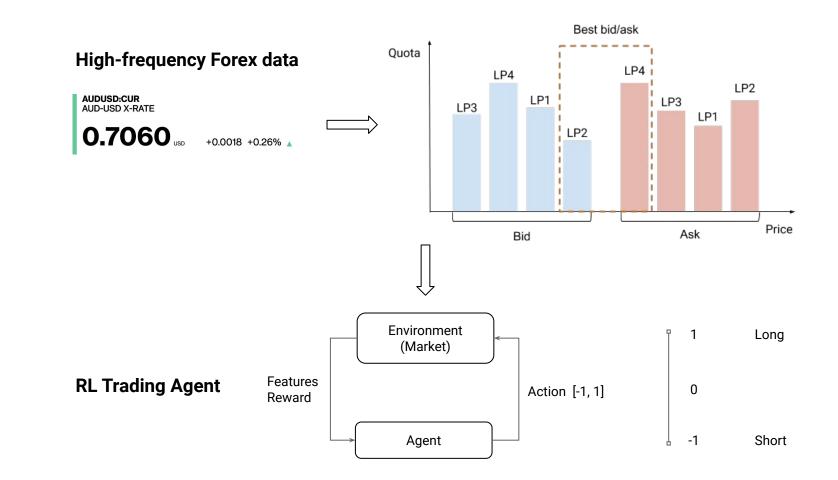
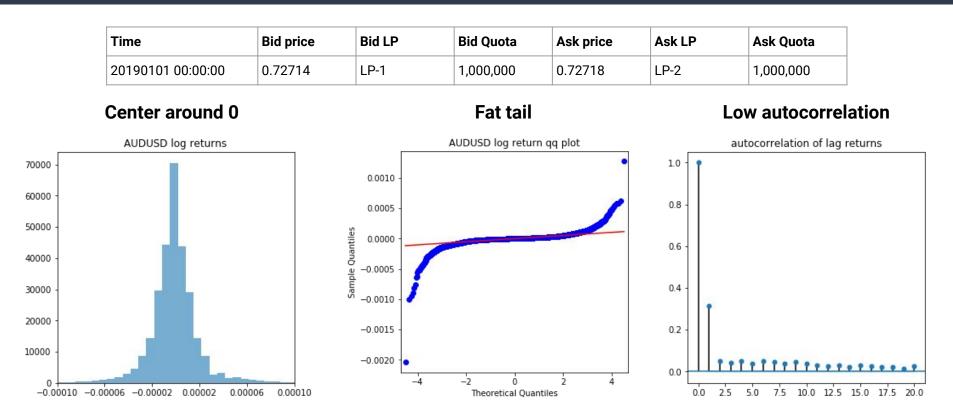
Reinforcement Learning for FX trading

Yuqin Dai, Chris Wang, Iris Wang, Yilun Xu



High Frequency Forex Data (1/2)

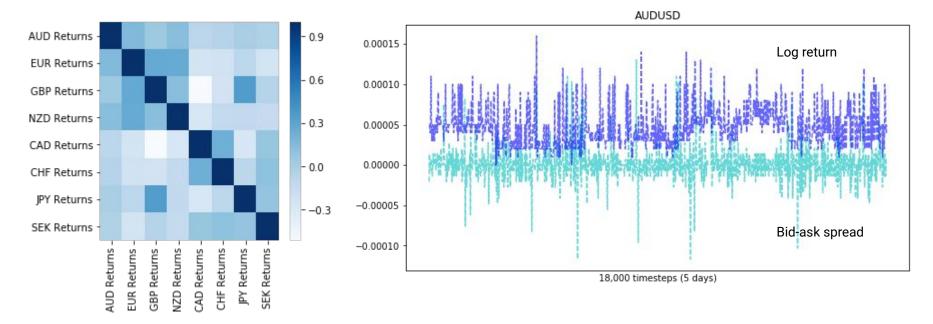


No prior distribution assumption over returns

High Frequency Forex Data (2/2)

Correlation b/w currency pairs

Correlation b/w log return and bid-ask spreads



Additional features from other currency pairs and spreads

Forex Trading Approaches

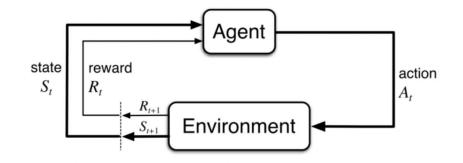
How is Forex traditionally traded?

