from 0.687 to 1.28; average 

0.924), while most surface lineages had an ω value close to 0.1 (ranging from 0.033 to 

0.252; average 0.129). Combined, inaD and trp had an average of ω = 0.316 (ranging from 

0.228 to 0.360) in subterranean lineages, and ω = 0.101 (ranging from 0.051 to 0.132) in 

surface species (Table 4). It is unclear where along the branch leading to a subterranean 

species it actually colonised the calcrete and evolved in darkness and, hence, ratios of non-

synonymous to synonymous substitutions (omega: ω) would be predicted to show values 

<1 (i.e. indicative of purifying selection). To overcome this issue we utilised the sympatric 
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sister species, where we predict that the entire tip branch leading to these taxa represents 

evolution in the dark, with ω values approaching 1 under neutral evolution. Using 

sympatric species only, we found similar results to the overall values of ω, however, they 

were generally slightly higher, ranging from 0.431 to 4.34 (average 1.33). 

 

Table 4: Independent site by site analyses of nonsynonymous to synonymous 

mutations (ω) at each codon for all species, and ω branch rate inferred from 

sympatric sister species lineages only. 

 

Genera Gene Reference ω Test ω Sympatric Sister   

species ω 

Limbodessus arr1 0.0334 0.687 1.65 

 arr2 0.0753 0.762 0.431 

 inaD 0.132 0.360 0.458 

 c-opsin 0.252 1.13 1.07 

 lwop 0.149 0.959 0.913 

 trp 0.0507 0.361 0.684 

 trpl 0.156 0.804 0.551 

Paroster arr1 0.0964 0.814 4.34 

 arr2 0.162 0.748 0.783 

 inaD 0.120 0.228 0.308 

 c-opsin 0.132 1.28 1.36 

 lwop 0.105 1.13 0.912 

 

Reference ω = Surface species nonsynonymous/synonymous rate ratio using Bayesian phylogeny and 

alignments; Test ω = Subterranean species nonsynonymous/synonymous rate ratio using Bayesian phylogeny 

and alignments; Sympatric sister species ω = Subterranean sympatric sister species 

nonsynonymous/synonymous rate ratio using Bayesian phylogeny and alignments 

 

We ran a branch model test using HyPhy (RELAX; Kosakovsky et al. 2015) in 

Datamonkey (datamonkey.org), which identifies the level of selection intensity (K) that 

invariably influences the overall estimation of ω (i.e. ω is estimated for each branch of the 

tree). Under these parameters, a value of K > 1 is indicative of purifying selection, while K 

< 1 is indicative of relaxed selection. Both the null and alternative model were used to 

estimate ω for each branch of the tree, however, the null model does not transform the 

branches, whereas the alternative model estimates K which transforms ω for two different 

branch classes. We only used lineages associated with sympatric sister species for this 

analysis and compared to the surface lineages. In all cases, the alternative model fitted the 
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data better, based on likelihood ratio values (Table 5).  Most genes had a K value of less 

than one (range 0.00 to 0.92), indicating a relaxation of selection in the branches 

associated with subterranean species. The exceptions were Limbodessus trp and trpl which 

were suggestive of significant purifying selection along branches (i.e. significant K value 

over 1), and Limbodessus inaD, lwop, and Paroster inaD, which did not have a significant 

value of K (i.e. all values were not significantly different from 1; Table 5).  

 

Table 5: Branch corrected (RELAX), independent comparisons of surface and 

subterranean sympatric sister species branches for determination of selection 

strength (K). 

 
Species Gene Model logL AICc np K p-value LR 

Limbodessus arr1 null -4685.6 9514.3 71 1.00 - - 
  alternative -4670.9 9486.8 72 0.02 < 0.001 29.52 

 arr2 null -4680.8 9504.6 71 1.00 - - 

  alternative -4671.0 9487.1 72 0.16 < 0.001 19.46 
 inaD null -4321.5 8785.9 71 1.00 - - 

  alternative -4320.7 8786.3 72 2.48 0.205 1.61 

 c-opsin null -4533.4 9209.7 71 1.00 - - 

  alternative -4533.3 9211.6 72 0.92 0.699 0.15 

 lwop null -4820.8 9784.7 71 1.00 - - 

  alternative -4820.8 9786.8 72 1.16 0.999 0.01 
 trp null -6037.6 12217.8 71 1.00 - - 

  alternative -6033.3 12211.3 72 3.78 0.003 8.55 
 trpl null -5221.3 10579.4 68 1.00 - - 

  alternative -5217.9 10574.6 69 3.82 0.009 6.75 

Paroster arr1 null -3593.7 7278.4 45 1.00 - - 

  alternative -3575.8 7244.6 46 0.00 < 0.001 35.89 
 arr2 null -1987.3 4050.0 37 1.00 - - 

  alternative -1987.3 4052.1 38 0.02 < 0.001 27.77 

 inaD null -4087.0 8264.6 45 1.00 - - 
  alternative -4086.1 8264.8 46 0.47 0.178 1.81 

 c-opsin null -2464.6 5004.1 37 1.00 - - 

  alternative -2462.9 5002.9 38 0.00 0.071 3.27 
 lwop null -2562.1 5211.4 43 1.00 - - 

  alternative -2556.1 5201.4 44 0.40 0.001 12.10 

 

np = number of parameters; K = selection intensity parameter, where a significant K > 1 indicates 

intensification of selection and a significant K < 1 indicates a relaxation of selection; p-value, where p < 0.05 

indicates significance; LR = likelihood ratio 

 

 

Discussion 

Regressive evolution has played a crucial role in the evolution of traits, such as the loss of 

limbs in snakes (Bejder & Hall 2002 for a review and references therein), loss of eye and 

pigment in subterranean animals (Jeffery 2009; Juan et al. 2010), and loss of teeth in birds 

(Louchart & Viriot 2011 for a review and references therein), to name a few. However, 
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how trait regression occurs, either via selection or neutral evolutionary processes, is a 

matter of great debate. In this study, we show that of a suite of 19 phototransduction genes, 

six have clear evidence of pseudogenisation and parallel neutral evolution in multiple 

Paroster and Limbodessus diving beetles species. Specifically, we found unique mutations 

leading to a loss of function in the encoded protein of genes arr1, arr2, c-opsin, lwop, 

uvop, and trpl, for multiple species, with all ω values approaching one. In many study 

systems, the ability to detect the mode of evolution operating on genes specifically 

associated with regressed traits is hampered by the problem that there has been insufficient 

time for the accumulation and fixation of mutations that result in pseudogenisation 

(Podlaha & Zhang 2010). An example of this problem in the beetle system is L. 

microocular and L. microomatoion, which have only recently evolved from a surface 

ancestor, and show no evidence of pseudogenisation in any of the vision genes studied 

here. Clear evidence of all the genes that are evolving neutrally may not become apparent 

for millions of years.  

 Most genetic studies on eye regression in subterranean animals have tended to 

focus on opsin genes, with limited evidence of pseudogenisation found to date. In 1995, 

Yokoyama et al. found an increased rate of C → T transversions and nucleotide 

substitutions in red and green opsin gene sequences of Astyanax fasciatus from Pichon and 

Micos caves, indicative of pseudogenisation. The melanopsin and rhodopsin of the 

Somalian cavefish, Phreatichthys andruzzii, were found mutated and non-functional, likely 

from a relaxation of selection (Calderoni et al. 2016), with a similar result found in the 

rhodopsin of amblyopsid cavefishes (Neimiller et al. 2012), supporting neutral evolution. 

Opsins are directly involved in vision (photoreception), as are the arrestins, ninaC, and 

prominin, and are unlikely to have a function outside of the visual network. The additional 

phototransduction genes detected using transciptome data (Table 1) have a multitude of 

functions not related to vision, including non-vision sensory systems, channel activity, and 
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involvement in other organ functions (flybase; SI1), and should all remain under purifying 

selection because of these pleiotropic roles. The diving beetles are mostly ancient relicts 

that have been underground for millions of years, have multiple (75+ known) species that 

have independently evolved from surface species, and some sympatric sister species that 

have most likely evolved underground (Cooper et al. 2002; Leys et al. 2003; Leijs et al. 

2012). Therefore, this study system is ideal for comparative genomics, and understanding 

the evolutionary forces that are operating on key genes in the genome, during evolution in 

the dark.  

 

METHODS 

Calcrete sampling. Subterranean diving beetle species from the genera Limbodessus and 

Paroster were collected from calcretes in the Yilgarn region of Western Australia utilising 

pre-drilled bore holes. A total of 32 subterranean beetle species were sampled from 20 

calcretes and stored in 100% ethanol (Table 2). Five surface species (Allodessus 

bistrigatus, Limbodessus compactus, L. rivulus, Paroster nigroadumbratus, and P. gibbi), 

that are closely related to the subterranean species, were also sampled from surface pools, 

and stored in 100% ethanol. 

Sequence capture probe design. De novo assemblies of putative transcripts for five 

diving beetles (two surface and three subterranean) were used to identify and annotate 19 

phototransduction genes (Table 1) (method from Tierney et al. 2015). We selected a subset 

of 10 genes, where transcripts were present in the surface species, but either absent or 

showed evidence of non-functionality in the subterranean species. Sequence capture 

probes were developed from the orthologous transcript sequences of these genes from the 

two surface and three subterranean species used in Tierney et al. (2015) and synthesized by 

Arbor Biosciences (Ann Arbor, MI).  
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Library preparation and Hybridization enrichment. DNA was extracted from whole 

beetle specimens using the Gentra protocol for small quantities of DNA (Gentra Systems, 

Inc.), with minor modifications (SI6). Starting material for sonication ranged from 100 ng 

to 500 ng as verified by fluorometry. We constructed sequencing libraries using the Meyer 

and Kircher protocol (Meyer & Kircher 2010), using double indexing primers (Hugall et 

al., 2015; Glenn et al., 2016). We assessed the success of library preparation by qPCR, 

using a DNA quantification kit with the standard protocol in a LightCycler 96 Real-Time 

PCR System.  

We performed the enrichment following the Arbor Biosciences MYbaits user 

manual v2 (formerly Microarray), with minor modifications (SI6). Following the 

enrichment, all samples were pooled in equal concentrations and subsequently dried down 

to 30 L. The first MiSeq run contained six pooled samples (four different species), the 

second contained eight pooled samples (eight different species), the third contained 22 

pooled samples (18 different species) and the final Miseq run contained 15 pooled samples 

(12 different species). Each pooled set was run on its own lane on the Illumina MiSeq 

platform (AGRF facility in Adelaide, Australia), obtaining 300 bp paired end reads for 

Miseq run one, two and four, and 150 bp paired end reads for Miseq run three.  

Bioinformatics. Raw sequencing reads for each species were assessed using FASTQC 

v.0.11.3 (Babraham Institute). Using a shell script, all sequences were then cleaned, 

trimmed, mapped, and indexed (Supplimentary Information: SI8) on a 12-core virtual 

machine on the NeCTAR research cloud (National Research Infrastructure for Australia) 

under an Ubuntu 16.04 LTS image. Resulting files were viewed in IGV v.2.3.92 

(Robinson et al. 2011; Thorvaldsdóttir et al. 2013) and exon-intron junctions were 

manually separated and subsequently re-mapped. 

Cleaned reads for each species were de novo assembled using various assemblers (see SI6) 

and subsequently compared to a personalized BLASTn database (Tierney et al. 2015) 
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containing the vision genes from transcriptome data (Table 1). The alignment function of 

Geneious v.10.2.6 (Kearse et al. 2012) was used to map cleaned reads to the reference 

sequences as mentioned above, in order to verify mapping quality, but also to extend final 

sequences if possible. 

Orthology of genes. We used the BLASTn feature within Genbank to compare our 

nucleotide sequences to the database of available genes, with the top three hits recorded 

(SI2). An orthologous match was considered positive when identities were greater than or 

equal to 70% with at least 50% of the gene covered by the match (Tommaso et al. 2011; 

Tierney et al. 2015).  

Each gene group, arrestin (arr1 and arr2), opsin (c-opsin, lwop, and uvop), trp (trp 

and trpl) and inaD, were aligned with CLUSTALW in Geneious. We were unable to 

capture any reads for ninaC or prominin, possibly due to problems with the transcript 

assembly and bait design.  

Subsequently, Bayesian phylogenies were constructed using BEAUTi v.2.4.7 

(Bouckaert et al. 2014) and BEAST v.1.7.5 (Drummond et al. 2012) for each gene group 

with outgroup references from other species from Genbank for each gene (SI3), in order to 

verify the identity and orthology of genes. Two independent runs using a General Time 

Reversible (GTR) model of sequence evolution (Tavaré 1986), were carried out with 50 

million generations and trees sampled every 5000 generations. We used a burn-in of 25% 

(12.5 million) generations per run. The convergence of runs was assessed using Tracer 

v.1.5 (Rambaut & Drummond 2009), ensuring effective sample sizes > 200. Final gene 

trees were viewed and edited in FigTree v.1.4.3 (Rambaut 2012).  

Pseudogene assessment. All sequences were aligned and assessed for ORFs to determine 

whether the sequences were likely to code for functional proteins. We took note of 

sequences that contained indels (insertions or deletions) and pre-mature stop-codons and 

assessed the read quality of these sites for sequencing errors by mapping raw reads onto 
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the sites using Geneious. For genes under neutral evolution, we would expect them to 

either contain translational stop codons and/or frameshift mutations leading to altered 

protein, or increased rates of nonsynonymous substitutions (dN) relative to synonymous 

substitutions (dS) (i.e. d /dS 1). 

Tests of Selection. We used HyPhy to determine the pairwise relative rates of independent 

comparisons of surface and subterranean species, using a GTR model of sequence 

evolution (Tavaré 1986). First, we tested for variation in overall and nonsynonymous 

substitution rates and predicted that there will be elevated rates of evolution of exon 

sequences of genes under neutral evolution in subterranean species when compared to 

surface species. We compared overall rates of nucleotide substitution rate by comparing 

the likelihood scores of a shared substitution rate between taxa. Branch lengths were 

estimated independently with global (i.e. shared) model parameters. Rate parameters were 

calculated using maximum likelihood, and equilibrium (nucleotide) frequencies were 

‘observed’. We repeated overall pairwise relative rates on inferred amino acid sequences 

following the same parameters as above. Additionally, we performed pairwise relative rate 

tests of nonsynonymous subtitutions, using the same options as above, except using local 

(i.e independent) model parameters instead of global.  

