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Abstract—With the rapid advance of information technology,

network systems have become increasingly complex and hence

the underlying system dynamics are typically unknown or

difficult to characterize. Finding a good network control policy

is of significant importance to achieving desirable network

performance (e.g., high throughput or low average job delay).

Online/sequential learning algorithms are well-suited to learning

the optimal control policy from observed data for systems

without the information of underlying dynamics. In this work,

we consider using model-based reinforcement learning (RL)

to learn the optimal control policy of queueing networks

so that the average job delay (or equivalently the average

queue backlog) is minimized. Existing RL techniques, however,

cannot handle the unbounded state spaces of the network

control problem. To overcome this difficulty, we propose a new

algorithm, called Piecewise Decaying ✏-Greedy Reinforcement

Learning (PDGRL), which applies model-based RL methods

over a finite subset of the state space. We establish that the

average queue backlog under PDGRL with an appropriately

constructed subset can be arbitrarily close to the optimal result.

We evaluate PDGRL in dynamic server allocation and routing

problems. Simulations show that PDGRL minimizes the average

queue backlog effectively.

I. INTRODUCTION

The rapid growth of information technology has resulted in
increasingly complex network systems and poses challenges
in obtaining explicit knowledge of system dynamics. For
instance, due to security or economic concerns, a number of
network systems are built as overlay networks, e.g. caching
overlays, routing overlays and security overlays [1]. In these
cases, only the overlay part is fully controllable by the net-
work administrator, while the underlay part remains uncon-
trollable and/or unobservable. The “black box” components
make network control policy design challenging.

In addition to the challenges brought by unknown system
dynamics, many of the current network control algorithms
(e.g. MaxWeight [2] and Drift-plus-Penalty [3]) aim at sta-
bilizing the system, while general optimization methods for
long-term performances metrics (e.g. queueing backlog and
delay) are relatively rare.

To overcome the above challenges, it is desirable to apply
inference and learning schemes. A natural approach is rein-
forcement learning, which learns and reinforces a good de-
cision policy by repeatedly interacting with the environment.
Reinforcement learning methods provide a framework that
enables the design of learning policies for general networks.
There have been two main lines of work on reinforcement

learning methods: model-free reinforcement learning (e.g. Q-
learning [4], policy gradient [5]) and model-based reinforce-
ment learning (e.g., UCRL [6], PSRL [7]). In this work, we
focus on the model-based framework.

Related Work. In network control, a widely used algorithm
is the MaxWeight [2], which can be applied to general
multi-server networks with an arbitrary topology. MaxWeight
algorithm has been shown to be throughput-optimal (i.e. can
stabilize the system whenever the system is stabilizable).
Moreover, the MaxWeight algorithm does not require explicit
arrival information but only the current queue backlog and
the knowledge of service rates, which makes it suitable for
complex systems. The work in [3] extends MaxWeight to
utility optimization using the Drift-plus-Penalty algorithm.

To design control policies for networks with unknown
dynamics, an intuitive approach is as follows: estimating
the parameters of the underlay components first, and then
applying classic network control techniques based on the
estimated parameters. A variety of learning methods have
been applied. A popular method is probing, i.e., sending
probe packets at certain time intervals and collect tunnel
information. For instance, the work in [8], [9] gathers direct
and indirect path information by collecting ping data. In
[10], simulation results illustrate that the probing approach
could achieve optimal throughput. Recently reinforcement
learning has emerged as a popular and powerful approach
for complex systems. In [11], the authors apply the Q-
learning algorithm in overlay non-cooperative multi-agent
wireless sensor networks (WSNs) to achieve optimal mutual
response between two agents. The work of [12] combines
reinforcement learning with neural networks and improves
scalability compared with probe-based inference methods.

