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Regularity is rare, despite its ubiquity

A d-polytope P is regular if Aut(P) is transitive on flags.
But most polytopes of rank d ≥ 3 are not regular.

Eg. The truncated tetrahedron Q,
although quite symmetrical, has
facets of two types (and 3 flag orbits
under action of Aut(Q) ' S4).
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Now lift to covers ...

• Likewise, a map Q on a compact surface will not usually be regular.

• But it is ‘well-known’ that Q is covered by a regular map P (usually
on some other surface).

• The regular cover P is unique (to isomorphism) if it covers Q
minimally.

• The proof is straightforward and works for any abstract 3-polytope
(e.g. if Q is a face-to-face tessellation of the plane). In fact,

Aut(P) ' Mon(Q), the monodromy group of Q. ?→

• So it’s crucial that Mon(Q) is a string C-group when rank d = 3.
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Example.

Hartley and Williams (2009) determined the minimal regular cover P for
each classical (convex) Archimedean solid Q in E3.

Here the regular toroidal map P = {6, 3}(2,2) covers the truncated
tetrahedron Q.
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Gripe

In the theory of covering spaces f : C → B, the monodromy group is a
representation of the fundamental group of the base B as a permutation
group on a generic fibre f −1(x).

This is definitely not how we think of Mon(Q) in polytope theory!

The covering on the previous slide is 2 : 1, except at four ramification
points. There is no place for our monodromy group there.

But perhaps we can say, with futility, that the people working on covering
spaces these last 200 years have misused the word!
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Let’s take stock:

• every polytope of small rank d ≤ 2 is (combinatorially=abstractly)
regular, hence equals its own minimal regular cover.

• every (abstract) 3-polytope Q has a unique minimal regular cover P,
and Mon(Q) ' Aut(P).

• So it’s clear (in rank d = 3) that the cover P is finite if-f Q is finite.

• On the other hand, any polytope in any rank d ≥ 2 is covered by the
universal regular d-polytope U = {∞, . . . ,∞}.
• So what about finite covers in higher ranks, i.e. d ≥ 4?
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What happens in higher ranks d ≥ 4?

The natural tool Mon(Q) might fail the needs of polytopality.

Recently, Egon Schulte and I found a fix. From this we are able to prove,
for the first time,

Theorem (2013, to appear in J. Alg. Comb.)
Every finite d-polytope Q is covered by a finite regular d-polytope P.
Moreover, if Q has all its k-faces isomorphic to one particular regular
k-polytope K, then we may choose P to also have such k-faces.
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A 4-dimensional convex example

Suppose Q is the pyramid over a
cuboctahedral base.
Then from our theorem, Q has a
regular cover P of type {12, 12, 12}
and with

253 · 314 · 5 ≈ 2.15× 1023

flags. (This isn’t likely a minimal
cover!)

Apex
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Idea of proof.

• an induction based on rank of regular initial sections in Q
• crucial case is when d-polytope Q has all facets isomorphic to some

regular (d − 1)-polytope K
• in that case, extend K ‘trivially’ to a regular d-polytope K̄ of type
{K, 2}... Thanks ...

• next ‘mix’ to get
G = Mon(Q)♦Aut(K̄)

• then G = Aut(P) for desired regular cover P of Q
(quotient criterion).

• P is finite when Q is finite.
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Time for some more pyramids?

Leah B., Mark M., Deborah O., Gordon W. and I have studied the
monodromy group Mn of the ordinary pyramid Qn over an n-gon (coming
up in Discrete Mathematics).

The extreme cases M2 and M∞ are most interesting. In fact, M∞ is
isomorphic to one of the 4783 space groups acting on Euclidean 4-space.
The ‘4’ is because most 3-pyramids have 4 flag-orbits under
automorphisms. Here is a

Problem of Sorts
What is special about a k-orbit d-polytope Q for which Mon(Q) has a
normal subgroup N ' Zk

b? Maybe maximal among abelian subgroups?
Here b should be ‘meaningful’. For example, if Q were infinite, we might
want b =∞, or even N of finite index in Mon(Q).
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Many thanks to our organizers!