We then employed Datamonkey v.2.0 (datamonkey.org; Weaver et al. 2018) for 

phylogenetic hypothesis testing, which required Bayesian inferred trees (constructed in 

BEAST using the main seven nuclear genes from the exon capture (arr1, arr2, lwop, c-

opsin, inaD, trp, and trpl, but excluded uvop as there was too much missing data) and 

mitochondrial genes COI, 16S, and ND1 from Genbank (accession numbers found in SI9), 

following specifications listed above). In Datamonkey, we used two site-specific methods 

that calculate ω independently at each codon: single-likelihood ancestor counts (SLAC) 

which are simplistic, and fixed effect likelihood (FEL), which are less susceptable to Type 

1 errors (Pond & Frost 2005). We expected a higher value of ω in the subterranean species 
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(close to 1) than the surface species that have genes under purifying selection. For this 

analysis and the following, we chose to focus on sympatric sister species, as these species 

are likely to have speciated underground (Leijs et al. 2012; Chapter 3), and hence the 

branch tip for these taxa would not comprise any period of evolution on the surface. 

We carried out branch by branch analyses (RELAX in Datamonkey; Wertheim et 

al. 2015) comparing surface branches to subterranean sympatric sister species tip branches. 

RELAX estimates a value of ω along each branch by a model of branch site-random 

effects likelihood (BS-REL) and then fits the selection intensity (K) which quantifies the 

level by which ω diverges from neutrality along each branch. Under this model, K > 1 is 

indicative of purifying selection, while a K < 1 is indicative of relaxed selection. RELAX 

requires an open reading frame, therefore, all insertions that were not a multiple of three 

were removed, an ‘N’ was added to the third position of stop codons, and deletions were 

filled with N’s until the sequence was back in the correct reading frame. 

General methods. A full detailed description of the laboratory methods and references can 

be found in Appendix 5: Supplementary Information: SI6 and SI7. 
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Chapter 5: General discussion 
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Subterranean animals are perplexing and highly understudied, as they are usually 

expensive and difficult to find or locate, however, they are immensely important in 

elucidating many evolutionary and biological questions (Page et al. 2008; Juan et al. 

2010). The overarching aim of this project was to improve our understanding and 

knowledge of the vision-related and evolutionary processes associated with the 

massive assemblage of subterranean diving beetles found in Western Australia by: 

examining their behavioural reactions to light, determining how the genes of the 

regressed vision phenotype evolved, and elucidating how they may have speciated 

(i.e. is there any evidence for speciation underground). This study has identified 

one beetle species (of six) that has retained negative phototactic responses, likely an 

ability beneficial to its interstitial ancestor; next generation sequencing has been 

used to successfully target vision related genes from a variety of subterranean beetle 

taxa, and found six photoreceptor-specific genes (out of 19) to be evolving neutrally 

due to the high number of unique mutations and pseudogenes; and specific protein-

altering mutations in a neutrally evolving long wavelength opsin gene were found 

shared among sympatric sister groups, indicating a common ancestor of these 

species was already living underground prior to speciation.  

 

Retained negative phototaxis and the importance of this discovery  

Visual capability can be subdivided into categories of light detection, recognition of 

light directionality, and image formation (Borowsky 2011), which do not all require 

a functional eye. Therefore, it is possible for subterranean animals to sense light and 

its direction, despite having highly reduced or absent eyes. It was hypothesized that 
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animals living in darkness will have lost all ability to perceive light (i.e. phototactic 

responses), given enough time (Langecker 2000). However, little information exists 

on eyeless subterranean animals, with amphipods representing the main body of 

current existing work (Borowsky 2011; Fišer et al. 2016). The eyeless diving beetles 

in Western Australian calcretes live in permanent darkness, and have done so for 

millions of years (Leys et al. 2003) and therefore could be used to test Langecker’s 

theory. Therefore, given the choice between light and dark, we would expect the 

eyeless beetles to have zero preference as they should not be able to perceive light.  

Based on a standard light-dark choice test, Paroster macrosturtensis was found 

in the dark significantly more often than the light, suggesting negative phototaxis. 

The remaining five species did not display any preference for either light or dark 

hemispheres (Chapter 2). The genes inaD and trp, which are both important in the 

visual cascade (Appendix 5: Table SI1), had open reading frames in all subterranean 

and surface species used in this study, suggesting they are functional (Chapter 4). 

At present, we have only 20% of the entire c-opsin gene in P. macrosturtensis, and 

therefore, the protein could still be functional (Chapter 4). Furthermore, it is 

possible that additional opsins could be present that we have yet to detect and/or 

identify. Further work is clearly needed to be done in this area to determine how P. 

macrosturtensis has the ability to detect and behaviourally respond to light. 

Although P. macrosturtensis appears to be completely eyeless, histological 

investigations of the presence or absence of internal eye structures have yet to be 

undertaken. It is also possible that extraocular photoreceptors could be responsible 

for light detection in P. macrosturtensis. In other studies, the brain was thought to be 

the source of phototactic perception in some cave species (Wilkens and Larimer 
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1976; Fleissner and Fleissner 2003; Xiang et al. 2010; Borowsky 2011; Fišer et al. 2016), 

and could be involved in this case as well. This study is one of a very few to find 

phototactic responses in eyeless animals, demonstrating the importance of this 

subterranean beetle group in vision studies on a more complex behavioural and 

genetic level. 

 

Modes of speciation in subterranean beetles: evidence for 

speciation underground from a neutrally evolving gene  

Speciation modes of animals in cave systems have been relatively well studied 

(Howarth 1987; Rouch and Danielopol 1987; Holsinger 1988, 2000; Peck and 

Finston 1993; Desutter-Grandcolas and Grandcolas 1996; Rivera et al. 2002; Wessel 

et al. 2007), as underground systems offer unique features ideal for evolutionary 

study (Poulson and White 1969; Cooper et al. 2007; Page et al. 2008). Most 

subterranean species, including the majority of subterranean beetles in this study, 

evolved independently by allopatric speciation following colonisation by different 

surface ancestor species (Mayr 1963; Holsinger 1988, 2000; Coyne 1992; Rice and 

Hostert 1993; Peck and Finston 1993; Leys et al. 2003). However, sympatric sister 

species in the beetle system (Leijs et al. 2012) raised the possibility of alternative 

speciation modes. Mathematical modelling suggests that the sister species likely 

evolved underground in the calcretes (Leijs et al. 2012), however, at the time, the 

lack of data made it difficult to rule out evolution by multiple colonisations from 

the same ancestral species. Living underground from 3 to 10 million years ago 

(Leys et al. 2003; Leys and Watts 2008), these beetles are of sufficient paleo-age to 
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find major mutations in the neutrally evolving genes specifically associated with 

regressed traits (Chapter 4). These same genes should potentially also be helpful 

in determining how sympatric sister species speciated, as shared deleterious 

mutations in photoreceptor genes of sympatric sister species could provide strong 

evidence that speciation took place underground.  

A sympatric sister triplet of species from the Sturt Meadows calcrete were 

found to share several major mutations in lwop (an 18 base pair deletion and a 

mutation leading to a stop codon in two of the three species; Chapter 3). A two 

base pair insertion was also found in lwop of a sister pair located in adjacent 

calcretes, Innouendy and Byro West. These specific mutations were mapped to the 

common ancestral branch of each sister species triplet/pair in the beetle 

phylogeny, therefore, suggesting the ancestor was already adapted to living 

underground prior to the further divergence of each taxon. There was no evidence 

of multiple copies of lwop in any of the analyses we conducted using exon capture 

analyses, including the data we obtained from the three Sturt Meadows species. 

However, we can not entirely rule out the possibility that lwop duplicated in the 

ancestor of the three Sturt Meadows species. It is also possible that the common 

ancestor had a non-functional lwop prior to entering calcretes, perhaps during a 

period of evolution in interstitial habitats. However, we identified a functional 

lwop in an interstitial species, L. rivulus (Chapter 4), suggesting that the loss of lwop 

may not be associated with an interstitial lifestyle and most likely occurred during 

evolution underground within the calcretes. However, it would be important to 

study additional interstitial taxa to confirm this finding.  



128 
 

The analyses provide evidence that the triplet found within the Sturt 

Meadows calcrete evolved underground (Chapter 3), potentially via sympatric 

speciation underground through disruptive selection (following criteria by Coyne 

and Orr 2004), a theory also supported in other subterranean studies (Barr and 

Holsinger 1985; Barr 1960; Morton et al. 1998; Buhay and Crandall 2005; Christman 

et al. 2005; Faille et al. 2010; Ribera et al. 2010). However, a limitation in many of 

these studies is they are reliant upon phylogenies, and so cannot rule out the 

possibility that ancestral surface species have gone extinct. Additionally, it is 

difficult to rule out allopatric processes occurring within the calcrete (e.g. by 

isolation of populations due to water table fluctuations). However, one sister 

species pair (L. melitaensis and L. micromelitaensis), not examined in Chapter 3, are 

found in a tiny calcrete and therefore, opportunities for micro-allopatric speciation 

may have been limited. Periods of isolation may have been relatively short, 

meaning parapatric or sympatric speciation is likely in this case. The shared lwop 

mutation in two sister species from adjacent calcretes (Innouendy and Byro West ) 

help support the hypothesis for speciation underground, however, in this case by 

allopatric speciation possibly due to physical separation of a once continuous 

calcrete body in the region.  

 

Comparative genomic study reveals neutrally evolving vision 

genes 

Regressive evolution, such as in the loss of limbs in snakes, teeth in birds, and 

eyes and pigment in subterranean animals, is commonly found in nature, but it 
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has long intrigued evolutionary biologists (Darwin 1859; Jeffery 2009; Kimura 1984). 

Despite centuries of study, the evolutionary mechanism behind trait regression is 

still highly debated. A large assemblage (100+ species) of subterranean diving 

beetles that independently evolved and converged on eye/vision loss over 

millions of years (Leys et al. 2003; Watts and Humphreys 2006 and references 

therein; Watts and Humphreys 2009; Leijs et al. 2012), provides an unparalleled 

comparative system to explore changes to the genome. Using transcriptome data 

and exon capture methods to enrich and sequence genes involved in vision, our 

study was able to successfully generate sequence data from 19 photoreceptor 

genes, including arrestins and opsins, from 32 different subterranean species 

(Chapter 4). 

We found unique loss of function mutations or elevated rates of evolution 

in the encoded protein of six genes, arr1, arr2, c-opsin, lwop, uvop, and trpl, for 

subterranean species of Paroster and Limbodessus. These analyses lend support to 

the neutral theory, which has operated in parallel on genes specifically involved in 

photoreception. Despite selection being the more popular theory in studies of the 

regressive evolution of eyes in cave animals (Breder 1942; Sadoglu 1967; Jeffery et 

al. 2000; Yamamoto et al. 2003; Menuet et al. 2007; Protas et al. 2007; Jeffery 2009 

and references therein), neutral evolution and pseudogenisation of photoreceptor 

genes in subterranean species has been identified in other systems (Yokoyama et 

al. 1995; Kim et al. 2011; Niemiller et al. 2013; Calderoni et al. 2016). Our study adds 

additional support for the neutral evolution of vision genes, but also highlights 

the random nature of neutral evolution, as not all of the same genes were found 

with protein altering mutational changes (Chapter 4). It is possible that some 



130 
 

species have not had enough time to accumulate and fix mutations in these 

photoreceptor genes, especially for the more recently evolved species. Additional 

genes, inaD and trp, although they were not detected in the transcriptomes of 

subterranean species, had open reading frames, suggesting they encoded 

functional proteins, likely connected to their multiple roles within the sensory 

system (flybase; SI1 from Chapter 4). We also found what appears to be fully 

functional photoreceptor genes, with open reading frames, in a recently evolved 

subterranean sister species pair, L. microocular and L. microomatoion, that have 

maintained small eye remnants, despite these species living in complete darkness 

within a calcrete. Recently evolved groups allow for an assessment of whether 

selection is potentially involved in driving the pseudogenisation process, as we 

would expect that under selection, the fixation of mutations would proceed more 

quickly when compared to fixation under neutral evolution. However, in this 

case, selection appears unlikely given the results for L. microocular and L. 

microomatoion (Chapter 4). 

 

Regressive evolution and the importance of the subterranean 

diving beetle system 

We were able to successfully sequence extremely mutated and highly variable 

photoreceptor genes, highlighting the value of the gene capture approach for 

studies of the regressive evolution of genes. Previously, we were restricted by 

genetic techniques (i.e. single gene methods such as Sanger sequencing) and limited 

to sequencing a standard suite of genes for which primers could be designed for 
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PCR-amplification. For example, cinnabar was sequenced in the diving beetles by 

using existing genes and primers found from Drosophila melanogaster (flybase) and 

Tribolium castaneum (Lorentzen et al. 2002), with a nested PCR approach, which was 

necessary due to the difficulty in PCR-amplifying this nuclear gene (Leys et al. 

2005). However, next generation sequencing techniques and, specifically, 

hybridisation capture methods were optimized, and were crucial in the success of 

this study, as they allowed for the simultaneous study of multiple genes involved 

in vision. Evidence for pseudogenisation and neutral evolution in six vision-specific 

genes was found in parallel (Chapter 4), highlighting the value of using many 

independently evolved subterranean species. As previously stated, these species 

have been evolving underground for millions of years (Leijs et al. 2012), allowing 

random mutations to accumulate and become fixed within the species. In contrast, 

the Astyanax cavefish system has been extensively used to elucidate the mechanism 

behind eye regression (Fumey et al. 2018; Jeffery 2009 and references therein). 

