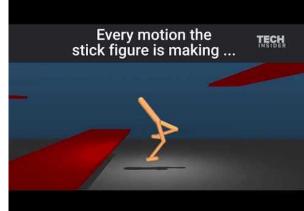


Iretiayo Akinola



Iretiayo Akinola

http://www.cs.columbia.edu/~iakinola/

Robotics: see, think, act

Direct programming can be hard for different tasks

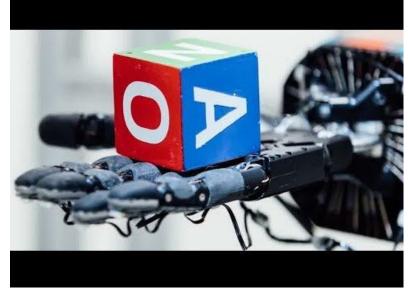
- Degree of structure and consistency
- Perception
- Manipulation
- Deformation

Vacuum robots Lawn mowing Pool cleaning Manufacturing robots Home-cleaning robot Cooking Robot Laundry Robot Warehouse Robot

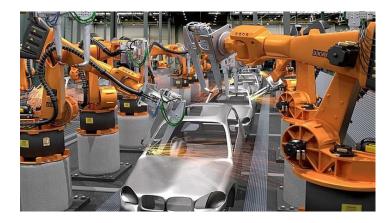
Robotics: see, think, act

Direct programming can be hard for different tasks

- Degree of structure and consistency
- Perception
- Manipulation
- Deformation



Vacuum robots Lawn mowing Pool cleaning Manufacturing robots Home-cleaning robot Cooking Robot Laundry Robot Warehouse Robot



Manufacturing robots

Cooking Robot

- Learning from Demonstration
- Reinforcement Learning

Learning from Demonstration (LfD)

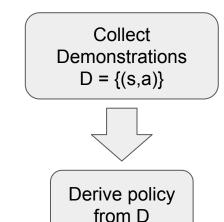
LfD Dataset (D): a set of state-action pairs

Goal: Learn $\pi(a_t|s_t) - \text{policy}$

Assumptions: Human Teacher exists, Demonstration is possible

Key Considerations:

- Demonstration mode
- State representation
- Policy Derivation method
 - Supervised learning/Function approximation



Learning from Demonstration (LfD)

- Learning from Demonstration data
 - Learns a mapping from state to action
- Demonstration modes
 - Teleoperation
 - Kinesthetic teaching (e.g. in motion trajectory learning)
 - Camera recording a human teacher
 - Robotic teachers

Kinesthetic Teaching

Motion Capture

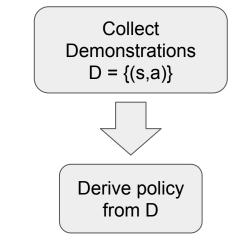
LfD

Pros

- Supervised Learning
- No need for manual reward function
- Exploration not an issue

Cons

- Might not generalize well- Covariate shift
- Volume of demonstration
- Some tasks are difficult to demonstrate
- Suboptimal Demonstrations. Limited human patience and inconsistent user input
- Performance of the robot can be limited by that of the teacher.



- Learning from Demonstration
- Reinforcement Learning
- Hybrid

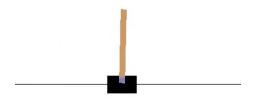
- Learning from Demonstration
- Reinforcement Learning
- Hybrid

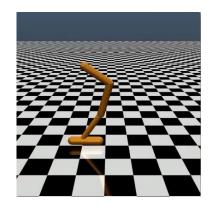
- Learning from Demonstration
- Reinforcement Learning

- Learning by trial and Error
- Maximize cumulative rewards
- Learn a policy

Reinforcement Learning Progress

- Classical Control
- Games: Atari, Go
- Robotics
 - continuous space, complex transition dynamics, complex rewards

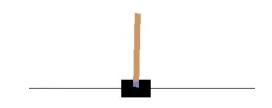




- Learning by trial and Error
- Maximize cumulative rewards
- Learn a policy

Reinforcement Learning Progress

- <u>Classical Control</u>
- Games: Atari, Go
- Robotics
 - continuous space, complex transition dynamics, complex rewards



