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High Frequency Forex Data (1/2)

Time Bid price Bid LP Bid Quota Ask price Ask LP Ask Quota

20190101 00:00:00 0.72714 LP-1 1,000,000 0.72718 LP-2 1,000,000

Center around 0 Fat tail Low autocorrelation

No prior distribution assumption over returns
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High Frequency Forex Data (2/2)

Additional features from other currency pairs and spreads

Correlation b/w currency pairs Correlation b/w log return and bid-ask spreads

Log return

Bid-ask spread
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Forex Trading Approaches 

How is Forex traditionally traded?
- A few key decisions:

- Currency pair to trade
- Position size
- When to enter/exit
- Which dealer to use/how to execute the trade
- Bid-ask spread

- Traditional strategies use Momentum, Mean Reversion, Pivots, Fundamental 
Strategy, Stop-loss orders

- Trend-based -> machine learning?
- Scalping, Day trading, Longer time frames
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Reinforcement Learning

Reinforcement learning for forex trading
- Reinforcement Learning (RL) is a type of machine learning technique that enables an agent to 

learn in an interactive environment by trial and error using feedback from its own actions and 
experiences.

- Trading is an “iterative” process, and past decisions affect future, long-term rewards in indirect 
ways

- Compared to supervised learning, we are not making or losing money at a single time step…
- Traditional “up/down” prediction models do not provide an actionable trading strategy
- Incorporate longer time horizon
- Give us more autonomy in trading policy, regularize the model from trading too frequently
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Baseline model (1/3)

Policy Gradient
● Maximize the “expected” reward when 

following a policy π

● Actions are chosen by ‘actor’, i.e. 
mapping current features to next action

● Gradient descent on π to find the 
optima

Goal Maximize total (undiscounted) return over 1-hour horizon by making short/long trading 
decisions for AUDUSD per second

Input

Action

Method

Per second bid-ask prices for AUDUSD and other available currency pairs; include the recent 
16-second returns as features

Float between -1 (short the currency with all cash) and 1 (long the currency with all cash)
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Baseline model (2/3)

In detail

Profits are calculated in two ways

-1 0 1
-1 0 -Ask[t] -2*Ask[t]
0 Bid[t] 0 -Ask[t]
1 2*Bid[t] Bid[t] 0

Mid-price approximation Incorporating bid-ask spreads
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Baseline model (3/3)

Total reward incorporating bid-ask spreadTotal reward using mid-price approximation

# of epochs

Total reward (per $1,000 capital per hour)

After 5-6 CPU hours’ training, RL agent manages to 
yield 0.2% per hour on the validation data.

After 5-6 CPU hours’ training, RL agent manages to 
yield 0.4% per hour on the validation data.

Total reward (per $1,000 capital per hour)

# of epochs

Bid-ask 
spread cost
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Next Steps

● Incorporate better features 
- Technical features (e.g. chart pattern)

● Build a better architecture 
- From linear layers to neural networks

● Exploration 
- Explore actions may yield better future rewards

● Train with more computing power
- Cloud computing
- Parallel computing
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