However, eye genes in this system have been found functional thus far, which may 

solely reflect that not enough time has passed to allow the accumulation of 

mutations in vision-related genes, as the Astyanax system is relatively young 

(Fumey et al. 2018). The recovery of these vision genes in non-model organisms 

through next generation sequencing techniques is a promising first step for 

exploring genomic changes that accompany evolution underground.  

 Using neutrally evolved genes associated with regressed traits, we can find 

patterns of evolution that we would otherwise have missed in investigations of how 

subterranean animals have speciated. These diving beetles are useful for long term 

studies of evolution underground, and the sympatric sister species allow one to 
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look at the mutations that are occurring early in their evolution. However, despite 

the benefits of this system, there are some limitations. The subterranean beetles are 

not ideal for evolutionary developmental studies as we have yet to establish a 

breeding program and there is no surface conspecific with which to make hybrid 

crosses. In this respect, the Astyanax cavefish system is far more appropriate. 

Astyanax has been deemed both the ‘fruit fly’ and ‘lab rat’ of the regressive 

evolution field, as they have surface conspecifics that are interfertile and are easy to 

keep in a laboratory with a well-established breeding routine (Jeffery 2009). In 

addition, Astyanax and zebrafish share a close phylogenetic relationship, thereby 

allowing a transmission of usable techniques from the extensively studied zebrafish 

to Astyanax (see Jeffery 2009 for a review); an invaluable resource. 

 

Future directions 

There are many significant challenges when studying these subterranean beetles; 

the calcretes are expensive/complicated to get to (i.e. remote and/or privately 

owned land, e.g. under mining leases) and there is very little access to the 

groundwater, as we are entirely reliant on existing bore holes and wells. In addition, 

we know very little about the full life cycle and biology of the beetles as we have 

yet to establish stable lab colonies. A major limitation in our knowledge of these 

beetles stems from the fact that we do not currently have a robust phylogeny of the 

entire group. Phylogenetic studies have been undertaken (Leys and Watts 2008; 

Leijs et al. 2012; Chapter 4), however, they only included mitochondrial data, which 

are not always correct at discerning species relationships (Hurst and Jiggins 2005 
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and references therein), or, in our case, only include a small subset of all the 

subterranean beetle species. Additionally, another study found discordance with 

the placement of Allodessus bistrigatus (Balke and Ribera 2004). Instead of falling 

within the subterranean Limbodessus, as was found in later work (Leijs et al. 2012), it 

formed a sister group to all the Limbodessus. A robust phylogeny is the scientific 

basis for a plethora of biological applications such as classification, speciation, 

refugial re-colonisation and dating, biogeographic history, and molecular 

evolutionary analyses (Baum and Smith 2013), to name a few. 

In this study, we were able to show that one subterranean beetle species out 

of six was able to perceive light (Chapter 2). This result is curious as these beetles 

are devoid of obvious eye structures. Therefore, it will be important to determine, 

through internal and external imaging, if there is any underlying eye structure or 

even an additional structure for vision, as seen in Drosophila (Helfrich-Förster et al. 

2002), which could explain light perception. Drosophila have three specialized 

simple eyes found in the middle of their head, called ocelli, which are responsible 

for light perception and estimating day-night length, among others (Helfrich-

Förster et al. 2002; Berry et al. 2007). Ocelli are more sensitive to light (specifically 

ultraviolet light) than the compound eye and therefore, are highly important in 

perceiving the contrast between sky and ground (Chappell and DeVoe 1975). A 

mixture of transcriptome studies based on specific body locations (e.g. head or leg, 

etc.), along with quantitative PCR (quantifies abundance of each gene) has been 

instrumental in identifying unique vision-related functions in animals with poor to 

no vision (Avivi et al. 2002; Friedrich et al. 2011; Aspiras et al. 2012; Crowe-Riddell 

et al. 2019). Recently, multiple roles have been found for some opsin genes in 
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Drosophila (Leung and Montell 2017), which may be important in light perception 

being retained. It is also possible that negative phototaxis has been retained in other 

subterranean beetle species, therefore, it would be advantageous to know if/which 

other species could also perceive light. A newly discovered interstitial beetle species 

from northern Australia was found with typical morphological troglomorphic 

adaptations, indicative of a possible transition state between surface and 

subterranean life (Watts et al. 2016). Interstitial species in Australia are relatively 

unknown, however, they may be highly important in elucidating whether the 

ancestral species that colonised the calcretes had phototactic behaviour as might be 

expected for species living in interstitial environments.  

In this thesis, we chose to focus on a small subset of genes specifically 

involved in vision, due to time and budget constraints. However, there are many 

other genes with vision-related functions such as those involved in eye 

pigmentation and circadian rhythms.  Using the beetle system we can explore these 

genes and compare them to the genes of other cave animals. In a previous study by 

Friedrich et al. (2011), on Ptomaphagus hirtus cave beetles, they found 25 genes 

involved in eye pigmentation, and an additional 16 genes involved in circadian 

rhythm. Most pigmentation genes were found based on Drosophila gene orthologs, 

however, they failed to find any ABC transporter genes (Friedrich et al. 2011), which 

is significant since the ABC transporter proteins are responsible for the movement 

of eye pigments across the cellular membrane of the granule in which the pigments 

are stored, all within the compound eye (Mackenzie et al. 2000).  All the circadian 

clock genes were found functional, which was curious as P. hirtus has very reduced 

eyes (Friedrich et al. 2011). In a study on the ground beetle, T. stolzi (Bartkowiak et 
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al. 1991), which is thought to have a similar level of eye reduction as P. hirtus, it 

exhibited weak light entrainment (Lamprecht and Weber 1983, 1992), which could 

explain how P. hirtus has maintained functional circadian genes. Therefore, it would 

be interesting to compare our completely eyeless and interstitial partial-eyed 

beetles to these well-known partial-eyed cave beetle systems.  

Recently, it was determined that the subterranean diving beetles in Western 

Australia do not go to the surface for air, but instead live continuously underwater, 

likely diffusing oxygen straight from the water through their thin cuticle (Jones et 

al. 2019). Jones et al. (2019) proposed that this process limits beetle size to 

approximately 5 cm, as this keeps their cuticle thin enough to allow oxygen to 

diffuse. This fascinating result opens up an entire new line of investigation as 

adaptations such as cuticle diffusion could help us to understand how subterranean 

animals have evolved to fit environmental constraints. These incredible ancient 

diving beetles have many adaptations and regressed features that could contribute 

to resolving current evolutionary debates about regressive evolution and 

elucidating evolutionary questions such as climate relict vs. ecological/parapatric 

modes of speciation by adaptive shift (Howarth 1973; Holsinger 2000; Rivera et al. 

2002; Wessel et al. 2007), dispersal vs. vicariance (Porter 2007), and regressive 

evolution theories of selection (Yamamoto and Jeffery 2000; Jeffery 2005; Romero 

and Green 2005) vs. neutrality (Kosswig 1960; Culver and Wilkens 2000; Leys et al. 

2005), to name a few. 
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Appendix 3:   

Chapter 2: Appendix 1: Raw data table where species 1 is P. macrosturtensis, 2 is P. 

mesosturtensis, 3 is P. microsturtensis, 4 is L. palmulaoides, 5 is L. windarraensis, and 6 

is L. lapostaae. 
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Species Individual TimeL (sec) TimeD (sec) Hemisphere Change 

Scan samples where 0 is light and 1 is dark 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 1 647 553 45 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 

1 2 328 872 5 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 

1 3 501 699 30 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 

1 4 439 761 11 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 

1 5 740 460 33 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 

1 6 631 569 8 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 

1 7 153 1047 25 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 

1 8 185 1015 18 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 

1 9 182 1018 13 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 

1 10 363 837 23 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 1 

1 11 555 645 48 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 0 

1 12 317 883 36 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 0 

1 13 352 848 33 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 
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1 14 304 896 21 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 

1 15 145 1055 13 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 

1 16 543 657 53 1 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 

1 17 444 756 23 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 

1 18 453 747 4 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 

1 19 103 1097 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 

1 20 503 697 21 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 

1 21 57 1143 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 22 523 677 37 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 

2 1 577 623 41 0 1 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 1 

2 2 598 602 25 0 1 0 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 

2 3 403 797 14 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 

2 4 518 682 27 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 

2 5 573 627 38 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 

2 6 858 342 7 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 
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2 7 438 762 24 1 1 0 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 

2 8 754 446 16 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 

2 9 915 285 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 

2 10 664 536 31 0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 0 1 0 1 

2 11 606 594 37 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 

2 12 635 565 21 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 

2 13 434 766 41 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 

2 14 579 621 29 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 0 1 1 1 

2 15 928 272 22 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 

2 16 662 538 10 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 

2 17 582 618 48 1 1 1 1 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 

2 18 652 548 46 1 0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 

2 19 569 631 23 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 0 1 

2 20 494 706 47 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 

3 1 546 654 14 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 
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3 2 672 528 28 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 

3 3 615 585 48 1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 

3 4 854 346 28 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 

3 5 985 215 6 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

3 6 626 574 23 1 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 

3 7 375 825 15 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 

3 8 285 915 24 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 

3 9 310 890 19 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 

3 10 466 734 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

3 11 650 550 23 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 1 0 1 

3 12 472 728 19 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 

3 13 417 783 15 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 

3 14 436 764 19 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 

3 15 624 576 21 0 0 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 1 

3 16 482 718 27 1 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 1 0 1 1 
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3 17 585 615 9 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 

3 18 630 570 17 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 

3 19 816 384 11 0 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 1 1 

3 20 195 1005 10 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 

4 1 585 615 38 0 1 0 1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 

4 2 594 606 37 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 

4 3 600 600 31 1 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 1 1 1 1 

4 4 529 671 6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 

4 5 632 568 41 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 

4 6 548 652 76 1 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1 1 0 

4 7 695 505 35 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1 

4 8 400 800 19 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 

4 9 638 562 18 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 

4 10 610 590 31 0 0 1 0 0 1 1 1 0 1 1 0 0 1 1 0 1 0 0 1 

4 11 655 545 19 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1 



154 
 

4 12 561 639 19 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 

4 13 853 347 12 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 

4 14 515 685 9 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 

4 15 581 619 7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 

5 1 383 817 51 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 

5 2 502 698 59 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 

5 3 554 646 39 1 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 

5 4 481 719 44 1 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 

5 5 503 697 41 0 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 0 1 

5 6 252 948 7 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 

5 7 747 453 29 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 1 

5 8 535 665 42 0 1 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 0 0 

5 9 514 686 23 1 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 

5 10 447 753 48 0 0 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 

5 11 226 974 13 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 
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5 12 505 695 43 1 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 

5 13 758 442 31 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 1 

5 14 497 703 27 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 1 

5 15 610 590 32 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 

5 16 906 294 22 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 

5 17 930 270 9 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 

5 18 726 474 25 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 

5 19 293 907 21 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 

5 20 730 470 25 0 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0 0 1 

6 1 137 1063 8 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 

6 2 537 663 34 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 

6 3 534 666 41 0 0 1 1 0 1 1 0 0 0 0 1 1 1 0 1 0 1 1 1 

6 4 424 776 42 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 

6 5 559 641 17 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 

6 6 733 467 13 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 1 
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6 7 566 634 22 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 

6 8 623 577 19 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 

6 9 910 290 8 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 

6 10 316 884 16 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 

6 11 907 293 19 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 

6 12 525 675 26 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 

6 13 457 743 37 0 1 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1 1 

6 14 340 860 34 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 

6 15 734 466 11 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 

6 16 606 594 15 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

6 17 620 580 35 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 

6 18 389 811 15 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 

6 19 450 750 22 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 

6 20 557 643 23 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 
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Chapter 2: Appendix 2: Raw data table solely containing the final 10 minutes of 

observation where species 1 is P. macrosturtensis, 2 is P. mesosturtensis, 3 is P. 

microsturtensis, 4 is L. palmulaoides, 5 is L. windarraensis, and 6 is L. lapostaae.  
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     Scan samples where 0 is light and 1 is dark 

Species Individual 
TimeL 
(sec) 

TimeD 
(sec) 

Hemisphere 
Change 11 12 13 14 15 16 17 18 19 20 

1 1 358 242 22 0 1 1 0 1 0 0 0 1 1 

1 2 63 537 4 1 1 1 0 1 1 1 1 1 1 

1 3 254 346 25 1 1 0 0 1 1 0 0 1 0 

1 4 133 467 6 1 1 1 0 1 1 1 1 1 1 

1 5 297 303 26 0 0 0 0 0 0 1 1 0 1 

1 6 457 143 6 0 0 0 0 0 0 1 1 0 0 

1 7 68 532 10 1 1 1 1 1 0 1 1 0 1 

1 8 118 482 7 1 1 1 0 1 1 1 0 0 0 

1 9 62 536 2 1 1 1 1 1 1 1 1 1 1 

1 10 114 486 12 1 1 1 1 1 0 1 0 0 1 

1 11 253 347 28 1 0 0 0 1 1 1 1 1 0 

1 12 184 416 23 1 0 0 0 1 0 1 1 0 0 

1 13 186 414 16 1 1 0 1 1 1 0 1 0 1 

1 14 219 381 10 0 0 1 1 0 0 1 1 1 1 

1 15 99 501 8 0 1 0 1 1 1 1 1 1 1 

1 16 256 344 23 0 0 0 0 1 1 1 1 0 1 

1 17 166 434 8 0 1 1 1 1 0 1 1 1 1 

1 18 192 408 1 1 1 1 1 1 1 0 0 0 0 

1 19 98 502 4 1 1 1 1 1 0 1 1 0 1 

1 20 254 346 13 1 1 1 0 1 1 0 0 0 1 

1 21 0 600 0 1 1 1 1 1 1 1 1 1 1 

1 22 217 383 18 1 1 1 1 0 1 1 0 0 1 

2 1 288 312 17 0 1 0 1 1 1 1 0 0 1 

2 2 227 373 14 1 1 0 1 1 1 0 0 1 1 
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2 3 198 402 6 0 0 1 1 0 1 1 1 1 0 