Reinforcement learning is well-suited to learning the op-
timal control for a system with unknown parameters. We
consider model-based reinforcement learning methods, which
tend to be more tractable in analysis. Conventional model-
based reinforcement learning methods like UCRL [6] and
PSRL [7] only work for finite-state-space systems, yet queue-
ing systems are usually modeled to have unbounded buffer
sizes. The work in [13] assumes that the system has an
admission control scheme to keep queue backlogs finite so
that we can turn the system into a finite state MDP model
and apply UCRL. However, the practical queueing systems
may not have admission control schemes and this approach

2019 57th Annual Allerton Conference on Communication, Control, and Computing
(Allerton)
Allerton Park and Retreat Center
Monticello, IL, USA, September 24-27, 2019

978-1-7281-3151-1/19/$31.00 ©2019 IEEE 663



might not apply directly. In [14], the authors modify PSRL
algorithm to deal with MDPs with large state space, yet the
algorithm requires the MDP to have a finite bias span, which
is unrealistic for the MDP problems with unbounded cost
functions. In both [15] and [16], deep reinforcement learn-
ing methods are applied to spectrum access problems and
outperform traditional baseline algorithm, but lack rigorous
theoretical performance analysis.

To sum up, there have been some work on network control
that aims at stabilizing the systems, yet the performance
metric of interest here is queue backlog and delay. Among the
existing work on queue backlog optimization, most propose
ad-hoc solutions for some specific scenarios. Model-based
reinforcement learning is a potential approach for the optimal
control of the general queueing system, yet the classical
methods (UCRL and PSRL) can only solve bounded-state-
space MDPs.

Our contributions. We apply model-based reinforcement
learning to queueing networks with unbounded state spaces
and unknown dynamics. Our approach leverages the fact that
for a vast class of stable queueing systems, the probability
of the queue backlog being large is relatively small. This
observation motivates us to focus on learning control policies
over a finite subset of states where the system visits with
high probability. Our main contributions are summarized as
follows.

• We propose a model-based RL algorithm that can deal
with unbounded state spaces. In particular, we introduce
an auxiliary system with the state space bounded by
a threshold of U . Our approach employs a piecewise
policy: for states below the threshold, a model-based RL
algorithm is used; for all other states, a simple baseline
algorithm is applied.

• We establish that the average queue backlog under
the proposed algorithm can be made arbitrarily close
to the optimal result with a large threshold of U . In
particular, by utilizing the Lyapunov analysis technique,
we characterize how the gap to the optimal performance
decays with the threshold U .

• Simulation results on dynamic server allocation and
routing problems corroborate the validity of our theo-
retical guarantees. In particular, the proposed algorithm
effectively achieves a small average queue backlog,
with the gap to the optimal policy diminishing as the
threshold U increases.

II. MODEL

In this paper, we target at optimizing the average queue
backlog of a general discrete-time queueing network system
that can be formulated by Markov decision process (MDP)
framework. The system consists of a set of nodes and links.
Each node maintains one or more queues for the undelivered
packets, and each queue has an unbounded buffer. The system
may have an arbitrary topology and the underlying dynamics
can be partially or fully unknown.

A. Real System
The system can be modeled as a countable-state MDP M

as follows.
• State space S:

For ease of exposition, we focus on queueing networks
where the system state can be represented by the lengths
of all queues. We denote the number of queues as D.
The system state is given by a D-dimensional queue
backlog vectors Q. The system space is denoted as S =
N⇥ · · ·⇥ N| {z }

D times

.

• Action space A:

The exact form of action space depends on the problem
setting. For instance, in the server allocation problem
where D parallel queues compete for the service of a
single server [17], the action is the queue served by the
server at each time slot and the action space is naturally
the set of queue indexes. The action space is represented
by A and we assume that |A| <1.

• State-transition probability p:

The system dynamics satisfy the Markov property. For-
mally, the probability of transitioning into a particular
state Q0 only depends on the current state Q and the
action a, denoted as p

�
Q0

| Q, a
�
. We assume that the

number of newly arrived and served packets during
each time slot are both bounded. That is, there exists
a constant W such that for every Q(t) 2 S ,

kQ(t+ 1)�Q(t)k1 6 W.