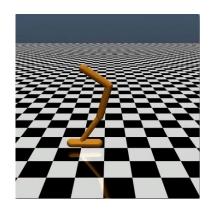
- Learning by trial and Error
- Maximize cumulative rewards
- Learn a policy

Reinforcement Learning Progress

- Classical Control
- Games: Atari, Go
- Robotics
 - continuous space, complex transition dynamics, complex rewards

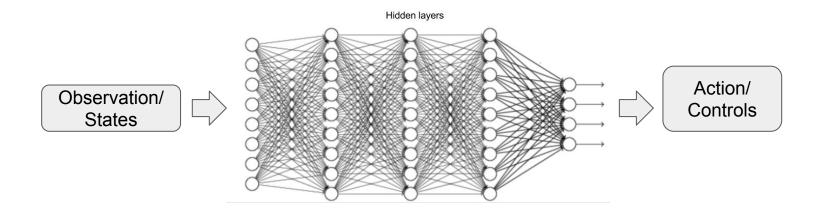
• <u>Robotics</u>

- continuous space
- complex transition dynamics
- complex rewards



Key Elements of recent Success

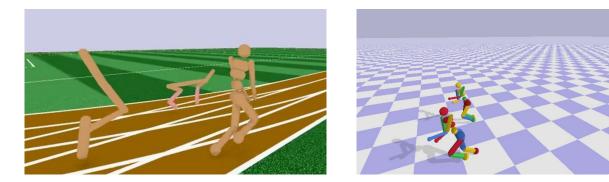
- Deep Learning
- Simulators (mujoco, bullet, roboschool, dart, gazebo, carsim)



Key Elements of recent Success

- Deep Learning
- Simulators (mujoco, pybullet, roboschool, gazebo)

mujoco

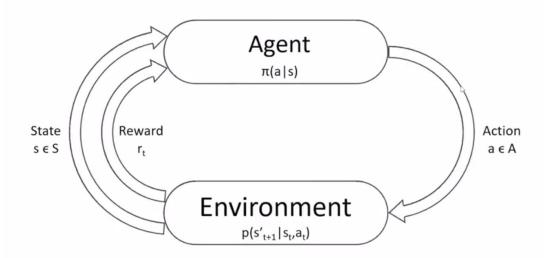


roboschool

pybullet

Reinforcement Learning Formulation

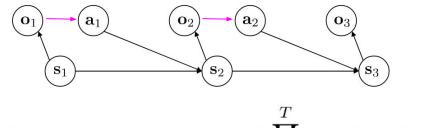
Markov Decision Process



Reinforcement Learning Formulation

 a_t

The goal of RL is to get **a policy**: $s_t \xrightarrow{\pi}$



$$\underbrace{p_{\theta}(\mathbf{s}_{1}, \mathbf{a}_{1}, \dots, \mathbf{s}_{T}, \mathbf{a}_{T})}_{\pi_{\theta}(\tau)} = p(\mathbf{s}_{1}) \prod_{t=1} \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) p(\mathbf{s}_{t+1} | \mathbf{s}_{t}, \mathbf{a}_{t})$$

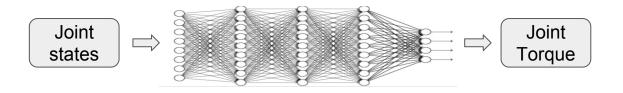
reward function $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$

$$\theta^{\star} = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

Reinforcement Learning Formulation

 a_t

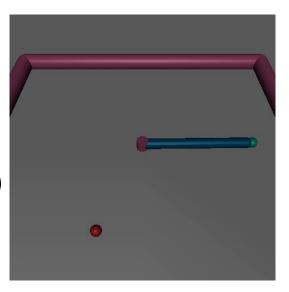
The goal of RL is to get **a policy**: $s_t \xrightarrow{\pi}$

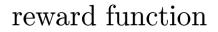


Reward function:

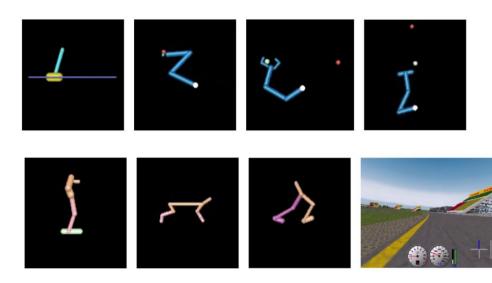
r := - dist(goal, end-effector) - α magnitude(torque)

$$\theta^{\star} = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$





- Deterministic Policy Gradient Algorithms (David Silver et al. 2014)
 - DPG Algorithm
 - Experiments: continuous bandit, **pendulum**, mountain car, 2D puddle world and **Octopus Arm**
- Continuous Control with Deep Reinforcement Learning (Lillicrap et al. 2016)
 - DDPG

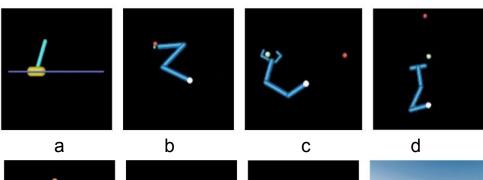


RL

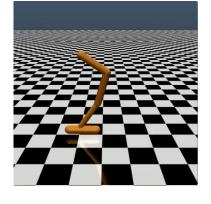
Quiz 1: Write down a reward function for each

Example: $r := - \operatorname{dist}(\operatorname{goal}, \operatorname{end-effector})$

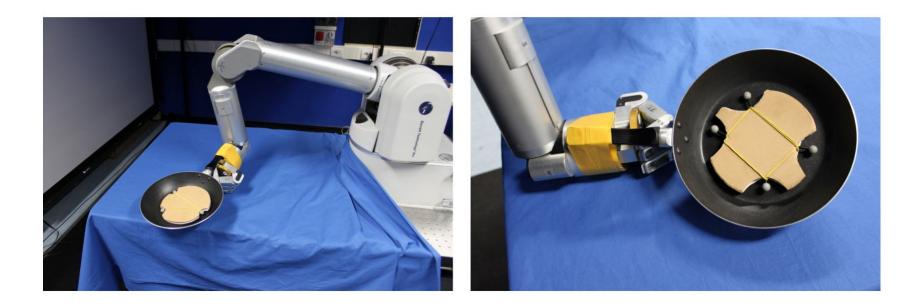
е



g



Pancake Flipping Task



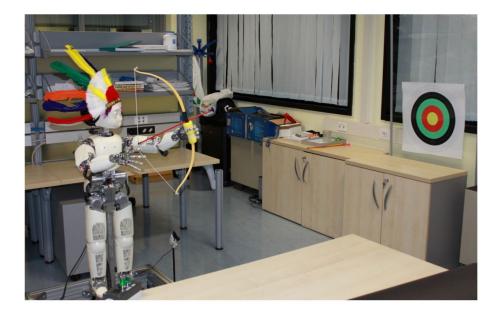
Pancake Flipping Task

Pancake Flipping Task

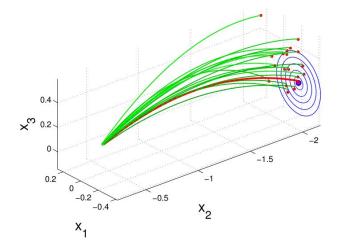
$$R(\tau) = w_1 \left[\frac{\arccos(v_0 \cdot v_{t_f})}{\pi} \right] + w_2 e^{-||x^p - x^F||} + w_3 x_3^M$$