2 4 243 357 12 1 1 0 0 0 1 0 0 1 1 

2 5 246 354 16 1 0 0 1 0 1 0 1 1 0 

2 6 334 266 5 0 0 1 1 0 0 1 1 0 1 

2 7 168 432 9 1 0 1 1 1 1 1 1 1 0 

2 8 264 336 10 1 0 1 1 1 1 1 0 0 0 

2 9 322 278 2 0 0 0 0 1 1 1 1 1 0 

2 10 251 349 17 0 1 1 0 0 0 0 1 0 1 

2 11 310 290 18 0 1 1 0 0 1 1 1 1 1 

2 12 256 344 10 0 1 0 1 0 1 1 1 1 1 

2 13 142 458 24 0 1 1 1 1 1 1 1 1 1 

2 14 206 394 16 1 1 0 1 1 1 0 1 1 1 

2 15 333 267 20 0 0 1 1 0 1 1 1 1 0 

2 16 327 273 4 1 1 1 0 0 0 0 1 0 0 

2 17 288 312 21 0 1 1 0 0 0 0 0 0 0 

2 18 258 342 21 1 0 1 0 1 1 0 0 1 0 

2 19 260 340 14 0 0 0 0 1 1 0 1 0 1 

2 20 195 405 26 1 1 0 1 1 1 1 0 0 1 

3 1 460 140 8 1 0 0 1 0 0 0 1 0 0 

3 2 334 266 12 1 1 0 1 0 0 0 0 0 0 

3 3 410 190 12 1 0 1 0 0 1 1 0 1 0 

3 4 474 126 14 0 0 0 0 0 0 1 0 0 0 

3 5 561 39 2 0 0 0 0 1 0 0 0 0 0 

3 6 302 298 13 0 0 0 1 0 1 1 0 0 1 

3 7 260 340 11 0 1 1 1 1 0 0 1 1 1 

3 8 145 455 13 0 0 1 1 1 1 0 1 1 0 
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3 9 115 485 7 1 1 0 1 1 1 1 1 0 1 

3 10 0 600 0 1 1 1 1 1 1 1 1 1 1 

3 11 218 382 10 1 1 0 1 0 0 1 1 0 1 

3 12 267 333 11 1 1 0 0 0 0 0 1 1 1 

3 13 113 487 8 1 1 1 1 1 1 0 1 0 1 

3 14 158 442 7 1 0 1 1 1 1 1 1 0 1 

3 15 268 332 12 1 0 1 0 0 1 1 0 1 1 

3 16 215 385 12 1 1 1 1 0 1 1 0 1 1 

3 17 282 318 8 0 0 1 1 0 1 1 0 0 1 

3 18 270 330 9 1 1 0 0 1 0 1 1 0 1 

3 19 424 176 4 1 0 1 0 0 0 0 0 1 1 

3 20 172 428 7 0 1 1 1 0 0 1 1 1 0 

4 1 301 299 19 1 1 1 0 0 0 0 0 0 0 

4 2 241 359 20 0 0 0 0 1 1 0 0 0 1 

4 3 339 261 19 1 0 0 1 1 0 1 1 1 1 

4 4 452 148 4 0 0 0 0 0 1 1 1 0 0 

4 5 324 276 22 0 1 1 1 1 0 0 0 1 1 

4 6 295 305 47 0 0 1 0 0 0 0 1 1 0 

4 7 248 352 24 0 1 0 0 0 1 1 1 1 1 

4 8 325 275 14 1 1 1 0 1 0 1 1 1 1 

4 9 451 149 12 0 0 1 1 0 0 0 1 1 0 

4 10 345 255 18 1 0 0 1 1 0 1 0 0 1 

4 11 272 328 11 0 1 1 1 1 0 1 0 1 1 

4 12 237 363 9 1 1 1 0 0 0 1 0 0 1 

4 13 503 97 6 1 0 0 0 0 0 0 1 0 0 

4 14 379 221 5 0 0 0 0 0 1 1 1 0 1 
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4 15 77 523 2 1 1 1 1 1 0 1 1 1 1 

5 1 184 416 24 1 1 1 0 1 1 1 0 0 1 

5 2 203 397 27 1 1 0 1 0 1 1 1 1 1 

5 3 291 309 11 0 1 0 0 1 0 1 0 0 1 

5 4 178 422 18 1 1 0 0 0 1 1 1 1 0 

5 5 210 390 20 1 1 1 1 1 0 0 1 0 1 

5 6 117 483 3 0 1 1 1 1 1 1 1 1 1 

5 7 305 295 20 0 1 1 1 0 0 1 1 1 1 

5 8 325 275 26 1 0 0 1 0 1 0 1 0 0 

5 9 140 460 11 1 1 1 1 1 0 1 1 1 1 

5 10 198 402 15 1 1 0 1 1 0 0 0 0 0 

5 11 74 526 4 1 1 1 1 0 1 1 1 1 1 

5 12 158 442 26 1 0 1 1 1 0 0 0 1 1 

5 13 385 215 14 0 0 0 0 0 1 0 0 0 1 

5 14 187 413 14 0 1 1 1 0 0 1 0 0 1 

5 15 380 220 23 0 0 0 1 0 1 0 0 1 0 

5 16 523 77 6 0 0 0 0 0 0 0 1 0 0 

5 17 375 225 5 0 1 0 0 0 0 1 1 1 1 

5 18 372 228 9 0 1 0 0 0 1 1 0 1 1 

5 19 86 514 8 1 0 1 1 1 0 0 1 1 1 

5 20 409 191 9 0 1 1 1 0 0 1 0 0 1 

6 1 135 465 7 1 1 0 1 1 1 0 1 0 0 

6 2 152 448 16 1 1 1 1 1 0 0 1 1 0 

6 3 211 389 23 0 1 1 1 0 1 0 1 1 1 

6 4 255 345 25 0 1 1 0 1 1 0 1 1 0 

6 5 253 347 8 1 1 1 0 0 1 0 1 1 1 
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6 6 324 276 9 0 0 0 1 0 1 1 1 1 1 

6 7 282 318 7 1 1 1 1 1 1 0 0 0 0 

6 8 312 288 13 1 0 0 1 1 0 1 0 0 1 

6 9 470 130 5 1 0 0 0 0 0 0 0 0 0 

6 10 161 439 5 0 1 0 0 1 1 1 1 1 0 

6 11 307 293 19 1 1 0 0 0 0 1 0 1 1 

6 12 174 426 15 0 1 1 0 1 0 1 0 1 0 

6 13 231 369 20 0 0 0 0 1 0 1 0 1 1 

6 14 131 469 16 1 1 1 1 1 1 0 1 1 0 

6 15 584 16 1 0 0 0 0 0 0 0 0 0 1 

6 16 133 467 7 0 1 1 1 1 1 1 1 1 1 

6 17 311 289 16 1 1 0 1 0 1 0 1 1 1 

6 18 171 429 8 1 1 1 1 1 0 0 1 1 1 

6 19 239 361 13 0 0 1 1 1 0 1 1 1 0 

6 20 269 331 10 0 0 0 1 0 1 0 1 1 1 
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Appendix 4: 

 
Chapter 3: Supplementary Table 1: Genbank submission numbers of all sequences sourced 

for this study. 

 

Species Gene Accession number  

P. bulbus CO1 EU616973.1 

P. dingbatensis CO1 EU616966.1 

P. fortispina CO1 AY350900.1 

P. gibbi CO1 AJ850568.1 

P. macrocephalus CO1 AY350886.1 

P. macrosturtensis CO1 FJ647871.1 

P. mesosturtensis CO1 FJ647985.1 

P. microsturtensis CO1 FJ648069.1 

P. newhaven CO1 JQ745788.1 

P. newhavenensis CO1 AY350897.1 

P. niger CO1 EU616989.1 

P. pentameres CO1 EU616991.1 

P. tetrameres CO1 EU616985.1 

L. palmulaoides argk Hyde et al. unpublished 

L. palmulaoides cin Hyde et al. unpublished 

L. palmulaoides CO1 JQ745762.1 

L. palmulaoides lwop KP219382.1 

L. palmulaoides topo Hyde et al. unpublished 

L. palmulaoides wg Hyde et al. unpublished 
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Chapter 3: Supplementary Table 2: All sequences generated from this study, where grey 

blocks represent a successfully sequenced gene and white blocks represent no sequence 

data. Data sourced for this study were not included here (see Supplementary Table 1). 

Genbank numbers available upon publication. 

 

Species Genes 

argk cin CO1 lwop topo wn 

P. arachnoides       

P. bulbus       

P. byroensis       

P. copidotibae       

P. darlotensis       

P. dingbatensis       

P. elongatus       

P. fortispina       

P. gibbi       

P. hamoni       

P. innouendyensis       

P. macrocephalus       

P. macrosturtensis       

P. melrosensis       

P. mesosturtensis       

P. michaelseni       

P. microsturtensis       

P. milgunensis       

P. napperbyensis       

P. newhaven       

P. newhavenensis       

P. niger       

P. nigroadumbratus       

P. pentameres       

P. plutonicensis       

P. skaphites       

P. spnCamelWell       

P. spnMtWedge       

P. stegastos       

P. tetramers       

P. verrucosus       

P. wedgeensis       
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Chapter 3: Supplementary Figure 1: Bayesian phylograms from individual genes with 

previously identified and putative sister species highlighted in blue, where a) is COI, b) is 

argenine kinase, c) is cinnabar, d) is long wavelength opsin, and e) is topoisomerase. All 

trees were rooted with L. palmulaoides. 

 

a) 

 

 

b)  
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c) 

 

d) 
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e) 
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Appendix 5:   

Chapter 4: Supplementary Information: Table SI1: Flybase information for all 

photoreceptor genes identified by transcriptome analyses of diving beetles. 

 
Gene Molecular function Biological processes Phenotypes manifest in 

Arrestin 1 opsin binding sensory perception of smell; 
metarhodopsin inactivation; 

desensitization of G protein-

coupled receptor signaling 
pathway by arrestin; deactivation 

of rhodopsin mediated signaling; 

endocytosis; photoreceptor cell 
maintenance 

eye photoreceptor cell; 
rhabdomere 

Arrestin 2 protein binding; opsin binding adaptation of rhodopsin mediated 

signaling; sensory perception of 
sound; deactivation of rhodopsin 

mediated signaling; 

photoreceptor cell maintenance; 
sensory perception of smell; 

metarhodopsin inactivation; 

desensitization of G protein-
coupled receptor signaling 

pathway by arrestin 

eye photoreceptor cell; 

ommatidium; photoreceptor cell; 
rhabdomere; retina; eye 

Chaoptin unknown rhabdomere development; 
microvillus organization; 

homophillic cell adhesion via 

plasma membrane adhesion 
molecules 

mesothoracic tergum; 
rhabdomere of eye photoreceptor 

cell; rhabdomere R7; 

photoreceptor cell; rhabdomere; 
rhabdomere microvillus 

G protein gamma 30A GTPase activity, protein 

heterodimerization activity 

phototransduction; sensory 

perception of taste; cellular 

response to carbon dioxide; 
phospholipase C-activating G-

protein coupled receptor 

signalling pathway; G-protein 
coupled receptor signalling 

pathway 

adult olfactory receptor neuron 

Gr21a/63a 

G protein alpha 49B aka 
G protein alpha q 

G-protein beta/gamma-subunit 
complex binding; GTPase 

activity; G-protein coupled 

receptor binding; guanyl 
nucleotide binding 

regulation of biological quality; 
regulation of phospholipase C 

activity; regulation of anatomical 

structure morphogenesis; 
immune system process; vesicle-

mediated transport; thermotaxis; 

behavior; nervous system 

process; homeostatic process; 

cellular response to oxygen-

containing compound; neuron 
differentiation 

tract neuropil; cell part; 
mesothoracic segment; 

rhabdomere; multi-cell-

component structure; axon; 
thorax; embryonic/larval nervous 

system; adult thorax; midline 

crossing tract; neuron part; 

neuromuscular junction 

G protein beta 76C protein heterodimerization 

activity 

negative regulation of 

smoothened signaling pathway; 
activation of phospholipase C 

activity; G-protein coupled 

receptor signaling pathway; 
deactivation of rhodopsin 

mediated signaling; 

phototransduction; rhodopsin 
mediated signaling pathway 

photoreceptor cell 

G protein-coupled 

receptor kinase 1 

rhodopsin kinase activity; ATP 

binding; G-protein coupled 

receptor kinase activity; protein 

serine/threonine kinase activity; 

G-protein coupled receptor 

binding; phosphatidylinositol 
binding 

phototransduction, visible light; 

metarhodopsin inactivation; 

protein phosphorylation; positive 

regulation of smoothened 

signaling pathway 

vision; wing 

Inactivation no 

afterpotential C 

ATP binding; protein kinase C 

activity; zinc ion binding; protein 
serine/threonine kinase activity; 

protein binding 

development of primary female 

sexual characteristics; response to 
light intensity; nervous system 

process; locomotion; response to 

chemical; establishment of 
localization; multicellular 

organism development; organic 

germarium; egg chamber; retina; 

eye; photoreceptor cell; gustatory 
receptor neuron; photoreceptor; 

ovary; ovarian sheath 
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substance metabolic process; 
response to ethanol; localization 

