

Regulatory Perspectives on Extractables and Leachables

Prasad Peri, ONDQA, FDA Feb 22, 2011 PQRI Workshop on Thresholds and Best Practices for Parenteral and Ophthalmic Drug Products (PODP) Bethesda, MD.

Would you want these in your drug products?

Definitions

- Extractables
 - Compounds that can be extracted from the container closure system (CCS) when in the presence of a solvent
- Leachables
 - Compounds that leach into the dosage form from the container closure as a result of direct contact with the formulation

Definitions

- Extractables
 - Compounds the container closed from the container closed and closed and closed from the preside a solvent
- Leachables
 - Compounds that from the content of are as a result of direct cortent of the formulation

Outline

- Regulatory Background/Importance
- Recommendations
- Current Status
- QbD Approaches to Extractables and Leachables
- Conclusion

Background

- How did the importance of extractables/leachables come to FDA's attention?
- In the early 1990s.
 - Nitrosamines in metered-dosed inhalers elastomers (MDIs)
 - 2-Mercaptobenzothiazole in elastomers
 - Other classes of E/L's
 - Processing aid residues
 - Vanillin in inhalation solution
 - Aluminum in large volume parenterals

Why the Concern?

- Safety concerns
 - MDIs
 - Sensitive, compromised patient populations
 - Paradoxical bronchospasm
 - Long-term safety for chronic use
 - Parenterals
 - Direct exposure to leachables
- Quality concerns
 - Lack of knowledge/control of source materials
 - Lack of understanding of potential risks from extractables and leachable
 - Lack of control of extractables and leachables

Relevant Recent Meetings/Courses

- PDA Extractables and Leachables Nov 6-8, 2007, Bethesda, MD.
- PharmaEd's Extractables and Leachables 2010, May 2010, San Francisco
- Extractables and Leachables for Pharmaceuticals Products, 14-15 Sept 2010 (London).
- PDA/FDA Joint Regulatory Conference, 13-16 Sept 2010, Washington DC.
- Leachables and Extractables Testing and Assessment, Nov. 2010, Prague Czech Republic.
- IPAC RS Workshop on Extractables and Leachables 2011 March.
- Extractables-Leachables Forum 2011, May 17-18, 2011 in Goettingen, Germany

Potential for Extractables and Leachables

N-4	N-3	N-2	N-1	(N) End user
Monomer Synthesis	Polymer Manufacturing	Masterbatcher	Molding Shop (Converter)	Packaging Containers/ Device Components
Bulk Chemicals Storage Stabilizers	Catalysis Stabilizers Antioxidants Processing aids Others	Stabilizers Antioxidants Processing aids Antistatic Others	Lubricants Colorants	A REAL PROPERTY OF
	Trade Secret Protect	ed		

Cindy Zweiben, Characterization of Extractables and Leachables in Parenteral Drug Products, Sept 2010

Present and Future

- Only in the past 15 years have attempts been made to proactively design materials fit for use based on increased knowledge about container closure system (CCS) materials and manufacturing processes.
- There is room for a *risk-based approach* for ophthalmic and *some* parenteral drug products regarding E/L studies
 - Likelihood of CCS formulation interaction
 - Potential risk to the patient based on the route of administration.
 - If risks not known, can use conservative approaches (e.g., MDI/DPI)

Extractables Studies – Why?

- For qualification of CCS components
- Used to screen for and monitor presence of toxic materials (*e.g.*, nitrosamines etc.)
- Used for quality control for acceptance of CCS components
- Extractables limits ensure limitations on leachables when extractables are correlated to leachables.

Extractables Studies–How?

- Use knowledge of component composition as an initial guide to developing the extraction techniques and analytical methods
- Use solvents of varying polarity, multiple extraction techniques and analytical techniques
- Estimate daily exposure, and safety concern threshold
- Involve toxicologists in assessment

U.S. Food and Drug Administration Protecting and Promoting Public Health

Extractables Studies–How?

- Extraction
- Water
- Polar solvents
- Organic Solvents

Leachables Studies – How?

 Conduct leachables studies (during drug product stability testing) based on methods used for controlled extractables studies.

- When possible establish a correlation
 between extractables & leachables
 - Could be possible to eliminate leachables testing and develop routine extractables testing.

U.S. Food and Drug Administration Protecting and Promoting Public Health

QbD Approach

QbD

A systematic approach, predefined objectives, product and process understanding and process control, science, quality risk management.

Quality Risk

Management

Enhanced Assessment of Product Quality.