We define the set of states within the one-step reachable
region of Q as

R (Q, a) ,
n
Q0
2 S : p

�
Q0

| Q, a
�
> 0
o
.

• Cost function c (Q):
Since we aim at minimizing the average queue backlog,
we define the cost function as c (Q) =

P
i Qi. We

denote the optimal average queue backlog as ⇢⇤, and
the corresponding optimal policy as ⇡⇤.

We define that Qmax , maxi Qi. To deal with the
unbounded state space, we consider a natural assumption on
the existence of a policy that stabilizes the system.

Assumption 1. There exists a known policy ⇡0 satisfying
the following condition: there exist a Lyapunov function �0 :
S ! R+ and constants a,↵, ✏0, B0 > 0 such that � (Q) 6
aQ↵

max for every Q(t) 2 S . If Qmax(t) > B0, we have

E⇡0

h
�0

�
Q(t+ 1)

�
� �0

�
Q(t)

�
| Q(t)

i
6 �✏0,

where E⇡0 denotes expectations under policy ⇡0.

A broad class of queueing systems have been proven to
have a ⇡0 that satisfies Assumption 1. For instance, stabi-
lizing policies are proposed for dynamic server allocation
problem [17]–[19], multiclass routing network [20]–[24] and
inventory control [25], [26], with linear or quadratic form
of Lyapunov functions. This assumption allows us to upper
bound the tail probability of queue backlog.
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B. Auxiliary System
The key challenge of applying model-based reinforcement

learning to countable-state MDP is that classical model-
based reinforcement learning techniques usually operate in
episodic manners: for each episode, the system dynamics are
estimated and an approximated optimal policy is obtained
based on the learned dynamics. However, there is no effec-
tive solution for general countable-state MDPs with optimal
average cost (in contrast to discounted cost) criteria.

Here we introduce an auxiliary system M̃ with bounded
state space. The auxiliary system has threshold U : the system
has exact dynamics as the real one, with the only difference
that each queue has buffer size U . In the bounded system, for
each queue, when the queue backlog reaches U , new packets
to the queue will get dropped. Mathematically, the state space
of M̃ can be defined as S̃ , {Q 2 S : Qmax 6 U}. M̃
shares the same action space A and cost function c (Q) as
M . We use p̃ to represent the state-transition function in M̃ .
We denote the optimal average queue backlog in M̃ by ⇢̃⇤,
and the corresponding optimal policy by ⇡̃⇤.

We make an assumption on ⇡̃⇤ for technical reasons. For
clarity, we use Ẽ[·] for the expectations in M̃ (to distinguish
from E[·] for M ).

Assumption 2. There exist a Lyapunov function �̃⇤(·) : S̃ !
R+, and constants 0 6 � < 1, b1, b2, b3, B̃⇤, ✏̃⇤ > 0, such
that for any U > 0, the following properties hold:

• For each Q 2 S̃ , b1Q1+�
max 6 �̃⇤ (Q) 6 b2Q1+�

max;
• For each Q(t) 2 S̃ ,

����̃⇤ �Q(t+ 1)
�
� �̃⇤ �Q(t)

���� 6
b3U�;

• If Qi increases (while other entries remain the same),
�̃⇤ (Q) will not decrease;

• When �̃⇤ (Q) > B̃⇤, we have

Ẽ⇡̃⇤

h
�̃⇤ �Q(t+ 1)

�
� �̃⇤ �Q(t)

�
| Q(t) = Q

i
6 �✏̃⇤.

For network systems that are stabilized under Max-Weight-
↵ policy [27] or Back-Pressure-↵ policy [28], the Lyapunov
functions have been proven to have the form of weighted sum
of Q1+↵

i . When 0 < ↵ < 1 and ⇡̃⇤ is Max-Weight-↵ or Back-
Pressure-↵ method, Assumption 2 holds. Other examples
include the multi-class Markovian queueing network in [24]
and the server allocation problem described in Section V-A.
Both problems have linear Lyapunov functions under backlog
optimal policies.