- A few key decisions:
 - Currency pair to trade
 - Position size
 - When to enter/exit
 - Which dealer to use/how to execute the trade
 - Bid-ask spread
- Traditional strategies use Momentum, Mean Reversion, Pivots, Fundamental Strategy, Stop-loss orders
 - Trend-based -> machine learning?
 - Scalping, Day trading, Longer time frames

Reinforcement Learning

Reinforcement learning for forex trading

- Reinforcement Learning (RL) is a type of machine learning technique that enables an agent to learn in an interactive environment by trial and error using feedback from its own actions and experiences.
- Trading is an "iterative" process, and past decisions affect future, long-term rewards in indirect ways
 - Compared to supervised learning, we are not making or losing money at a single time step...
- Traditional "up/down" prediction models do not provide an actionable trading strategy
- Incorporate longer time horizon
- Give us more autonomy in trading policy, regularize the model from trading too frequently



Baseline model (1/3)

Goal	Maximize total (undiscounted) return over 1-hour horizon by making short/long trading decisions for <i>AUDUSD</i> per second				
Input	Per second bid-ask prices for <i>AUDUSD</i> and other available currency pairs; include the recent 16-second returns as features				
Action	Float between -1 (short the currency with all cash) and 1 (long the currency with all cash)				
Method	Policy Gradient • Maximize the "expected" reward when following a policy π $J(\theta) = \mathbb{E}_{\pi_{\theta}} [\sum_{t=0}^{\tau} r_t]$ • Actions are chosen by 'actor', i.e. mapping current features to next action • Gradient descent on π to find the	Action Baseline Features	Position [-1,1] Tanh Linear layer (256, 1) 8 currency pairs * 16 recent bid and ask prices		

Baseline model (2/3)

In detail

$$a_{t} = Tanh(< w, x_{t-1} > +b)$$

$$r_{t} = f(a_{t}, a_{t-1})$$

$$R = r_{1} + \dots + r_{\tau}$$

Profits are calculated in two ways

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic), for estimating $\pi_{\theta} \approx \pi_*$

Input: a differentiable policy parameterization $\pi(a|s, \theta)$ Algorithm parameter: step size $\alpha > 0$ Initialize policy parameter $\theta \in \mathbb{R}^{d'}$ (e.g., to **0**)

Loop forever (for each episode): Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \theta)$ Loop for each step of the episode $t = 0, \ldots, T-1$: $G \leftarrow$ return from step t (G_t) $\theta \leftarrow \theta + \alpha \gamma^t G \nabla_{\theta} \ln \pi(A_t|S_t, \theta)$

Mid-price approximation

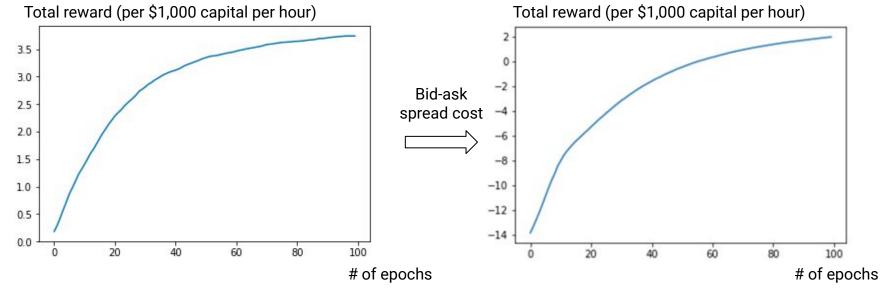
Incorporating bid-ask spreads

action *
$$\left(\frac{\operatorname{Ask}[t+1] + \operatorname{bid}[t+1]}{2} - \frac{\operatorname{Ask}[t] + \operatorname{bid}[t]}{2}\right)$$

a_{t-1}/a_t	-1	0	1
-1	0	-Ask[t]	-2*Ask[t]
0	Bid[t]	0	-Ask[t]
1	2*Bid[t]	Bid[t]	0

Baseline model (3/3)

Total reward using mid-price approximation



After 5-6 CPU hours' training, RL agent manages to yield **0.4% per hour** on the validation data.

After 5-6 CPU hours' training, RL agent manages to yield **0.2% per hour** on the validation data.

Total reward incorporating bid-ask spread

Next Steps

• Incorporate better features

- Technical features (e.g. chart pattern)

• Build a better architecture

- From linear layers to neural networks

• Exploration

- Explore actions may yield better future rewards

• Train with more computing power

- Cloud computing
- Parallel computing

Reference

- 1. Y. Deng, F. Bao, Y. Kong, Z. Ren and Q. Dai, "Deep Direct Reinforcement Learning for Financial Signal Representation and Trading," in *IEEE Transactions on Neural Networks and Learning Systems*, vol. 28, no. 3, pp. 653-664, March 2017.
- 2. Huang, Chien Yi. "Financial Trading as a Game: A Deep Reinforcement Learning Approach." *arXiv* preprint arXiv:1807.02787 (2018).
- 3. J. Moody and M. Saffell, "Learning to trade via direct reinforcement," in *IEEE Transactions on Neural Networks*, vol. 12, no. 4, pp. 875-889, July 2001.