- Reward
 - Positional reward
 - Orientational reward

Archery Task



$$R(\tau) = e^{-||\hat{r}_T - \hat{r}_A||}$$



Pros

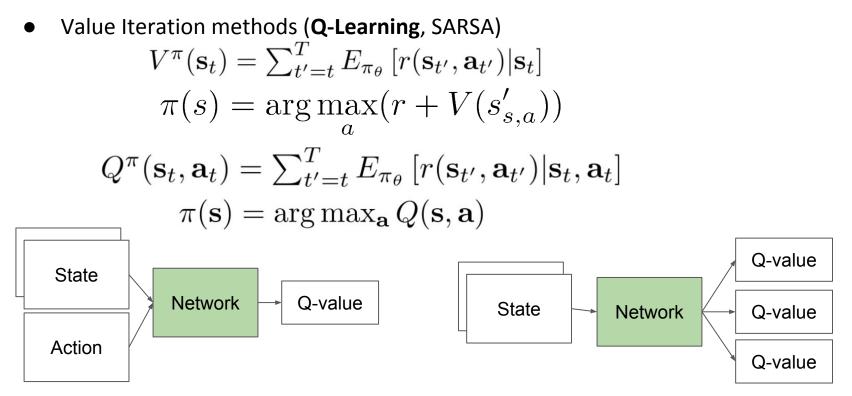
- Fully autonomous
- Skills not explicit coded
- No demonstration needed

Cons

- Reward definition: Where does the R come from?
- Curse of Dimensionality: Exploration cost increases exponentially with dimension
- Generalization issues: Simulation to Real??
- Convergence

RL

- Value Iteration methods (Q-Learning, SARSA)
- Policy Gradient Methods (REINFORCE)
- Actor-Critic Methods (DDPG, TRPO, PPO, A3C)
- Model-based RL (Guided Policy Search, Dyna)



Playing Atari with Deep Reinforcement Learning (Mnih etal 2015)

• Value Iteration methods (Q-Learning, SARSA)

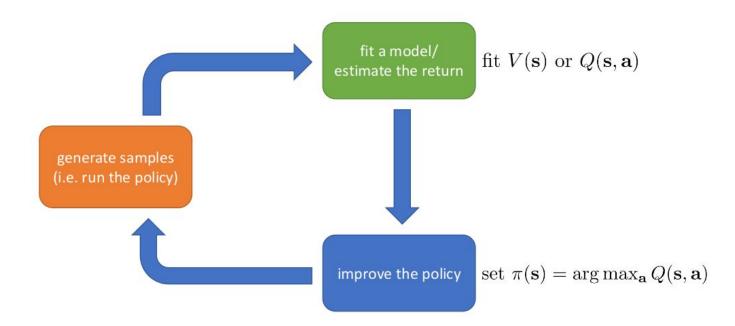
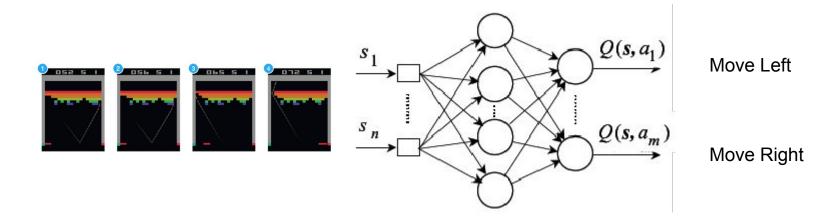


Image from Levine's RL class

- Value Iteration methods (**Q-Learning**, SARSA)
- DQN: Playing Atari with Deep Reinforcement Learning (Mnih etal 2015)



Works well with Games- choose between discrete actions but robotics need continuous actions

• Actor-Critic Methods (**DDPG**, A3C, TRPO, PPO)

Continuous control with deep reinforcement learning (Lillicrap etal Deepmind 2016)

• Actor-Critic Methods (**DDPG**, TRPO, PPO, A3C)