C. Our Approach
For simplicity, we partition S as follows:
8
<

:
S
in ,

n
Q 2 S̃ : �̃⇤ (Q) 6 b1(U �W )1+�

o

S
out , S \ S

in
.

Our reinforcement learning method can be decomposed into
two stages: exploration stage and exploitation stage. For each
episode, with some relatively small probability, we apply
randomized policy to learn the dynamics of M̃ and estimate
⇡̃⇤. Meanwhile, in our exploitation scheme, we apply a piece-
wise policy: the policy obtained from exploration stages

is used for states in S
in; while for S

out, a stabilizing ⇡0
(defined in Assumption 1) is applied. See Figure 1 for illus-
tration. A detailed description of the algorithm is provided
in Section III.

Fig. 1: Schemetic illustration of our approach (when D = 2).

For performance analysis, we decouple the process into
two stages: before ⇡̃⇤ is learned and after ⇡̃⇤ is learned.
For the first stage, our model-based reinforcement learning
approach applies ✏-greedy exploration. We establish that the
proposed algorithm gradually obtains ⇡̃⇤ with arbitrarily high
probability (cf. Theorem 1). For the second stage, by applying
drift analysis on Markov chain, we show that when ⇡̃⇤ is
applied for states in S

in and ⇡0 for states in S
out, the

probability of queue backlog exceeding into S
out decays

exponentially with U . In addition, every time when queue
backlog leaves S

in, the expected queue backlog can be
bounded as polynomial terms of U . Together, we show
that the gap between our result and ⇢⇤ is upper bounded
by O

⇣
poly(U)/ exp

�
poly(U)

�⌘
, which diminishes as U

increases (cf. Theorem 2).

D. Other Assumptions

Due to mathematical requirements, we impose some re-
strictions on the communication properties on M̃ . We denote
TQ!Q0 as the first hitting time from Q to Q0 and propose
the following assumption.

Assumption 3. There exist constants c, � > 0, such that for
any U > 0 and every Q,Q0

2 S̃ ,

min
⇡̃

Ẽ⇡̃

⇥
TQ!Q0

⇤
6 ckQ0

�Qk�1 ,

where ⇡̃ is a policy that can be applied to S̃.

Directly verifying Assumption 3 might be computationally
difficult. Theorem 11.3.11 from [29] offers a drift analysis
approach for justifying Assumption 3.
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Lemma 1 (Theorem 11.3.11 in [29]). For a  -irreducible
Markov chain, if there exists a Lyapunov function �(·) and
a petite set C such that for every Q(t) 2 S ,

E⇡

h
�
�
Q(t+ 1)

�
� �

�
Q(t)

�
| Q(t)

i
6 �1 + b Q(t)2C ,

then for every Q,Q0
2 S , there exists c

�
Q0� <1 such that

E
⇥
TQ!Q0

⇤
6 � (Q) + c

�
Q0� .

A possible method is to analyze the Markov chain under
⇡0 and (re-scaled) �0(·) in Assumption 1. In this case, if we
select a suitable measure for the  -irreducible Markov chain,
c (Q) may have a polynomial upper bound regarding Qmax

and Assumption 3 holds.
As the learning process proceeds, the estimation for M̃

becomes increasingly accurate. However, it is unrealistic for
us to obtain the exact M̃ . Therefore, we make the assumption
that if we estimate the state-transition function accurate
enough (i.e. within a certain error bound), the solution to
the estimated M̃ is the same as ⇡̃⇤. The assumption is stated
as follows.

Assumption 4. There exists a �p > 0, such that for any
MDP M̃ 0 with the same state space, action space and cost
function as M̃ , if for each Q 2 S̃ and a 2 A, we have

���p̃
�
· | Q, a

�
� p0

�
· | Q, a

����
1
6 �p,

then the optimal policy of M 0 is the same as the otimal policy
⇡̃⇤ for M̃ .