Inactivation no 

acterpotential D 

photoreceptor activity; myosin 

binding; structural molecule 
activity; myosin III binding; 

protein binding; receptor 

signaling complex scaffold 
activity; calmodulin binding 

phototransduction; deactivation 

of rhodopsin mediated signaling; 
protein localization; cellular 

response to light stimulus; 

detection of light stimulus 
involved in sensory perception; 

sensory perception of sound 

photoreceptor; retina; 

photoreceptor cell; eye 
photoreceptor cell 

Neither inactivation nor 

afterpotential C 

motor activity; 

phosphatidylinositol binding; 
protein tyrosine kinase activity; 

protein serine/threonine kinase 

activity; ATPase activity, 
coupled; calmodulin binding; 

protein kinase activity; ATP 

binding; protein binding 

protein localization; localization; 

amide transport; protein 
metabolic process; cellular 

component organization or 

biogenesis; regulation of 
biological quality; cellular 

protein metabolic process; 

multicellular organismal 
homeostasis; cellular 

localization; cellular protein 

localization 

retina; eye; ommatidium; 

photoreceptor cell; male 
genitalia; eye photoreceptor cell; 

rhabdomere 

No receptor potential A, 

type I 

phosphatidylinositol 

phospholipase C activity; 

phospholipase C activity; GTPase 
activator activity; protein 

binding; calcium ion binding 

locomotion; locomotory 

behavior; positive regulation of 

cellular component organization; 
sensory perception of bitter taste; 

organ or tissue specific immune 

response; adult behavior; 
diacylglycerol metabolic process; 

positive regulation of receptor-

mediated endocytosis; sensory 
organ morphogenesis; immune 

system process; retina 

homeostasis; taxis; detection of 
chemical stimulus involved in 

sensory perception of bitter taste 

cell; cell projection; rhabdomere 

R5; dendrite; membrane-bounded 

organelle; cell part; cytoplasm; 
intracellular part; 

supraesophageal ganglion; 

intracellular; somatodendritic 
compartment; rhabdomere 

Prominin - rhabdomere development rhabdomere of eye photoreceptor 
cell; photoreceptor cell; tergite; 

rhabdomere; ommatidium; eye 

Rab-protein 6a GTP binding; GTPase activity; 

protein binding 

localization; biological 

regulation; establishment of 
localization; compound eye 

morphogenesis; Golgi vesicle 

transport; signal transduction; 
endosomal transport; response to 

other organism; regulation of 

membrane potential; detection of 
abiotic stimulus 

ovariole; gonad; hemocyte; 

female germline cyst; 
photoreceptor cell R7; female 

organism; immaterial anatomical 

entity; adult mesothoracic 
segment; circulatory system; 

sclerite 

Rhodopsin 2 G protein-coupled receptor 

activity; G protein-coupled 
photoreceptor activity 

phototransduction; visual 

perception; G protein-coupled 
receptor signaling pathway 

eye photoreceptor cell 

Rhodopsin 3 

(Ultraviolet opsin) 

G protein-coupled photoreceptor 

activity 

visual perception; cellular 

response to light stimulus; 

phototransduction, UV; G 
protein-coupled receptor 

signaling pathway; 
phototransduction; detection of 

UV; absorption of UV light 

eye photoreceptor cell; 

ommatidium 

Rhodopsin 7 

(Blue opsin) 

peptide binding; G protein-

coupled receptor activity; G 
protein-coupled photoreceptor 

activity 

rhodopsin mediated signaling 

pathway; circadian behavior; 
entrainment of circadian clock by 

photoperiod; cellular response to 

light stimulus; G protein-coupled 
receptor signaling pathway; 

response to photoperiod, blue 

light; visual perception 

l-LNv neuron 

Spacemaker (eyes shut) calcium ion binding; extracellular 

matrix structural constituent; 

protein binding 

temperature compensation of the 

circadian clock; cell 

morphogenesis; rhabdomere 

development 

rhabdomere; Johnston organ; 

scolopidium; plasma membrane 

bounded cell projection; head 

segment; cell part; internal 

sensillum; cell; antenna; cell 

projection 

Transient receptor 
potential 

inositol 1,4,5 trisphosphate 
binding; store-operated calcium 

channel activity; light-activated 

ion channel activity; protein 
heterodimerization activity; 

calcium channel activity; 

identical protein binding; protein 

divalent inorganic cation 
transport; localization; divalent 

metal ion transport; cation 

transport; cognition; multicellular 
organismal homeostasis; protein 

localization; mitochondrion 

organization; cellular response to 

mitochondrion; adult antennal 
segment; cytoplasm; rhabdomere; 

photoreceptor cell R6; antenna; 

region of integument; membrane-
bounded organelle; photoreceptor 

cell R3; intracellular part; plasma 
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binding; protein 
homodimerization activity 

anoxia; response to oxygen 
levels; sequestering of calcium 

ion; manganese ion transport 

membrane bounded cell 
projection 

Transient receptor 
potential like 

protein heterodimerization 
activity; calcium channel activity; 

identical protein binding; protein 

binding; cation channel activity; 
light-activated ion channel 

activity; inositol 1,4,5 

trisphosphate binding; ion 
transmembrane transporter 

activity; store-operated calcium 

channel activity; calmodulin 
binding 

transport; regulation of biological 
process; divalent metal ion 

transport; detection of visible 

light; localization; response to 
abiotic stimulus; regulation of 

biological quality; response to 

radiation; cellular response to 
decreased oxygen levels; calcium 

ion homeostasis; cellular process; 

sensory perception of mechanical 
stimulus 

photoreceptor cell; eye 
photoreceptor cell; Malpighian 

tubule; L-type sensillum L2; S-

type sensillum S6; photoreceptor 
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Chapter 4: Supplementary Information: Table SI2: BLASTn results for each gene, containing the top three hits from the Genbank 

database. 

SI2.1: BLASTn table for arr1. 

Species 1st hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

2nd hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

3rd hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

L. barwidgeensis AB291229.1 73.01 71 XM_019043448.1 70.98 98 XM_018481085.2 70.10 98 

L. bialveus XM_018718729.1 71.80 100 XM_019043448.1 73.29 90 XM_018481085.2 71.67 100 

L. compactus XM_020024243.1 73.84 99 XM_020019156.1 73.84 99 XM_019043448.1 73.32 99 

L. cooperi AB291229.1 75.00 94 XM_018481085.2 73.64 94 XM_018481084.2 73.64 94 

L. cueensis XM_023048639.1 77.40 97 AB291229.1 76.40 92 XM_018481085.2 74.94 97 

L. cunyenesis XM_023048639.1 76.39 76 XM_018718729.1 76.08 77 XM_018718728.1 76.08 77 

L. eberhardi XM_018718729.1 69.80 100 XM_018718728.1 69.80 100 AJ303080.1 69.03 97 

L. hahni XM_019043448.1 73.30 100 XM_018718729.1 72.68 99 XM_018718728.1 72.68 99 

L. hinkleri XM_019043448.1 74.08 100 XM_018481085.2 73.49 99 AJ303080.1 72.41 99 

L. lapostaae XM_018718729.1 73.50 100 XM_018718728.1 73.50 100 XM_023048639.1 74.34 95 

L. leysi XM_017928836.1 75.00 95 XM_018718729.1 72.65 100 XM_018718728.1 72.65 100 

L. macrotarsus XM_019043448.1 72.63 99 XM_018718729.1 72.29 99 XM_018718728.1 72.29 99 

L. melitaensis XM_023048639.1 76.20 97 XM_019043449.1 75.06 98 XM_019043448.1 75.06 98 

L. 

micromelitaensis 

AJ303080.1 82.69 95 XM_019043448.1 80.37 98 XM_018481085.2 80.77 95 

L. microocular XM_019043448.1 73.99 99 XM_018481085.2 73.26 99 XM_020024243.1 72.96 100 

L. microomatoion XM_019043448.1 73.21 99 XM_018481085.2 73.03 99 AJ303080.1 71.98 99 

L. millbilliensis XM_023048639.1 78.66 91 XM_018718729.1 76.46 93 XM_018718728.1 76.46 93 

L. mirandaae XM_019043448.1 73.81 99 XM_018481085.2 72.80 99 XM_020024243.1 72.69 100 

L. pulpa XM_019043448.1 73.27 99 XM_018481085.2 72.98 99 AJ303080.1 72.46 99 

L. rivulus XM_019043448.1 72.98 99 XM_018481085.2 72.80 99 XM_020024243.1 72.45 100 

L. silus XM_019043448.1 70.21 99 XM_020024243.1 69.84 100 XM_018481084.2 74.58 89 

L. 

sweetwatersensis 

XM_018718729.1 73.64 100 XM_018718728.1 73.64 100 XM_019043448.1 73.09 99 

L. windarraensis XM_019043448.1 71.06 99 XM_020024243.1 71.20 98 XM_020019156.1 71.20 98 
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P. copidotibae XM_020024243.1 72.80 89 XM_020019156.1 72.80 89 AJ303080.1 70.76 90 

P. darlotensis XM_020024243.1 73.19 96 XM_020019156.1 73.19 96 AB291229.1 71.21 98 

P. gibbi XM_020024243.1 72.22 98 XM_020019156.1 72.22 98 XM_018718729.1 71.34 98 

P. hamoni XM_020024243.1 72.74 95 XM_020019156.1 72.74  AB291229.1 72.16 91 

P. 

macrosturtensis 

XM_020024243.1 70.69 91 XM_020019156.1 70.69 91 AB291229.1 69.72 86 

P. melrosensis XM_020024243.1 72.55 98 XM_020019156.1 72.55 98 XM_018718729.1 70.85 98 

P. mesosturtensis XM_020024243.1 72.32 98 XM_020019156.1 72.32 98 XM_018718729.1 71.06 98 

P. microsturtensis XM_020024243.1 72.47 98 XM_020019156.1 72.47 98 AB291229.1 72.06 96 

P. 

nigroadumbratus 

XM_020024243.1 74.07 98 XM_020019156.1 74.07 98 AB291229.1 72.31 98 

P. plutonicensis XM_020024243.1 72.23 93 XM_020019156.1 72.23 93 AB291229.1 71.09 94 

P. verrucosus XM_020024243.1 72.91 96 XM_020019156.1 72.91 96 AJ303080.1 71.16 98 

P. wedgeensis XM_020024243.1 73.53 96 XM_020019156.1 73.53 96 XM_018718729.1 72.90 92 

A. bistrigatus XM_018718729.1 74.07 100 XM_018718728.1 74.07 100 AJ303080.1 72.97 99 
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SI2.2: BLASTn table for arr2. 

Species 1st hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

2nd hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

3rd hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

L. barwidgeensis XR_001537349.2 68.37 99 XM_015736319.2 68.37 99 XM_018479179.2 67.61 99 

L. bialveus XR_001537349.2 67.00 99 XR_001537349.2 69.23 83 XM_015736319.2 69.23 83 

L. compactus XR_001537349.2 72.65 99 XM_015736319.2 72.65 99 XM_018479179.2 72.31 99 

L. cooperi XR_001537349.2 71.30 99 XM_015736319.2 71.30 99 XM_015335890.1 70.44 99 

L. cueensis XM_018479179.2 70.98 99 XR_001537349.2 70.72 99 XM_015736319.2 70.72 99 

L. cunyenesis XM_026895327.1 76.64 73 XM_018479179.2 73.33 93 XM_012431149.2 80.77 54 

L. eberhardi LC384837.1 75.07 98 XR_001537349.2 74.35 98 XM_015736319.2 74.35 98 

L. hahni XR_001537349.2 69.49 99 XM_015736319.2 69.49 99 XM_022077053.1 72.22 47 

L. hinkleri XR_001537349.2 71.53 96 XM_015736319.2 71.53 96 XM_018479179.2 70.61 99 

L. lapostaae XM_015335890.1 70.92 96 XM_014756084.1 69.75 96 NM_001170613.1 69.36 97 

L. leysi XM_018479179.2 69.28 100 XM_025976367.1 69.28 100 XR_001537349.2 68.82 99 

L. macrotarsus XM_018479179.2 70.31 88 XR_001537349.2 68.59 99 XM_015736319.2 68.59 99 

L. melitaensis XM_020024486.1 76.43 100 XM_023454090.1 74.29 100 XM_018707507.2 74.29 100 

L. 

micromelitaensis 

XM_020024486.1 76.73 95 XM_022342128.1 77.33 90 XM_023454090.1 75.47 95 

L. microocular XR_001537349.2 71.81 99 XM_015736319.2 71.81 99 XM_018479179.2 71.64 99 

L. microomatoion XR_001537349.2 71.90 99 XM_015736319.2 71.90 99 XM_018479179.2 71.73 99 

L. millbilliensis XM_015335890.1 70.57 95 XR_001537349.2 68.95 90 XM_015736319.2 68.95 90 

L. mirandaae XR_001537349.2 70.10 99 XM_015736319.2 70.10 99 XM_015335890.1 69.57 99 

L. palmulaoides XR_001537349.2 71.49 97 XM_015736319.2 71.49 97 XM_018479179.2 70.52 99 

L. pulpa XR_001537349.2 71.70 98 XM_015736319.2 71.70 98 XM_015335890.1 70.69 98 

L. rivulus XM_018479179.2 71.64 99 XR_001537349.2 71.90 99 XM_015736319.2 71.90 99 

L. silus XR_001537349.2 70.07 98 XM_015736319.2 70.07 98 XM_018479179.2 69.27 99 

L. 

sweetwatersensis 

XR_001537349.2 76.27 97 XM_015736319.2 76.27 97 XM_022342128.1 78.06 85 

L. windarraensis XR_001537349.2 74.22 96 XM_015736319.2 74.22 96 LC384837.1 72.71 73 

P. copidotibae XM_019695368.1 77.05 66 XM_019673482.1 75.96 66 XM_026429038.1 73.49 78 

P. darlotensis XM_017912320.1 78.79 92 XM_018479179.2 76.81 96 XM_012431149.2 73.72 95 

P. gibbi LC384837.1 73.56 99 JN871509.1 72.22 99 XM_028315724.1 72.24 97 

P. hamoni XM_022979832.1 84.81 100 XM_026873822.1 81.65 100 XM_028170561.1 81.01 100 
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P. 

macrosturtensis 

XM_012675850.2 76.50 86 XM_012280175.1 66.06 99 XM_003699141.2 66.06 99 

P. mesosturtensis XM_012675850.2 74.25 74 XM_011302215.1 74.11 72 XM_018020234.2 72.80 80 

P. microsturtensis XM_012675850.2 74.25 60 XM_011302215.1 74.11 58 XM_018020234.2 72.80 65 

P. 

nigroadumbratus 

XM_012280175.1 71.02 99 XM_003699141.2 71.02 99 XM_012397606.2 71.39 99 

P. plutonicensis NM_001170613.1 72.98 99 LC384837.1 71.90 97 JN871509.1 71.25 96 

A. bistrigatus XM_018479179.2 71.89 99 XR_001537349.2 71.73 99 XM_015736319.2 71.73 99 
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SI2.3: BLASTn table for inaD. 