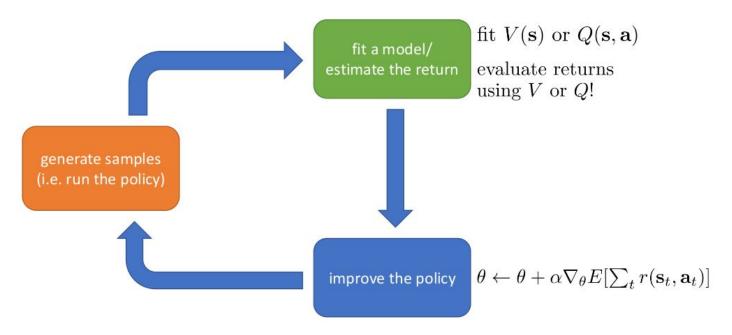
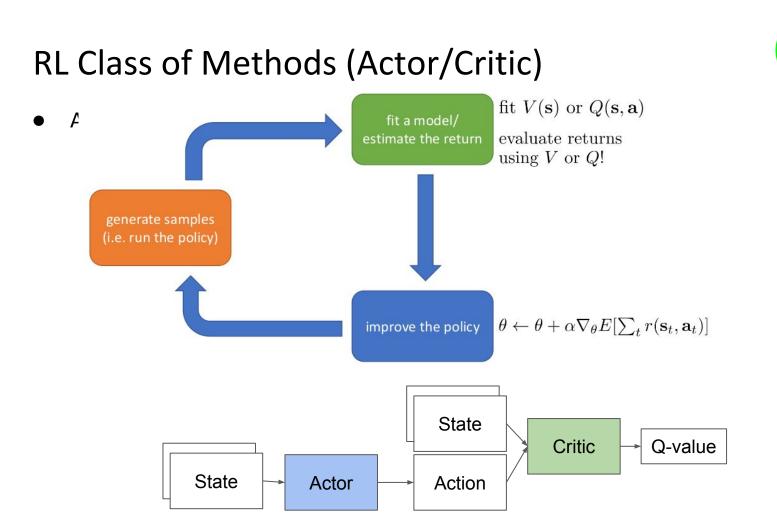


Image from Levine's RL class



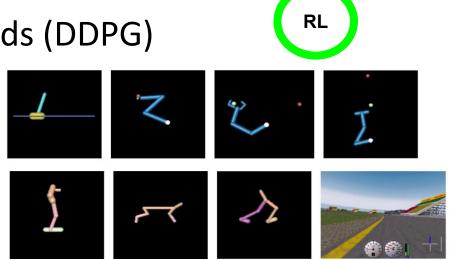
RL

- Actor-Critic Methods (DDPG)
- Deterministic Policy Gradient Algorithms (Silver etal 2014)
 - Critic: linear function, Actor: Gaussian policy
- Continuous control with deep reinforcement learning (Lillicrap etal 2016)
 - Critic: NN, Actor: NN

Case-Study: Actor-Critic Methods (DDPG)

CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING

Timothy P. Lillicrap; Jonathan J. Hunt; Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver & Daan Wierstra Google Deepmind London, UK {countzero, jjhunt, apritzel, heess, etom, tassa, davidsilver, wierstra} @ google.com



- 1. Initialize Actor and Critic networks
- > 2. Generate samples from actor policy
- 3. Fit Critic model based on samples
- 4. Calculate actor gradients
- 5. Update actor

• Policy Gradient Methods (REINFORCE)