Notice that in most queueing networks, when system
dynamics (e.g. exogenous arrival rates, service rates, channel
capacities) vary slightly, the optimal policy remains the same.
Assumption 4 is reasonable for queueing systems.

III. ALGORITHM

We propose an algorithm called Piecewise Decaying ✏-
Greedy Reinforcement Learning (PDGRL). PDGRL operates
in an episodic manner: at the beginning of episode k, we
uniformly draw a real number ⇠ 2 [0, 1] to decide whether
to explore or exploit during this episode. The length of the
episodes is not fixed but depends on the observations.

• If ⇠ 6 ✏k , l/
p
k (where 0 < l 6 1), we perform

exploration during this episode. For states in S̃ , we apply
a random policy ⇡rand, which selects an action in A

uniformly. For states in S \ S̃ , we apply ⇡0.
• If ⇠ > ✏k, we enter the exploitation stage. We first

calculate sample means to estimate the state-transition
function p̃ of M̃ . We then apply value iteration on the
estimated system M̃k and obtain an estimated optimal
policy ⇡̃⇤

k. For the rest of the episode, we apply ⇡̃⇤
k for

states in S
in and ⇡0 otherwise.

• When the number of visits to states in S
in exceeds Lk =

L ·
p
k (where L > 0), PDGRL enters episode k+1 and

repeat the process above.
To further illustrate the algorithm, we define a mapping

TR(·) : S ! S̃ that describes the packet dropping scheme
in the bounded system:

Q̃ = TR (Q) ,
�
min {U,Qi}

 D
i=1

.

The details are presented in Algorithm 1.

Algorithm 1 The PDGRL algorithm
1: Input: A, U , l > 0, L > 0
2: Initialization: t 1, N(·, ·) 0, P̃ (·, ·) 0
3: for episodes k  1, 2, · · · ,K do

4: Set Lk  L ·
p
k, ✏k  l/

p
k and uniformly draw

⇠ 2 [0, 1].
5: if ⇠ 6 ✏k then

6: Set

⇡k (Q) =

(
⇡rand (Q) , for Q 2 S̃

⇡0 (Q) , for Q 2 S \ S̃
.

7: else

8: For each Q,Q0
2 S̃ and a 2 A, estimate

that p̃
�
Q0

| Q, a
�

= P̃
�
Q, a,Q0� /N (Q, a) for

N (Q, a) > 0 and p̃
�
Q0

| Q, a
�
= 1/

��R (Q, a)
��

otherwise.
9: Solve the estimated MDP M̃k and obtain the esti-

mated optimal policy ⇡̃⇤
k.

10: Set

⇡k (Q) =

(
⇡̃⇤
k (Q) , for Q 2 S

in

⇡0 (Q) , for Q 2 S
out

.

11: end if

12: while visits to states in S
in is smaller that Lk do

13: Take at = ⇡k
�
Q(t)

�
.

14: Implement at to the real system and observe the
next state Q(t+ 1).

15: if Q(t) 2 S
in

then

16: Increase N
�
Q(t), at

�
by 1.

17: Increase P̃
⇣
Q(t), at, TR

�
Q(t+ 1)

�⌘
by 1.

18: end if

19: t t+ 1.
20: end while

21: end for

22: Output: estimated optimal policy ⇡̃⇤
K

IV. PERFORMANCE ANALYSIS

We analyze the performance of our algorithm from both
exploration and exploitation perspectives. We first prove
that PDGRL can learn ⇡̃⇤ within finite episodes with high
probability, which implies that PDGRL explores different
states sufficiently to obtain an accurate estimation of M̃
(cf. Theorem 1). We then show that PDGRL exploits the
estimated optimal policy and achieves a performance close
to the true optimal result of ⇢⇤ (cf. Theorem 2). Due to the
space limit, for all the results presented in this paper, we only
provide proof outlines and omit proof details.