Barry Monson (UNB), (from projects with L.B., M.M., D.O., E.S. and G.W.) , Fields Institute, November, 2013, (supported in part by NSERC)Regular Covers and Monodromy Groups of Abstract Polytopes



References

[1] L. Berman, M. Mixer, B. Monson, D. Oliveros and G. Williams, The
monodromy group of the n-pyramid , to appear in Discrete Mathematics.

[2] P. McMullen and E. Schulte, Abstract Regular Polytopes, Encyclopedia
of Mathematics and its Applications, 92, Cambridge University Press,
Cambridge, 2002.

[3] B. Monson and E. Schulte, Finite Polytopes have Finite Regular
Covers, to appear in Journal of Algebraic Combinatorics.

[4] B.Monson, D. Pellicer and G. Williams, Mixing and Monodromy of
Abstract Polytopes, to appear in Trans. AMS.

Barry Monson (UNB), (from projects with L.B., M.M., D.O., E.S. and G.W.) , Fields Institute, November, 2013, (supported in part by NSERC)Regular Covers and Monodromy Groups of Abstract Polytopes



What are abstract polytopes?

An abstract n-polytope Q is a poset having some of the key structural
properties of the face lattice of a convex n-polytope, although Q

• need not be a lattice

• need not be finite

• need not have a familiar geometric realization

The abstract 3-polytopes include all convex polyhedra, face-to-face
tessellations and many less familiar structures. But

you can safely think of a finite 3-polytope as a map on a compact surface.

Do we want details?
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The n-polytope Q
is a poset whose elements (= faces) satisfy:

• Q has a unique minimal face F−1 and maximal face Fn

• Every maximal chain or flag has n + 2 faces

so Q has a strictly monotone rank function onto {−1, 0, . . . , n}
• Q is strongly flag connected

via adjacency in the flag graph; this rules out, for example, the
disjoint union of two polyhedra

• Q satisfies the ‘diamond’ condition:

whenever F < G with rank(F ) = j − 1 and rank(G ) = j + 1 there
exist exactly two j-faces H with F < H < G

H H’

F

G

j

j+1

j−1

get back
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The symmetry of Q

is encoded in the group Γ = Γ(Q) of all order-preserving bijections (=
automorphisms) of Q.

Each automorphism is det’d by its action on any one flag Φ; for a
polyhedron, a flag

Φ = incident [vertex, edge, facet] triple

Def. Q is regular if Γ is transitive on flags.

Examples:

• any polygon (n = 2) is (abstractly, i.e. combinatorially) regular

• the usual tiling of E3 by unit cubes is an infinite regular 4-polytope

• the Platonic solids (n = 3).
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The convex regular polyhedra (=Platonic solids) and the
Kepler-Poinsot star-polyhedra P

Local data for both polyhedron P and its group Γ(P) reside in the Schläfli
symbol or type {p, q}.

Platonic solids: {3, 3} (tetrahedron), {3, 4} (octahedron), {4, 3} (cube),
{3, 5} (icosahedron),{5, 3} (dodecahedron)

Kepler (ca. 1619) {52 , 5} (small stellated dodecahedron),
{52 , 3} (great stellated dodecahedron)

Poinsot (ca. 1809) {5, 52} (great dodecahedron),
{3, 52} (great isosahedron)
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The classical convex regular polytopes, their Schläfli
symbols and finite Coxeter groups with string diagrams

name symbol # facets (Coxeter) group order

n = 4:

simplex {3, 3, 3} 5 A4 ' S5 5!

cross-polytope {3, 3, 4} 16 B4 384

cube {4, 3, 3} 8 B4 384

24-cell {3, 4, 3} 24 F4 1152

600-cell {3, 3, 5} 600 H4 14400

120-cell {5, 3, 3} 120 H4 14400

n > 4:

simplex {3, 3, . . . , 3} n + 1 An ' Sn+1 (n + 1)!
cross-polytope {3, . . . , 3, 4} 2n Bn 2n · n!
cube {4, 3, . . . , 3} 2n Bn 2n · n!
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Regular polytopes and string C-groups

Schulte (1982) showed that the abstract regular n-polytopes P correspond
exactly to the string C-groups of rank n (which we often study in their
place).