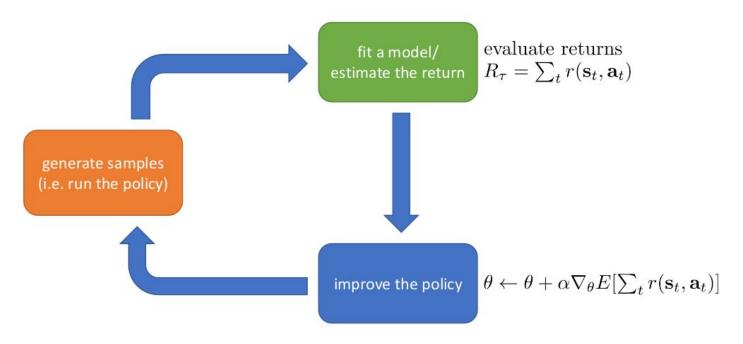


Image from Levine's RL class

• Guided Policy Search

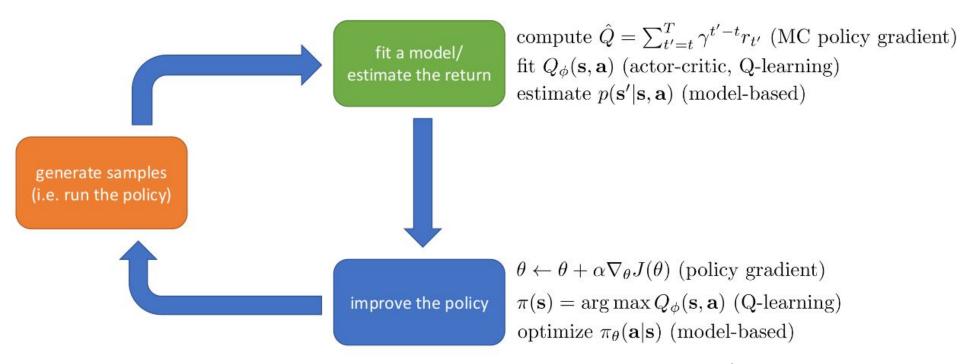


Image from Levine's RL class

Reinforcement Learning

Pros

- Fully autonomous
- No explicit coding needed
- No demonstration needed

Cons

- Reward definition: Where does the R come from?
- Curse of Dimensionality: Exploration cost increases exponentially with dimension
- Generalization issues
- Convergence

Reinforcement Learning

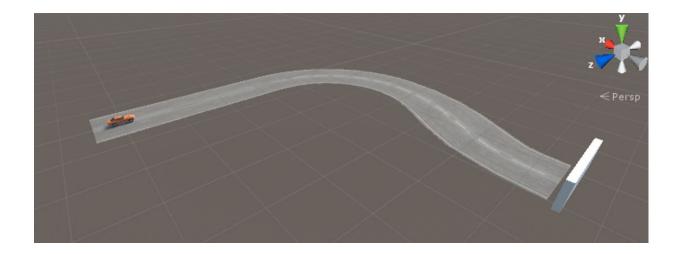
Pros

- Fully autonomous
- No explicit coding needed
- No demonstration needed

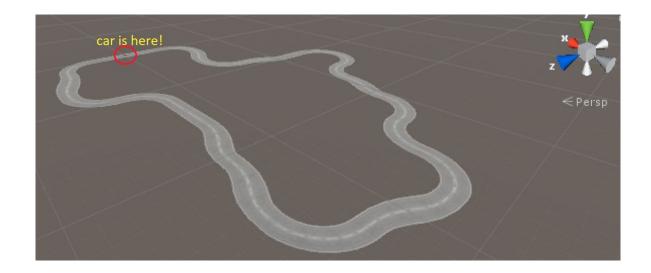
Cons

- Reward definition: Where does R come from?
- Curse of Dimensionality: Exploration cost increases exponentially with dimension
- Generalization issues
- Convergence

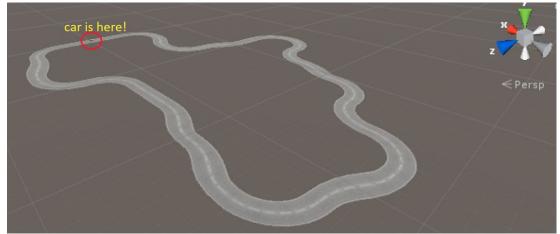
• Quiz 2: Mobile Robot Example



• Quiz 2: Mobile Robot Example

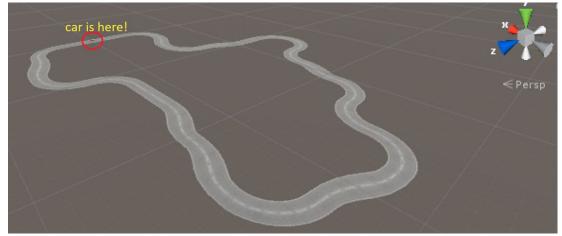


- Quiz 2: Mobile Robot Example
 - State space:
 - Action space:
 - **Reward function:**



• Quiz 2: Mobile Robot Example

- State space: image + car velocity
- Action space: gas, wheel
- **Reward function:** forward velocity/5, and -500 if fall off