Proactive

Approach

Reactive Approach

ICH Quality Roadmap

ICH Q8(R2) Concepts

- Quality should be built in by design
- Enhanced product knowledge and process understanding
 - Facilitates establishment of design space
 - Provides opportunities for flexible regulatory approaches
 - Risk-based regulatory decisions (review & inspection)

Role of Quality Risk Management

- Role of risk assessment
 - Early identification of risk
 - Risk analysis and evaluation
 - Risk reduction as needed
- Risk communication for continuity between
 - Development and manufacturing
 - Industry and regulators
 - Multiple manufacturing sites
- Review of risk can be incorporated
 - On periodic basis
 - As part of investigations of deviations
 - As part of change control and continuous improvement

Product

profile

CQAs

Risk

assessment

Design

Space

Control strategy

Lifecycle management

QbD Approach to Extractables and Leachables • Desired product profile

- Critical quality attribute (CQA)
 - Minimum level or absence of leachables
 Formulation and CCS selection and design to consistently meet CQA
- Risk assessment to identify source of variability (material, process) on CQAs
- Design and implement a control strategy
- Manage product lifecycle, including continual improvement

"CCS Understanding"

- Not all extractables are leachables
- Not all leachables are extractable
- When possible, develop a correlation between extractables and leachables
- Control and/or characterize the leachables that are not-correlated.

www.fda.gov

Risk Assessment

Product profile	 Understand risks of E/L
CQAs	 Dosage form risk
Risk assessment	 Inhalation, parenteral > ophthalmic > transdermal > oral > topical
	 – Patient population
	 For example, highly sensitive or immune compromised patients
Control strategy Lifecycle	 Use prior knowledge for selecting and studying CCS
management	 For example, high pH formulations and glass

Risk Assessment – E/L's

Understand potential contributing factors toward E/Ls

Product profile **CQAs** Risk assessment Design space Control strategy Lifecycle management

Designing the Product

- Material selection for CCS components is driven by
 - Safety assessment of extractables/leachables
 - Desired performance parameter outcomes
 - Formulation compatibility considerations
- Primary vs. secondary packaging components
 - Elevated risks for packaging components in contact with drug or patient
- Work with supplier
 - Understand CCS manufacturing process and composition, as much as possible, especially for higher risk components
- Make safety assessment of materials to guide the choice of materials and to decrease risk later in development

Understanding the Process

- Product profile **CQAs Risk** assessment Design space Control strategy Lifecycle management
- Understand sources of variability for each material, component, and processing used in the CCS
 - Evaluate the impact of this variability on CCS performance and safety as it pertains to drug product
 - Rational experiments
 - Determine who (NDA applicant or supplier) will do experiments

Work with supplier(s) to ensure appropriate raw material quality, in-process/release controls for CCS components to maximize chances for successful development

Design Space Materials - Process - Product

Control Strategy

Setting Leachables Specification

Control Strategy – Specifications

- Setting leachables specification is a circular, labor-intensive process if a proactive approach is not adopted
- Specifications are usually based on data; however, amount of research and development plays a significant role
 - Formulation
 - CCS material
 - Analytical methods
- If extractable studies are performed ahead of time, the burden of setting leachables specifications becomes easier as
 - an extractables-leachables correlation can be accomplished in a single stability study

Lifecycle Management

- Lifecycle monitoring and improvement in CCS material and process
- Work with suppler related to changes in CCS process
 - Business decisions
 - Alternate sites for better access
 - Better knowledge of materials
- Development of libraries for alternate CCS materials to be interchanged ahead of time since the component marketplace is constantly changing

Summary

- Extractables and leachables (E/L's) pose a safety and quality concern to certain types of products
- The QbD approach can provide a framework for a more scientific, risk-based approach to E/L's
- Risk understanding and management is key
- Specification is only part of quality control strategy
- Higher level of understanding can facilitate continual improvement during product lifecycle

Available References

- ICH Q8(R2) *Pharmaceutical Development* (Aug 2009).
- ICH Q9 Quality Risk Management (Nov 2005).
- FDA Guidance to Industry, *Container Closure Systems for Packaging Human Drugs and Biologics* (May 1999).
- FDA Guidance to Industry (draft), *Metered Dose Inhaler (MDI) and Dry Powder Inhaler (DPI) Drug Products* (November 1998).
- FDA Guidance for Industry, Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products (July 2002).
- PQRI Recommendation (draft), Safety Thresholds and Best Practices for E/L in Orally Inhaled and Nasal Drug Products (September 2006).

Acknowledgements

- Craig Bertha Ph.D.
- Alan Schroeder Ph.D.
- Christine Moore Ph.D.