The Correspondence Theorem.

Part 1. If P is a regular n-polytope, then Γ(P) = 〈ρ0, . . . , ρn−1〉 is a
string C-group.

Part 2. Conversely, if Γ = 〈ρ0, . . . , ρn−1〉 is a string C-group, then we can
reconstruct an n-polytope P(Γ) (in a natural way as a
coset geometry on Γ).

Furthermore, Γ(P(Γ)) ' Γ and P(Γ(P)) ' P.
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Recap: what is a string C-group?

Means: having fixed a base flag Φ in P, for 0 ≤ j ≤ n − 1 there is a
unique automorphism ρj ∈ Γ(P) mapping Φ to the j-adjacent flag Φj .
These involutions generate Γ(P) and satisfy the relations implicit in some
string (Coxeter) diagram, like

• p1 • p2 • . . . •pn−1• ,

and perhaps other relations, so long as this intersection condition
continues to hold:

〈ρk : k ∈ I 〉 ∩ 〈ρk : k ∈ J〉 = 〈ρk : k ∈ I ∩ J〉

(for all I , J ⊆ {0, . . . , n − 1}).
Notice that P then has Schläfli type {p1, . . . , pn−1}.
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What is the monodromy group?

Look for example at the usual faithful realization of the regular
dodecahedron D

The flags of D correspond
exactly to the triangles in a
barycentric subdivision of the
boundary. Here is part of that ⇒
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A base flag for D, adjacent flags and generators

By transitivity, pick any
base flag = Φ [white]
Then
0-adjacent flag =: Φ0 [pink]
1-adjacent flag =: Φ1 [cyan]
2-adjacent flag =: Φ2 [orange]
For i = 0, 1, 2, there is a
unique automorphism

ρi : Φ 7→ Φi .

Then Γ(D) = 〈ρ0, ρ1, ρ2〉.
Can think reflections ⇒
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Now DESTROY the polytope!

Consider any d-polytope Q, not necessarily regular. For each flag Φ of Q
and i = 0, . . . , d − 1, there is a unique i -adjacent flag Φi .

The mapping si : Φ 7→ Φi defines an involutory bijection si on the set
F(Q) of all flags.

Defn. The monodromy group of Q is Mon(Q) := 〈s0, . . . , sd−1〉.

(For maps, Steve Wilson [1994] calls this the “connection group”.)

It is easy to check that s2i = 1 and that (si sj)
2 = 1, for |j − i | > 1, so

Mon(Q) is an sggi = string group generated by involutions.
But for ranks d ≥ 4, Mon(Q) can fail the intersection condition needed to
to be a

string C-group = aut. group of regular d-poly.

Get back →
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Example 1 - more on the regular dodecahedron D

Note how seemingly destructive
such flag swaps are.
(Think Rubik.)
Even so, here we do have

Mon(D) ' Γ(D) .

Theorem[ours in high rank]
For any abstract regular
d-polytope P,

Mon(P) ' Γ(P) .

See Mixing and Monodromy of Abstract Polytopes, Monson, Pellicer and
Williams, coming soon.
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Example 2. The 4-gonal pyramid E is not regular

You can see that Γ(E) has order 8. Guess the order of its monodromy
group . . .
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Example 2, continued

Here is a bit of the barycentric subdivison (left) with a few flags (right).
Start flipping!

Barry Monson (UNB), (from projects with L.B., M.M., D.O., E.S. and G.W.) , Fields Institute, November, 2013, (supported in part by NSERC)Regular Covers and Monodromy Groups of Abstract Polytopes