In this paper, we focus on MDPs such that all states are
reachable from each other under the following policies: (a)
⇡rand+⇡0 : applying ⇡rand to S̃ and ⇡0 to S\S̃; (b) ⇡̃⇤+⇡0 :
applying ⇡̃⇤ to S

in and ⇡0 to S
out; and (c) ⇡⇤ : applying (a

truncated version of) ⇡⇤ to S̃ in M̃ . That is, the corresponding
Markov chains under the above policies are irreducible.
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A. Convergence to the Optimal Policy
The following theorem states that, with arbitrarily high

probability, PDGRL learns ⇡̃⇤ within a finite number of
episodes.

Theorem 1. Suppose Assumption 4 holds. For each � 2
(0, 1), there exists k⇤ < 1 such that PDGRL learns ⇡̃⇤

(i.e. ⇡̃⇤
k⇤ = ⇡̃⇤) within k⇤ episodes with probability at least

1� �.

Proof. We first calculate the required sample size of (Q, a)
pairs to obtain ⇡̃⇤ with high probability under Assumption 4.
We then show that the number of samples obtained by
following the policy ⇡rand for states in S̃ is unbounded as
K !1.

Theorem 1 indicates that PDGRL explores (i.e. samples)
state-transition functions of each state-action pair (Q, a) in
M̃ sufficiently.

B. Average Queue Backlog
Section IV-A illustrates the sufficient exploration aspect of

PDGRL. In reinforcement learning, the trade-off between ex-
ploration and exploitation is of significant importance to the
algorithm performance. In this section, we show that PDGRL
also exploits the learned policy such that the expected average
queue backlog is bounded and can get arbitrarily close to the
optimal performance of ⇢⇤ as we increase U .

We denote the time step at the end of episode k by tk
and the length of episode k by L0

k (i.e. L0
k = tk � tk�1

with t0 , 0). We use ⇡in
k to represent the policy applied to

S
in during episode k and p⇡̃+⇡0(·) to denote the stationary

distribution of states when applying ⇡̃ to states in S
in and

⇡0 to states in S
out.

By Theorem 1, PDGRL learns ⇡̃⇤ with high probability.
Note that the probability of utilizing the learned policy
converges to 1 as episode increases. Hence the episodic
average queue backlog when ⇡in

k = ⇡̃⇤ constitutes a large
proportion of the overall expected average queue backlog.
Therefore, the key step to upper bound the expected average
queue backlog is to upper bound the episodic average queue
backlog when ⇡in

k = ⇡̃⇤.
For the purpose of analysis, we further partition S

in as
follows:8
<

:
S
in
in ,

n
Q 2 S

in : �̃⇤ (Q) 6 b1(U �W )1+�
� b3U�

o

S
in
bd , S

in
\ S

in
in

.

We first upper bound the episodic average queue backlog
when ⇡in

k = ⇡̃⇤, as stated in the following lemma.

Lemma 2. Under Assumptions 1-3, we have

lim
k!1

E

2

4
Ptk

t=tk�1+1

P
i Qi(t)

L0
k

| ⇡in
k = ⇡̃⇤

3

5

=⇢̃⇤ + p⇡̃
⇤+⇡0

⇣
S
in
bd

⌘
· O

⇣
U1+max{2↵,�}

⌘
.

Proof. For a given k such that ⇡in
k = ⇡̃⇤, we decompose

the accumulated queue backlog into the three parts: the

accumulated queue backlog when Q 2 S
in
in , Q 2 S

in
bd and

Q 2 S
out. For the first part, we utilize Bellman equation

analysis and Assumption 3. The second part is trivially upper
bounded by NU . For the third part, we use Assumption 1 and
prove that the time it takes to return back S

in is polynomial
(using techniques as the proof of Theorem 1.1 in Chapter 5
of [34]). The details are omitted in this paper.

We further establish the following lemma, which upper
bounds p⇡̃

⇤+⇡0
�
S
in
bd

�
.

Lemma 3. Under Assumption 2, we have

p⇡̃
⇤+⇡0

⇣
S
in
bd

⌘
= O

✓
exp

⇣
�U1��

⌘◆
.