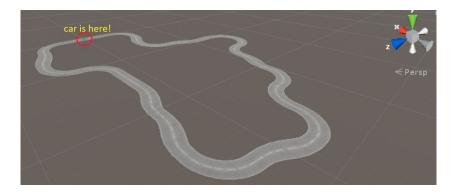


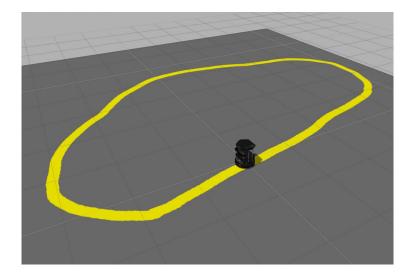
• Quiz 2: Mobile Robot Example

- State space: image + car velocity
- Action space: gas, wheel
- **Reward function:** forward velocity/5, and -500 if fall off

• Pedestrians!!! What will you change?

- Quiz 2: Mobile Robot Example
 - Similar to Homework 5?



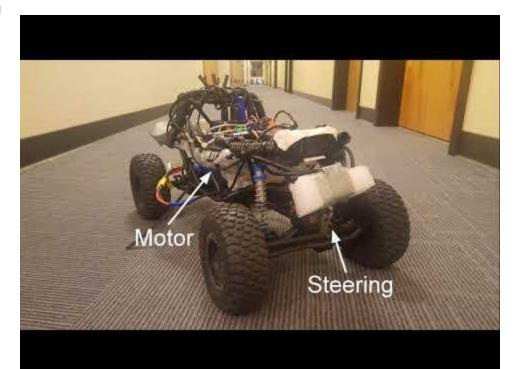


Mobile Robot -> Autonomous Vehicle

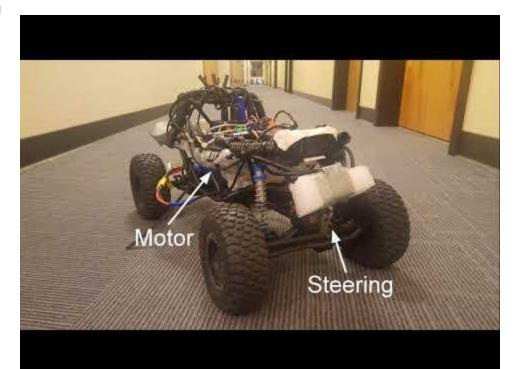
• CARLA: An Open Urban Driving Simulator (Dosovitskiy etal 2017) (GitHub)

CARLA: An Open Urban Driving Simulator (Dosovitskiy etal 2017) (GitHub)

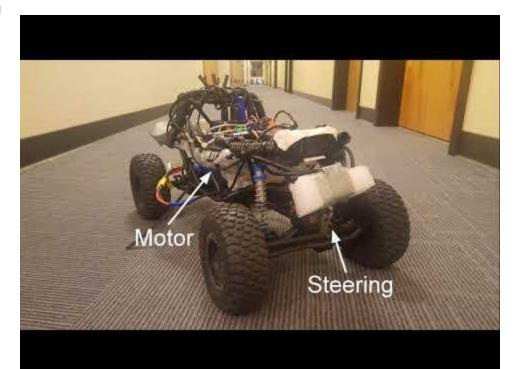
Indoor Navigation



Indoor Navigation



Indoor Navigation



References

- "Robot Learning From Human Teachers", Sonia Chernova and Andrea L. Thomaz (2014)
- "Deterministic Policy Gradient Algorithms" (David Silver et al. 2014)
- "Continuous control with deep reinforcement learning" (Lillicrap etal Deepmind 2016)
- "CARLA: An open urban driving simulator." Dosovitskiy, Alexey, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. (2017).
- "Self-supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot Navigation" Kahn, Gregory, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine. (ICRA 2018)

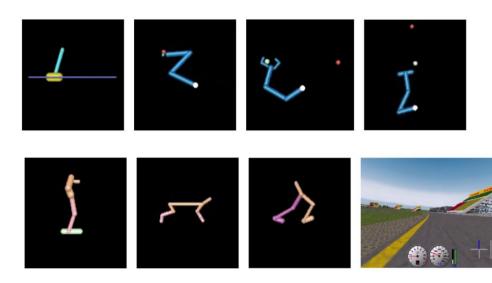
0

Iretiayo Akinola

http://www.cs.columbia.edu/~iakinola/

Thanks

- Deterministic Policy Gradient Algorithms (David Silver et al. 2014)
 - DPG Algorithm
 - Experiments: continuous bandit, **pendulum**, mountain car, 2D puddle world and **Octopus Arm**
- Continuous Control with Deep Reinforcement Learning (Lillicrap et al. 2016)
 - DDPG