Species 1st hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

2nd hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

3rd hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

L. barwidgeensis XM_023163081.1 70.75 78 XM_018707301.2 70.11 80 XM_023163080.1 70.62 78 

L. bialveus XM_025974435.1 70.32 53 XM_018707301.2 69.86 80 XM_023163081.1 70.10 75 

L. compactus XM_018707301.2 70.45 72 XM_018707303.2 70.14 64 XM_018707300.2 70.14 72 

L. cooperi XM_018707301.2 70.11 73 XM_018707303.2 69.79 64 XM_018707300.2 69.79 73 

L. cueensis XM_018707301.2 71.62 73 XM_017919024.1 70.95 98 XM_018707303.2 71.21 73 

L. cunyenesis XM_018707301.2 77.12 58 XM_018707300.2 76.86 57 XM_025974435.1 74.33 49 

L. eberhardi XM_025974435.1 70.65 53 XM_018707301.2 70.12 72 XM_017919024.1 69.71 55 

L. hahni XM_025974435.1 72.95 43 XM_017919024.1 71.02 48 XM_018707301.2 70.20 77 

L. hinkleri XM_025974435.1 69.88 56 XM_018707301.2 70.98 66 XM_018707300.2 70.62 66 

L. lapostaae XM_020016880.1 69.59 77 XM_018707301.2 70.47 72 XM_023163081.1 71.08 75 

L. leysi XM_025974435.1 72.01 45 XM_018707301.2 70.17 78 XM_018707303.2 69.85 69 

L. macrotarsus XM_018707301.2 70.78 78 XM_018707303.2 70.45 53 XM_018707300.2 70.45 78 

L. melitaensis XM_018707301.2 70.32 74 XM_025974435.1 70.45 53 XM_018707300.2 70.00 74 

L. 

micromelitaensis 

XM_025974435.1 70.59 53 XM_018707301.2 70.62 74 XM_018707300.2 70.30 74 

L. microocular XM_018707301.2 70.47 72 XM_017919024.1 70.64 70 XM_017919023.1 70.64 70 

L. microomatoion XM_018707301.2 70.32 72 XM_002172196.1 69.66 62 XM_017919024.1 70.76 70 

L. millbilliensis XM_025974435.1 70.15 56 XM_018707301.2 70.32 71 XM_018707303.2 70.00 63 

L. mirandaae XM_025974435.1 70.60 43 XM_018707301.2 70.47 72 XM_018707303.2 70.15 64 

L. palmulaoides XM_018707301.2 70.64 72 XM_018707303.2 70.27 63 XM_018707300.2 70.27 72 

L. pulpa XM_018707301.2 71.85 66 XM_020016880.1 68.90 78 XM_018707300.2 71.48 66 

L. rivulus XM_017919024.1 70.78 70 XM_018707301.2 70.62 72 XM_018707303.2 70.30 64 

L. silus XM_018707301.2 70.47 72 XM_023163081.1 70.59 71 XM_018707303.2 70.15 70 

L. 

sweetwatersensis 

XM_018707301.2 70.78 78 XM_018707303.2 70.45 53 XM_018707300.2 70.45 78 

L. windarraensis XM_025974435.1 73.06 69 XM_018707301.2 70.85 68 XM_018707303.2 70.32 60 

P. copidotibae XM_017919024.1 70.68 64 XM_018707301.2 69.56 59 XM_018707300.2 69.19 59 

P. darlotensis XM_017919024.1 71.35 58 XM_017919023.1 71.35 58 XM_008183551.2 71.35 58 

P. gibbi XM_025974435.1 69.20 56 XM_023163081.1 68.56 64 XM_017919024.1 69.15 57 

P. hamoni XM_017919024.1 70.82 58 XM_017919023.1 70.82 58 XM_015981813.1 72.73 47 
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P. 

macrosturtensis 

XM_017919024.1 70.75 67 XM_017919023.1 70.75 67 XM_018707301.2 69.38 61 

P. melrosensis XM_017919024.1 70.82 58 XM_017919024.1 70.82 58 XM_015981813.1 72.51 47 

P. mesosturtensis XM_017919024.1 70.42 65 XM_018707301.2 69.38 60 XM_018707303.2 69.01 60 

P. microsturtensis XM_017919024.1 70.75 66 XM_018707301.2 69.73 60 XM_018707303.2 69.37 60 

P. 

nigroadumbratus 

XM_015981810.1 72.80 58 XM_018707301.2 69.53 61 XM_017919024.1 71.48 43 

P. plutonicensis XM_017919024.1 70.21 64 XM_017919023.1 70.21 64 XM_018707301.2 70.44 59 

P. verrucosus XM_018707301.2 68.71 62 XM_018707303.2 68.64 62 XM_018707300.2 68.64 62 

P. wedgeensis XM_024227640.1 67.19 46 XM_018707301.2 70.16 45 XM_023057169.1 70.62 45 

A. bistrigatus XM_025974435.1 71.99 58 XM_020016880.1 69.32 85 XM_002431236.1 70.56 47 
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SI2.4: BLASTn table for c-opsin. 

Species 1st hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

2nd hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

3rd hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

L. barwidgeensis KP219386.1 94.78 99 KP219385.1 76.12 96 XM_023165964.1 69.36 98 

L. bialveus KP219386.1 92.29 50 KP219385.1 70.72 50 XM_023165964.1 66.11 49 

L. compactus KP219386.1 94.57 70 KP219385.1 75.96 68 XM_023165964.1 68.29 69 

L. cooperi KP219386.1 93.46 80 KP219385.1 74.88 78 XM_023165964.1 68.63 78 

L. cueensis KP219386.1 94.46 99 KP219385.1 76.90 96 XM_023165964.1 70.39 98 

L. cunyenesis KP219386.1 93.95 73 KP219385.1 73.08 73 XM_023165964.1 66.38 76 

L. eberhardi KP219386.1 94.01 64 KP219385.1 71.86 64 XM_023165964.1 66.06 68 

L. hahni KP219386.1 96.94 99 KP219385.1 76.53 99 XM_022343113.1 71.64 99 

L. hinkleri KP219386.1 93.82 80 KP219385.1 74.50 78 XM_023165964.1 68.18 78 

L. lapostaae KP219386.1 93.18 99 KP219385.1 76.03 99 XM_026897038.1 69.12 97 

L. leysi KP219386.1 93.19 51 KP219385.1 71.31 50 XM_023165964.1 67.10 53 

L. macrotarsus KP219386.1 93.18 100 KP219385.1 71.91 99 LC009258.1 69.70 64 

L. melitaensis KP219386.1 94.49 61 KP219385.1 73.13 61 XM_026885747.1 74.23 28 

L. 

micromelitaensis 

KP219386.1 93.10 80 KP219385.1 74.23 78 XM_023165964.1 67.82 81 

L. microocular KP219386.1 94.69 70 KP219385.1 75.46 68 XM_023165964.1 68.18 71 

L. microomatoion KP219386.1 94.81 70 KP219385.1 75.96 68 XM_023165964.1 68.18 70 

L. millbilliensis KP219386.1 76.29 34 KP219385.1 78.87 12 XM_023165964.1 83.93 10 

L. mirandaae KP219386.1 93.10 79 KP219385.1 74.23 79 XM_023165964.1 67.47 80 

L. palmulaoides KP219386.1 96.06 100 KP219385.1 76.67 100 XM_026885747.1 71.60 98 

L. pulpa KP219386.1 93.44 64 KP219385.1 71.23 64 XM_023165964.1 65.45 68 

L. rivulus KP219386.1 95.17 80 KP219385.1 76.20 78 XM_023165964.1 68.41 81 

L. silus KP219386.1 92.68 65 KP219385.1 70.92 64 XM_023165964.1 65.14 65 

L. 

sweetwatersensis 

KP219386.1 92.98 80 KP219385.1 74.26 78 XM_023165964.1 67.89 81 

L. windarraensis KP219386.1 94.55 77 KP219385.1 72.40 77 XM_023165964.1 67.39 77 

P. darlotensis KP219385.1 93.98 74 KP219386.1 72.50 72 XM_022258904.1 69.10 44 

P. gibbi KP219385.1 90.32 95 KP219386.1 76.58 93 XM_013306536.1 68.97 75 

P. melrosensis KP219385.1 90.07 77 KP219386.1 69.09 77 XM_014514264.1 64.32 50 

P. microsturtensis KP219385.1 86.67 100 KP219386.1 80.00 98 XM_028176172.1 75.00 96 



178 
 

P. 

nigroadumbratus 

KP219385.1 100.00 74 KP219386.1 73.89 74 XM_013306536.1 68.84 46 

P. verrucosus KP219385.1 86.02 54 KP219386.1 80.00 17 XM_023863785.1 80.00 17 

A. bistrigatus KP219386.1 100.00 70 KP219385.1 76.45 68 XM_023165964.1 69.05 69 
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SI2.5: BLASTn table for lwop. 

Species 1st hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

2nd hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

3rd hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

L. barwidgeensis KP219381.1 81.91 89 KP219382.1 81.77 89 KY368375.1 71.50 99 

L. bialveus KP219382.1 90.08 84 KP219381.1 89.98 84 KY368375.1 78.42 84 

L. compactus KP219382.1 92.58 85 KP219381.1 92.58 85 KY368375.1 79.75 84 

L. cooperi KP219382.1 89.94 86 KP219381.1 89.94 86 KY368375.1 80.58 99 

L. cueensis KP219382.1 87.61 82 KP219381.1 87.92 82 KY368375.1 81.73 99 

L. cunyenesis KP219382.1 82.53 80 KP219381.1 82.53 80 KY368375.1 73.40 82 

L. eberhardi KP219382.1 92.41 74 KP219381.1 92.41 74 KY368283.1 80.13 76 

L. hahni KP219382.1 90.79 86 KP219381.1 90.79 86 KY368375.1 79.89 99 

L. hinkleri KP219382.1 92.70 99 KP219381.1 92.13 99 KY368375.1 85.39 99 

L. lapostaae KP219382.1 90.66 86 KP219381.1 90.66 86 KY368375.1 80.69 99 

L. leysi KP219382.1 91.87 85 KP219381.1 91.87 85 KY368375.1 79.53 84 

L. macrotarsus KP219382.1 91.86 81 KP219381.1 92.09 81 KY368283.1 77.88 82 

L. melitaensis KP219381.1 88.15 100 KP219382.1 87.93 100 KY368375.1 72.25 99 

L. 

micromelitaensis 

KP219381.1 93.85 100 KP219382.1 93.62 100 KY368375.1 77.29 99 

L. microocular KP219381.1 91.46 85 KP219382.1 91.06 85 KY368375.1 77.96 84 

L. microomatoion KP219381.1 91.57 85 KP219382.1 91.16 85 KY368375.1 77.96 84 

L. millbilliensis KP219382.1 91.78 76 KP219381.1 91.78 76 KY368283.1 78.64 76 

L. mirandaae KP219382.1 92.44 91 KP219381.1 92.28 91 KY219380.1 75.23 91 

L. palmulaoides KP219381.1 91.13 87 KP219382.1 90.83 87 KY368283.1 74.29 84 

L. pulpa KP219382.1 88.11 85 KP219381.1 88.11 85 KY368375.1 78.66 77 

L. rivulus KP219382.1 92.38 85 KP219381.1 92.78 85 KY368375.1 79.49 84 

L. silus KP219382.1 88.72 85 KP219381.1 88.72 85 KY368375.1 76.74 84 

L. 

sweetwatersensis 

KP219382.1 82.53 74 KP219381.1 82.53 74 KY368283.1 73.40 75 

L. windarraensis KP219382.1 92.07 85 KP219381.1 92.07 85 KY368375.1 79.63 84 

P. copidotibae KY219380.1 88.21 100 EU921225.1 78.21 100 KF539443.1 76.36 98 

P. darlotensis KY219380.1 92.71 86 KY368375.1 77.92 96 EU921225.1 77.27 91 

P. gibbi KY219380.1 91.25 90 KY368375.1 79.46 98 EU921225.1 78.46 95 
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P. 

macrosturtensis 

KY219380.1 82.53 82 KY368375.1 71.73 92 EU921225.1 71.63 88 

P. melrosensis KY219380.1 90.82 92 KY368375.1 75.36 92 EU921225.1 74.45 94 

P. mesosturtensis KY219380.1 75.62 100 KY368298.1 68.28 94 KP219381.1 67.84 100 

P. microsturtensis KY219380.1 81.63 82 KY368375.1 72.00 92 KY368298.1 71.43 99 

P. 

nigroadumbratus 

KY219380.1 100.00 87 KY368375.1 78.74 94 EU921225.1 77.08 91 

P. plutonicensis KY219381.1 88.21 100 EU921225.1 76.79 100 KY368375.1 75.36 100 

P. verrucosus KY219381.1 80.47 83 KY368375.1 71.08 100 EU921225.1 71.43 89 

P. wedgeensis KY219381.1 87.58 80 KP219382.1 74.32 80 KP219381.1 74.32 80 

A. bistrigatus KY219380.1 100.00 85 KP219382.1 99.39 85 KY368375.1 78.70 84 
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SI2.6: BLASTn table for uvop.  

Species 1st hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

2nd hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

3rd hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

P. darlotensis EU921226.1 78.31 76 KP219383.1 96.77 28 CP000806.1 90.62 29 

P. gibbi KP219383.1 89.91 100 EU921226.1 76.15 100 KY368350.1 75.93 99 

P. 

macrosturtensis 

KP219383.1 86.58 82 KY368309.1 73.53 85 EU921227.1 72.08 95 

P. 

nigroadumbratus 

KP219383.1 100.00 84 EU921226.1 74.54 90 KY368262.1 72.02 99 

P. wedgeensis KP219383.1 83.87 99 KY368350.1 71.99 99 KY368345.1 70.97 99 
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SI2.7: BLASTn table for trp.  