Proof. We show that under Assumption 2 when ⇡in
k = ⇡̃⇤,

there exists a sub-quadratic Lyapunov function with negative
drift for states that have relatively large Lyapunov value
regarding �̃⇤(·). We then apply similar techniques as Lemma
1 in [30] to complete the proof. The details are omitted in
this paper.

From Lemma 2 and Lemma 3, we can upper bound
the episodic average queue backlog when ⇡in

k = ⇡̃⇤. By
combining with Theorem 1, we establish the following main
result of this paper.

Theorem 2. Suppose Assumptions 1-4 hold. Applying
PDGRL to M , the expected average queue backlog is upper
bounded as

lim
K!1

E
hPtK

t=1

P
i Qi(t)

i

tK
 ⇢⇤ +O

 
U1+max{2↵,�}

exp
�
U1��

�
!
.

Proof. We first show that the expected average queue backlog
brought by episodes where ⇡in

k 6= ⇡̃⇤ becomes negligible as
K ! 1 and obtain the gap between the expected average
queue backlog and ⇢̃⇤. We then apply similar techniques
as the proof of Lemma 2 to characterize the relationship
between ⇢⇤ and ⇢̃⇤.

Theorem 2 provides an upper bound on the performance
guarantee of PDGRL regarding the threshold parameter U :
by increasing U , the long-term average queue backlog ap-
proaches ⇢⇤ exponentially fast.

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of proposed
PDGRL for three queueing networks.

A. Dynamic Server Allocation
We first consider a simple server allocation problem:

exogenous packets arrive at two nodes according to Bernoulli
process with rate �1 and �2 respectively. Both nodes have
unbounded buffers. At each time slot, a central server needs
to select one of the two queues to serve. The head of line job
in the selected queue i then completes the required service
and leaves the system with probability pi. The system model
and parameters are illustrated in Figure 2.

According to [17], whenever �1/p1 + �2/p2 < 1, a
stabilizing policy is to always serve the node with the longest
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Fig. 2: System model of the dynamic server allocation
problem with permanent connectivity.

connected queue (LCQ). Therefore, we can use the LCQ
policy as ⇡0. Note that in our setting, the channels are always
connected, ⇡0 is actually serving the node with the longest
queue (LQ).

On the other hand, according to cµ-rule in [19], the
optimal policy ⇡⇤ that minimizes the average queue backlog
is to select the node with the largest successful transmission
rate among all the non-empty queues. However, cµ-rule
requires knowledge of the dynamics, which is infeasible
under our setting. We include it in simulation only to study
the performance gap between PDGRL and optimum.

For the model depicted in Figure 2, under policy ⇡⇤ the
node 2 is served whenever it is nonempty. However, since
node 1 has a larger arrival rate and a smaller successful
transmission rate, the queue of node 1 is easier to get queued
up. Therefore, we would expect that node 1 is served more
frequently under policy ⇡0, leading a performance gap to the
optimal result under ⇡⇤.

We compare the performances of four policies: ⇡0 (LCQ),
PDGRL, ⇡̃⇤+⇡0 (applying ⇡⇤ for Q 2 S

in and ⇡0 otherwise)
and ⇡⇤ (true optimal policy). Note that the policy ⇡̃⇤+⇡0 is
exactly the best policy PDGRL can learn. We simulate it to
illustrate the convergence rate of PDGRL.

We conduct the simulation with U = 5 and U = 10 and the
results are plotted in Figure 3. It can be observed from Figure
3 that PDGRL outperforms ⇡0, and quickly converges to ⇡̃⇤+
⇡0 in both cases. The performance gap between PDGRL and
⇡⇤ is not negligible when U = 5. Theorem 2 shows that
when U increases, the average queue backlog of PDGRL
approaches the optimal result. Figure 3 (b) shows that when
U = 10 the gap between PDGRL and ⇡⇤ almost diminishes.