Species 1st hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

2nd hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

3rd hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

L. barwidgeensis XM_015325802.1 72.38 99 XM_015325801.1 72.38 99 XM_023455053.1 71.94 99 

L. bialveus XM_015325801.1 69.90 93 XM_014757067.1 69.32 93 XM_015741511.2 69.18 93 

L. compactus XM_015325801.1 69.88 93 XM_023455053.1 70.05 93 XM_014757067.1 69.36 93 

L. cooperi XM_015325801.1 70.38 93 XM_023455053.1 70.06 92 XM_015741511.2 69.74 93 

L. cueensis XM_015741511.2 72.63 84 XM_023455053.1 72.23 85 XM_015325803.1 72.10 84 

L. cunyenesis XM_015325803.1 70.39 90 XM_015325801.1 70.39 90 XM_023455053.1 69.84 90 

L. eberhardi XM_015325803.1 70.40 60 XM_015741511.2 69.83 89 XM_023455053.1 69.48 95 

L. hahni XM_015325801.1 70.14 90 XM_015741511.2 69.84 90 XM_014757067.1 69.79 90 

L. hinkleri XM_015325801.1 69.39 94 XM_023455053.1 69.82 89 XM_015741511.2 69.74 90 

L. lapostaae XM_015325803.1 70.37 87 XM_015325801.1 70.37 87 XM_015265646.1 71.25 83 

L. leysi XM_015325801.1 69.46 93 XM_015741511.2 69.87 92 XM_023455053.1 69.54 93 

L. macrotarsus XM_015325803.1 71.65 87 XM_015325801.1 71.65 87 XM_023157474.1 71.06 92 

L. melitaensis XM_015325803.1 73.80 66 XM_015325801.1 73.80 66 XM_008562061.1 72.58 73 

L. 

micromelitaensis 

XM_015325801.1 69.54 93 XM_023455053.1 70.28 87 XM_015741511.2 69.94 91 

L. microocular XM_014757067.1 71.16 88 XM_015325803.1 71.11 62 XM_023455053.1 69.48 94 

L. microomatoion XM_015741511.2 72.13 86 XM_023455053.1 72.07 87 XM_015325803.1 71.91 87 

L. millbilliensis XM_015325801.1 70.52 90 XM_015741511.2 70.37 90 XM_023455053.1 70.64 87 

L. mirandaae XM_023157474.1 71.34 91 XM_015325803.1 70.60 87 XM_015325801.1 70.60 87 

L. palmulaoides XM_015325803.1 70.84 87 XM_015325801.1 70.84 87 XM_023157474.1 72.87 83 

L. pulpa XM_015325803.1 71.21 90 XM_015325801.1 71.21 90 XM_023157474.1 71.70 91 

L. rivulus XM_015325803.1 70.44 94 XM_015325801.1 69.34 94 XM_015741511.2 69.36 93 

L. silus XM_015741511.2 71.16 83 XM_015325803.1 70.83 83 XM_023157474.1 71.54 84 

L. 

sweetwatersensis 

XM_023157474.1 69.00 94 XM_008562061.1 68.09 94 XM_015741511.2 69.27 93 

L. windarraensis XM_015741511.2 70.84 83 XM_015325803.1 69.74 87 XM_023157474.1 72.06 84 

A. bistrigatus XM_015325801.1 73.12 94 XM_023157474.1 72.56 94 XM_015741511.2 72.44 94 

 



183 
 

SI2.8: BLASTn table for trpl.  

Species 1st hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

2nd hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

3rd hit Accession 

no. 

% 

Pairwise 

identity 

% 

Query 

coverag

e 

L. barwidgeensis XM_023157464.1 70.73 78 XM_023863548.1 70.21 79 XM_023455051.1 70.06 78 

L. bialveus XM_023455051.1 71.80 94 XM_023157464.1 70.75 94 XM_023056957.1 71.35 85 

L. compactus XM_023455051.1 73.58 94 XM_023157464.1 71.46 94 XM_023056957.1 71.35 85 

L. cooperi XM_026616242.1 68.87 98 XM_026616240.1 68.87 98 XM_024095357.1 70.22 80 

L. cueensis XM_014384982.2 69.37 97 XM_014384981.2 69.37 97 XM_026616242.1 68.82 98 

L. eberhardi XM_023455051.1 73.22 97 XM_023157464.1 72.88 74 XM_026902616.1 70.19 49 

L. hahni XM_023863548.1 67.57 87 XM_023157464.1 66.86 86 XM_014432617.1 67.04 87 

L. hinkleri XM_023455051.1 72.09 91 XM_023157464.1 71.46 94 XM_023056957.1 72.40 85 

L. lapostaae XM_026616242.1 69.40 97 XM_026616240.1 69.40 97 XM_014384982.2 68.99 97 

L. leysi XM_026902616.1 72.52 76 XM_024095357.1 70.05 98 XM_024095356.1 70.05 98 

L. macrotarsus XM_023455051.1 74.35 59 XM_023157464.1 70.35 78 XM_014432617.1 68.90 78 

L. melitaensis XM_026616242.1 69.05 98 XM_026616240.1 69.05 98 XM_024095357.1 70.99 80 

L. 

micromelitaensis 

XM_014384982.2 67.54 97 XM_014384981.2 67.54 97 XM_026616242.1 66.83 98 

L. microocular XM_014384982.2 68.29 97 XM_014384981.2 68.29 97 XM_026616242.1 67.33 98 

L. microomatoion XM_023157464.1 72.88 74 XM_014384982.2 67.48 96 XM_014384981.2 67.48 96 

L. millbilliensis XM_023455051.1 71.46 95 XM_023056957.1 71.54 91 XM_023157464.1 71.00 95 

L. mirandaae XM_024095357.1 71.50 81 XM_024095356.1 71.50 81 XM_024095355.1 71.50 81 

L. palmulaoides XM_026616242.1 69.04 98 XM_026616240.1 69.04 98 XM_024095357.1 70.88 81 

L. pulpa XM_023455051.1 74.41 96 XM_014384982.2 68.94 94 XM_014384981.2 68.94 94 

L. rivulus XM_014384982.2 69.71 97 XM_014384981.2 69.71 97 XM_026616242.1 68.33 98 

L. silus XM_026616242.1 67.71 98 XM_026616240.1 67.71 98 XM_014504999.1 68.16 86 

L. windarraensis XM_023455051.1 73.46 94 XM_023157464.1 72.88 95 XM_023056957.1 73.18 86 

A. bistrigatus XM_026616242.1 71.79 95 XM_026616240.1 71.79 95 XM_023455051.1 71.01 99 
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Chapter 4: Supplementary Information: Table SI3: Various references for phylogenetic (orthology) analyses. 

 

Gene class and taxon name Order Common name Gene Accession Reference 

ARRESTIN 1      

Ascalaphus macaronius Neuroptera Owlfly Arrestin 1 AJ303080.1 Bentrop et al. 2001 

Tribolium castaneum Coleoptera Red flour beetle Arrestin 1 XM_961502.4 NCBI 2016 

Aethina tumida Coleoptera Small hive beetle Arrestin homolog XM_020024243.1 NCBI 2017 

Bombyx mori Lepidoptera Silkworm Arrestin homolog XM_004924236 NCBI 2017 

Bemisia tabaci Hemiptera Silverleaf whitefly Arrestin homolog XM_019043449 NCBI 2016 

ARRESTIN 2      

Drosophila melanogaster Diptera Common fruit fly Arrestin 2 NM_079252.3 Adams et al. 2000 

Tribolium castaneum Coleoptera Red flour beetle Arrestin 2 NM_001170613.1 Richards et al. 2008 

Tribolium castaneum Coleoptera Red flour beetle Arrestin 3 XM_008200278.2 Kim et al. 2010 

Orussus abietinus Hymenoptera Parasitic wood wasp Arrestin 2 XM_012431149.2 Misof et al. 2014 

Polistes dominula Hymenoptera European paper wasp Arrestin homolog XM_015335890 NCBI 2016 

INACTIVATION NO 

AFTERPOTENTIAL D 

     

Drosophila melanogaster Diptera Common fruit fly inaD NT_033778.4 Adams et al. 2000 

Drosophila melanogaster Diptera Common fruit fly inaC NM_057515.3 Adams et al. 2014 

Anoplophora glabripennis Coleoptera Asian long-horned 

beetle 

inaD XM_018707301.2 NCBI 2018 

Lepitinotarsa decemlineata Coleoptera Colorado potato beetle inaD-like XM_023163085.1 NCBI 2017 

NON-VISUAL OPSIN      

Takifugu rubripes Tetraodontiformes Pufferfish Multiple tissue 

opsin 

AF402774 Moutsaki et al. 2003 

Danio rerio Cypriniformes Zebrafish Multiple tissue 

opsin 

AF349947 Moutsaki et al. 2003 

Apis mellifera Hymenoptera European honey bee Pteropsin NM_001039968 Velarde et al. 2005 

Tribolium castaneum Coleoptera Red flour beetle C-opsin NM_001145478 NCBI 2013 

Bombyx mori Lepidoptera Domestic silkworm Parapinopsin-like XM_004928326 NCBI 2013 

UV OPSIN      

Papilio xuthus Lepidoptera Swallowtail butterfly UV opsin AB028218 Kitamoto et al. unpub. 

Apis mellifera Hymenoptera European honey bee UV opsin NM_001011605 Townson et al. 1998 
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Tribolium castaneum Coleoptera Red flour beetle UV opsin-like XM_965251 NCBI 2008 

Thermonectus marmoratus Coleoptera Sunburst diving beetle UV opsin 1 EU921226 Maksimovic et al. 2009 

Thermonectus marmoratus Coleoptera Sunburt diving beetle UV opsin 2 EU921227 Maksimovic et al. 2009 

LONG WAVELENGTH 

OPSIN 

     

Tribolium castaneum Coleoptera Red flour beetle Rhodopsin 1/6-like NM_001162519 Park et al. 2008 

Thermonectus marmoratus Coleoptera Sunburst diving beetle Lwop EU921225 Maksimovic et al. 2009 

Apis mellifera Hymenoptera European honey bee Lwop 1 NM_001011639 NCBI 2014 

Apis mellifera Hymenotpera European honey bee Lwop 2 NM_001077825 Velarde et al. 2005 

Papilio xuthus Lepidoptera Swallowtail butterfly Rh1 AB007423 Kitamoto et al. 1998 

Papilio xuthus Lepidoptera Swallowtail butterfly Rh2 AB007424 Kitamoto et al. 1998 

Papilio xuthus Lepidoptera Swallowtail butterfly Rh3 AB007425 Kitamoto et al. 1998 

TRANSIENT RECEPTOR 

POTENTIAL (AND –LIKE) 

     

Drosophila melanogaster Diptera Common fruit fly Trp NT_033777.3 Adams et al. 2000 

Papilio machaon Lepidoptera Swallowtail butterfly Trp XM_014505011 NCBI 2015 

Cephus cinctus Hymenopterans Wheat stem sawfly Trp XM_015741511 NCBI 2018 

Tribolium castaneum Coleoptera Red flour beetle Trp XM_015979514.1 NCBI 2016 

Tribolium castaneum Coleoptera Red flour beetle Trp-gamma XM_015979223.1 NCBI 2016 

Aethina tumida Coleoptera Small hive beetle Trp-like NW_017853550.1 NCBI 2016  

Apis mellifera Hymenoptera Western honey bee Trp-like NC_037645.1 Wallberg et al. 2018 

Cephus cinctus Hymenopterans Wheat stem sawfly Trp-like NW_014333686.1 Robertson et al. 2012 

Ceratitis capitata Diptera Mediterranean fruit fly Trp-like NW_019376738.1 Murali et al. 

unpublished 

Dendroctonus ponderosae Coleoptera Mountain pine beetle Trp-like NW_017850257 Keeling et al. 2013 

Drosophila melanogaster Diptera Common fruit fly Trp-like NT_033778 Matthews et al. 2015 

Eurytemora affinis Calanoida Na  Trp-like NW_019396480 Murali et al. 

unpublished 

Microplitis demolitor Hymenoptera Na Trp-like NW_014463818.1 Burke et al. 2014 

Nasonia vitripennis Hymenoptera Na  Trp-like NC_015869.2 Werren et al. 2010 

Papilio machaon Lepidoptera Swallowtail butterfly Trp-like NW_014487397.1 Li et al. 2015 

Tribolium castaneum Coleoptera Red flour beetle Trp-like XM_015979513.1 NCBI 2016 
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Chapter 4: Supplementary Information: Figure SI4: Bayesian phylogenies 

supporting orthology of all genes. Each gene type was found in monophyletic 

groups with reference genes of the same type. a. is arr1 (blue), arr2 (red). b. is trp 

(red), and trpl (blue). c. is inaD (red), and d. is lwop (red), uvop (green), and c-opsin 

(blue). 
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Chapter 4: Supplementary Information: Figure SI5: Paroster lwop data alignment showing mutational variation in coding genes. 
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Chapter 4: Supplementary Information: SI6: Expanded details of laboratory and 

bioinformatics methods. 

 

Calcrete sampling. Subterranean diving beetle species from the genera Limbodessus and 

Paroster were collected from calcretes in the Yilgarn region of Western Australia utilising 

pre-drilled bore holes ~10 meters deep. A total of 32 subterranean beetle species were 

sampled from 20 calcretes representing seven different paleodrainages (Table 2). A 

plankton net with 250 μm mesh was lowered to the bottom and pulled through the 

groundwater to concentrate the stygofauna into a collecition tube at the bottom of the net 

(Allford et al. 2008). Sampled diving beetles were stored in tubes of RNAlater or 100% 

ethanol. A total of five surface species were used as comparison: Allodessus bistrigatus, L. 

compactus, L. rivulus, P. nigroadumbratus, and P. gibbi, which were collected from 

surface pools and stored in 100% ethanol until ready to use. 

Transcriptome assembly and bait design 

De novo assemblies of putative transcripts for five diving beetles (two surface and three 

subterranean) were used to find and annotate 19 photoreceptor genes (Table 1) from 

Tierney et al (2015), following the method outlined by the authors. These 19 genes were 

then assessed for functionality We selected a subset of 10 genes, where transcripts were 

present in the surface species, but either absent or showed evidence of non-functionality in 

the subterranean species. Sequence capture probes were developed from the orthologous 

transcript sequences of these genes and synthesized by Arbor Biosciences (formally 

MYcroarray, Ann Arbor, MI). 

Library preparation. We extracted DNA from whole beetles following the Gentra 

protocol (Gentra Systems, Inc.) with the following modifications; 0.5 uL of glycogen was 

used instead of 2 μL and precipitated DNA was centrifuged for 15 minutes instead of 10 

minutes at 4°C. We measured DNA concentrations using a Qubit 2.0 fluorometer (Life 

Technologies) using a dsDNA quantification kit, and we pooled multiple samples when 

less than 1 ng/μL. For P. nigroadumbratus, we used previously extracted DNA, which had 

been stored at -80°C. Starting material for sonication ranged from 100 ng to 500 ng. We 

sheared DNA to an average fragment distribution of 400-600 base pairs (bp) using an 

on/off setting of 30/30 for 2 cycles, in a Diagenode Bioruptor sonicator. DNA fragment 

sizes were subsequently verified using a High Sensitivity D1000 screen tape following the 

accompanying kit protocol for an Agilent 4200 TapeStation System. 

Following sonication, we constructed sequencing libraries using the Meyer and 

Kircher protocol (Meyer and Kircher 2010), using double indexing primers (Hugall et al., 

2015; Glenn et al., 2016). We assessed the success of library preparation by measuring 

DNA concentration using a Library Quantification kit, following the manufacturer’s 

protocol. A DNA quantification kit and a standard qPCR run in a LightCyler 96 Real-Time 

PCR System was used. All samples underwent a 0.9-1.8X Ampure XP bead clean-up after 

each step and as a final step following Meyer and Kircher (2010). 

Hybridization of baits to libraries and sequencing. Prior to capture we divided the 

target baits into ¼ capture reactions. We enriched each species in its own ¼ capture or 

added a maximum of two species together in ¼ capture to ensure maximum targeting of 

each species. We performed the enrichment following the Arbor Biosciences MYbaits user 

manual v2 (formerly Microarray). The enrichment was performed at 65 ºC for a period of 
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44 hours for the first enrichment which contained L. palmulaoides, and 18 hours for all 

other enrichments, as we determined that 18 hours was sufficient for hybridisation. 

We verified enrichment success with qPCR as previously mentioned, and using a 

tapestation for visualization of fragments to confirm they were within the correct size 

range for sequencing. Size selection was performed using Ampure XP beads in order to 

reduce the small bp size fragments, following the Meyer & Kircher protocol (2010). All 

samples were pooled in equal concentrations and subsequently concentrated to 30 μL. The 

first MiSeq run contained six pooled samples (four different species), the second contained 

eight pooled samples (eight different species), the third contained 22 pooled samples (18 

different species) and the final MiSeq run contained 15 pooled samples (12 different 

species). Each pool was run on its own lane on the Illumina MiSeq platform (AGRF 

facility in Adelaide, Australia), obtaining 300 bp paired end reads for MiSeq run one, two 

and four, and 150 bp paired end reads for Miseq run three. We chose the smaller read 

return for capture three because starting material was fragmented into sizes too low for 300 

bp paired end reads. 

Bioinformatics. Quality assessment and mapping. Raw sequencing reads for each species 

were assessed using FASTQC v.0.11.3 (Babraham Institute). Poor quality bases and 

Illumina adapter sequences were then trimmed using BBDuk v.2 (Bushnell 2015) with the 

following parameters; literal=AGATCGGAAGAGCAC,AGATCGGAAGAGCGT ktrim=r k=15 

mink=15 hdist=0 tbo qtrim=rl trimq=20 minlength=30 threads=10. Cleaned 

reads were mapped to either L. palmulaoides, A. bistrigatus, or P. nigroadumbratus 

transcriptome data gene sequences, using BWA v.0.7.12 (Li and Durbin 2009) with default 

parameters and the resulting alignments converted to BAM format, only retaining mapped 

reads, using SAMTools v.1.3.1 (Li et al. 2009). Trimming and mapping steps were 

implemented in a unix shell script (SI8) on a 12-core virtual machine on the NeCTAR 

research cloud (National Research Infrastructure for Australia, developed by FULLER) 

under an Ubuntu 16.04 LTS image. BAM files were viewed in IGV v.2.3.92 (Robinson et 

al. 2011; Thorvaldsdóttir et al. 2013) to visually identify exon-intron junctions (i.e. 

presence of softclips to the left in some sequences and to the right in others of a particular 

position), which were manually separated in a FASTA file and subsequently re-mapped 

following the above protocol.  

 Cleaned reads for each species were de novo assembled using four different 

assemblers to optimize successful coverage of exons across genes and to verify the 

mapping approach detected all sequences: IDBA v.1.1.1 (Peng 2009), RAY (Boisvert et al. 

2010), SPAdes v.3.13.0 (Bankevich et al. 2012) and Celera v.8.3 (WGS; Denisov et al. 

2008). All assemblies were viewed in Geneious and subsequently compared to a 

personalized BLASTn database containing the photoreceptor genes from the transcriptome 

data (Table 1). Geneious was also used to map cleaned reads to the same reference 

sequences as mentioned above, as a comparison to our BAM files, in order to verify 

mapping quality, but also to extend final sequences if possible. The general coverage of 

exons was higher in the first and second capture as it only included six and eight samples, 

respectively, resulting in hundreds to thousands of sequence coverage. The general 

coverage was consistently lower in the remaining two captures, as we would expect due to 

the pooling of samples for sequencing, resulting in less than a hundred sequence coverage. 

The coverage was consistently lower near the edges of the exons, due to an issue termed 
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the ‘edge effect’ (Bi et al 2012), consistent with other studies (Bragg et al 2015; Portik et 

al 2016; Puritz & Lotterhos 2018).  

Orthology of genes. We used the BLASTn feature within Genbank to compare our 

nucleotide sequences to the database of available genes, with the top two hits recorded 

(SI2). An orthologous match was considered positive when identities were greater than or 

equal to 70% with at least 50% of the gene covered by the match (Tommaso et al, 2011).  

Each gene group, arrestin (arr1 and arr2), opsin (c-opsin, lwop, and uvop), trp (trp 

and trpl) and inaD, were aligned with CLUSTALW in Geneious. No sequences were 

captured for the gene ninaC or prominin, most likely, because the transcriptome assembly 

led to an erroneous bait design.  

Subsequently, Bayesian phylogenies were constructed using BEAUTi v.2.4.7 

(Bouckaert et al. 2014) and BEAST v.1.7.5 (Drummond et al. 2012) for each gene group 

with references from Genbank (SI3). Two independent runs were carried out with 50 

million generations and trees sampled every 5000 generations. We used a burn-in of 25% 

(12.5 million) generations per run. The convergence of runs was assessed using Tracer 

v.1.5 (Rambaut and Drummond 2009) and by identifying values of the effective sample 

size (ESS). Final gene trees were viewed and edited in FigTree v.1.4.3 (Rambaut 2012).  

Pseudogene assessment. All sequences were aligned and assessed for ORFs to determine 

whether the sequences were likely to code for functional proteins. We took note of 

sequences that contained indels (insertions or deletions) and pre-mature stop-codons and 

assessed the read quality of these sites for sequencing errors by mapping raw reads onto 

the sites using Geneious. As genes approach neutrality and pseudogenization, we would 

expect genes to either contain translational stop codons and/or frameshift mutations 

leading to altered protein, or increased rates of nonsynonymous substitutions (dN) relative 

to synonymous substitutions (dS) (i.e. d /dS 1). 

Tests of Selection. We used HyPhy to determine the pairwise relative rates of independent 

comparisons of surface and subterranean species, using a General Time Reversible (GTR) 

model of sequence evolution (Tavaré 1986). First, we tested for variation in overall and 

nonsynonymous substitution rate and predict that there will be elevated rates of evolution 

in subterranean species when compared to surface species. We compared overall rates of 

nucleotide substitution by comparing the likelihood scores of a shared substitution rate 

between taxa. Branch lengths were estimated independently with global (i.e. shared) model 

parameters. Rate parameters were calculated using maximum likelihood, and equilibrium 

(nucleotide) frequencies were ‘observed’. We repeated overall pairwise relative rates on 

inferred amino acid sequences following the same parameters as above. Additionally, we 

performed pairwise relative rate analyses of nonsynonymous subtitutions, using the same 

options as above, except using local (i.e independent) model parameters instead of global. 

We then employed Datamonkey v.2.0 (datamonkey.org; Weaver et al. 2018) for 

phylogenetic hypothesis testing, which required Bayesian inferred trees (constructed in 

BEAST using the main seven nuclear genes from the exon capture (arr1, arr2, lwop, c-

opsin, inaD, trp, and trpl, but excluded uvop as there was too much missing data) and 

mitochondrial genes COI, 16S, and ND1 from Genbank (accession numbers found in SI9), 

following specifications listed above). In Datamonkey, we used two site-specific methods 

that calculate ω independently at each codon: single-likelihood ancestor counts (SLAC) 

which are simplistic, and fixed effect likelihood (FEL), which are less susceptible to Type 
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1 errors (Pond and Frost 2005). It is unclear where along the branch leading to a 

subterranean species it actually went underground. However, using the branches associated 

with sympatric sister species, which most likely speciated underground (Leijs et al. 2012; 

Langille et al. unpublished), for these and subsequent analyses ensures that omega (ω) will 

be approaching 1 under neutral evolution. We expected a higher value of ω in the 

subterranean lineages (close to 1) than the surface lineages, the latter expected to show 

genes under purifying selection.  

We also carried out branch by branch analyses using RELAX (in HyPhy; 

Wertheim et al. 2015) comparing surface lineages to subterranean ones. RELAX estimates 

a value of ω along each branch by a model of branch site-random effects likelihood (BS-

REL) and then fits the selection intensity, K, to it (ωK). Under these parameters, a K > 1 is 

indicative of purifying selection, while a K < 1 is indicative of relaxed selection. RELAX 

requires proper codon structure therefore all insertions that were not a multiple of three 

were removed, an ‘N’ was added to the third position of stop codons, and deletions were 

filled with N’s until the expected reading frame was obtained. 
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Chapter 4: Supplementary Information: SI7: References from the methods section 

in text and from supplementary information. 
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Chapter 4: Supplementary Information: SI8: BASH script containing commands 

designed to clean raw data, create FASTqc reports, map cleaned data to 

references, and generate final files for viewing in IGV. 

 
#!/bin/bash 
# 
# 
# usage: program.sh <ref.fa> <path to raw data> 
# 
# Automated NGS mapping 
# Barbara Langille 
# November 2016 
 
 
 
function error_exit 
{ 
    # Exit function due to fatal error 
    # Accepts 1 arg: 
    # string - descriptive error message 
 
    echo "${PROGNAME}: ${1:-"Unknown error"}" 1>&2 
    exit 1 
} 
 
 
#------adjust these for your run----- 
BBMDIR="/home/blangille/src/bbmap/bbduk.sh" 
THREADS=10 
#------------------------------------ 
 
 
 
# go to the working directory 
cd $2 
 
for file in *_R1.fastq.gz 
do 
 
 FILESTEM=${file%_*}  
 
 # run all paired data through bbmap 
 $BBMDIR in=$file in2=$FILESTEM"_R2.fastq.gz" 
out=../clean/$FILESTEM"_R1_clean.fq.gz" 
out2=../clean/$FILESTEM"_R2_clean.fq.gz" 
outs=../clean/$FILESTEM"_singletons.fq.gz" 
literal=AGATCGGAAGAGCAC,AGATCGGAAGAGCGT ktrim=r k=15 mink=15 hdist=0 tbo 
qtrim=rl trimq=20 minlength=30 threads=$THREADS || error_exit "$LINENO: 
Error cleaning R1 or R2" 
 
 # run cleaned data through fastqc 
 mkdir -p ../clean/fastqc  
 fastqc --noextract --threads $THREADS -o ../clean/fastqc 
../clean/$FILESTEM"_R1_clean.fq.gz" ../clean/$FILESTEM"_R2_clean.fq.gz" 
../clean/$FILESTEM"_singletons.fq.gz" 
 
 # index reference *need to add an if clause here because only 
need one 
 #if <*.fai> file exists move on 
 bwa index ../refs/LpalREF_concat.fa 
 
 # mapping of PE and singletons to reference 
 mkdir -p ../clean/files 
 bwa mem -t $THREADS -R '@RG\tID:PE\tSM:' 
../refs/LpalREF_concat.fa <(zcat ../clean/$FILESTEM"_R1_clean.fq.gz) 
<(zcat ../clean/$FILESTEM"_R2_clean.fq.gz) | samtools view -hu -q 1 -@ 
$THREADS - | samtools sort -o ../clean/files/$FILESTEM"_PE.sorted.bam" -
T temp.sort -@ $THREADS - || error_exit "$LINENO: Error mapping PE" 
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 bwa mem -t $THREADS -R '@RG\tID:Singleton\tSM:' 
../refs/LpalREF_concat.fa <(zcat ../clean/$FILESTEM"_singletons.fq.gz") 
| samtools view -hu -q 1 -@ $THREADS - | samtools sort -o 
../clean/files/$FILESTEM"_singletons.sorted.bam" -T temp.sort -@ 
$THREADS - || error_exit "$LINENO: Error mapping singletons" 
 
 # merge PE and singletons sorted.bam together 
 samtools merge ../clean/files/$FILESTEM"_PEandSingletons.bam" 
../clean/files/$FILESTEM"_PE.sorted.bam" 
../clean/files/$FILESTEM"_singletons.sorted.bam" 
 
 # index PEandSingletons.bam 
 samtools index ../clean/files/$FILESTEM"_PEandSingletons.bam" 
 
 
done 
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“Freedom of thought is best promoted by the 
gradual illumination of [women’s and] men’s 

minds which follows from the advance of 
science.” 

~Charles Darwin 