B. Dynamic Server Allocation (with Stochastic Connectivity)

We now turn to a more general case with stochastic
connectivity: during each time slot, the nodes are connected
with the central server with probability c1 and c2 respectively.
The connectivity status is known before taking action. Only
when the selected queue i is connected, it is successfully
served with probability pi. The system model and parameters
are shown in Figure 4.

According to [17], whenever the condition that
(

�1
p1

+ �2
p2

< 1� (1� c1)(1� c2)
�1
p1

< c1,
�2
p2

< c2

is satisfied, a stabilizing policy is to always serve the node
with the longest connected queue (LCQ). Therefore, we can
use LCQ policy as ⇡0.
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(b) U = 10

Fig. 3: Simulation results for the dynamic server allocation
problem.

Fig. 4: System model of the dynamic server allocation
problem with stochastic connectivity.

However, unlike the setting in Section V-A, for stochastic
connectivity cases, unless the parameters are highly symmet-
ric (i.e. �1 ⌘ �, pi ⌘ p and ci ⌘ c), the optimal policy that
minimizes average queue backlog remains an open problem
[31].

From simulations we find that for the system depicted in
Figure 4, the optimal policy ⇡̃⇤ for the truncated system
always chooses serving queue 2 whenever it is connected and
nonempty. When only one queue is connected, ⇡̃⇤ selects the
connected queue. We thus consider a policy that inherits the
behavior of ⇡̃⇤ to approximate the true optimal policy ⇡⇤ for
the real system: when only one queue is connected, select
that queue; when both queues are connected, select the non-
empty queue with the largest successful service probability
pi.
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(b) U = 10

Fig. 5: Simulation results for the dynamic server allocation
problem with stochastic connectivity.

We implement the simulation for U = 5 and U = 10. In
this setting, we incorporate the connectivity status into the
state (i.e. (Q1, Q2, C1, C2) 2 S = N⇥N⇥ {0, 1}⇥ {0, 1}).
The results are shown in Figure 5. Similar to the results in
Section V-A, PDGRL outperforms ⇡0, and learns ⇡̃⇤ gradu-
ally. However, since the state space expands (connectivity is
also incorporated into the state space), the convergence rate
is smaller. Also, by comparing the gap between ⇡̃⇤+⇡0 and
the approximated ⇡⇤ with different thresholds U , we observe
that the average queue backlog of PDGRL approaches the
optimal result as U increases.

C. Routing

We consider a routing problem: exogenous packets arrive
at the source node s according to Bernoulli process with
rate �. Node 1 and node 2 are two intermediate nodes with
unbounded buffers and can serve at most one packet during
each time slot, with probability p1 and p2 respectively. Node
d is the destination node. At each time slot, node s has to
choose between routes s! 1! d and s! 2! d to transit
new exogenous packets. Specifically, the system model and
parameters are shown in Figure 6.

Fig. 6: System model of routing

The parameter pis are queue-dependent here:

(p1, p2) =

(
(0.9, 0.1), Q2(t) 6 5

(0.1, 0.9), Q2(t) > 5
.

An obvious policy that stabilizes the queue backlog is to
always choose s ! 2 ! d, which maintains Q2(t) > 5.
Therefore, we can use the policy that always routing through
s! 2! d as ⇡0.

We simulate U = 10. The results are plotted in Figure
7, which shows that PDGRL outperforms ⇡0 and learns ⇡̃⇤

quickly.
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Fig. 7: Simulation results of routing.

VI. CONCLUSION

In this work, we apply a model-based reinforcement learn-
ing framework to general queueing networks with unbounded
state space. We propose the PDGRL algorithm, which applies
a ✏-greedy exploration scheme. By leveraging Lyapunov
analysis, we show that the average queue backlog of the
proposed approach can get arbitrarily close to the optimal
average queue backlog under oracle policy. The proposed
PDGRL algorithm requires the knowledge of a stable policy.
An interesting future direction is to investigate this problem
when such information is not available.
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