DPG (Silver et al. 2014)

• Deterministic Policy Gradient Algorithms (David Silver et al. 2014)

Total discounted reward
$$r_t^{\gamma} = \sum_{k=t}^{\infty} \gamma^{k-t} r(s_k, a_k)$$
 where $0 < \gamma < 1$
Value functions: $V^{\pi}(s) = \mathbb{E} [r_1^{\gamma} | S_1 = s; \pi]$
 $Q^{\pi}(s, a) = \mathbb{E} [r_1^{\gamma} | S_1 = s, A_1 = a; \pi]$
Performance Objective: $J(\pi) = \mathbb{E} [r_1^{\gamma} | \pi]$
 $J(\pi_{\theta}) = \int_{\mathcal{S}} \rho^{\pi}(s) \int_{\mathcal{A}} \pi_{\theta}(s, a) r(s, a) dads = \int_{\mathcal{S}} \int_{\mathcal{A}} \rho^{\beta}(s) \pi_{\theta}(a|s) Q^{\pi}(s, a) dads$
 $= \mathbb{E}_{s \sim \rho^{\pi}, a \sim \pi_{\theta}} [r(s, a)]$
Policy Gradient: $\nabla_{\theta} J(\pi_{\theta})$ $\theta := \theta + \alpha \nabla_{\theta} J(\pi_{\theta})$

DPG (Silver et al. 2014)

Deterministic Policy Gradient Algorithms (David Silver et al. 2014)

Performance Objective:
$$J(\pi_{\theta}) = \int_{\mathcal{S}} \int_{\mathcal{A}} \rho^{\beta}(s) \pi_{\theta}(a|s) Q^{\pi}(s,a) dads$$

Policy Gradient: $\nabla_{\theta} J(\pi_{\theta})$

Policy Gradient

Deterministic Policy Gradient:

DPG (Silver et al. 2014)

• Deterministic Policy Gradient Algorithms (David Silver et al. 2014)

Actor:
$$\mu_{ heta}(s)$$
 Critic: $Q^w(s_t, a_t)$

DPG Algorithm:

$$\delta_t = r_t + \gamma Q^w(s_{t+1}, \mu_\theta(s_{t+1})) - Q^w(s_t, a_t)$$
$$w_{t+1} = w_t + \alpha_w \delta_t \nabla_w Q^w(s_t, a_t)$$
$$\theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \mu_\theta(s_t) |_{a = \mu_\theta(s)}$$

DPG (David Silver et al. 2014)

40.0

50.0

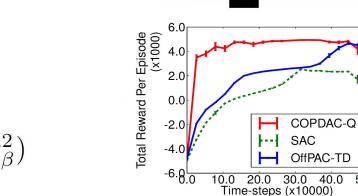
- Experiments:
 - continuous bandit, pendulum, mountain car, 2D puddle world, Octopus Arm Ο

Pendulum:

- State: joint position/velocities
- Action: move left or right
- Reward: +1 for every step while rod is upright
- Critic: $V(s) = v^{\top} \phi(s)$
- Actor:

Ο

- Target policy: $\mu_{\theta}(s) = \theta^{\top} \phi(s)$
- Behavior policy: $\beta(\cdot|s) \sim \mathcal{N}(\theta^{\top}\phi(s), \sigma_{\beta}^2)$ Ο



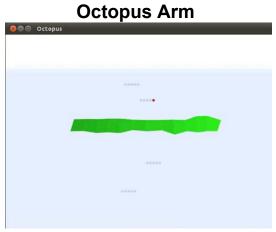
DPG (David Silver et al. 2014)

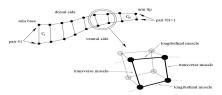
RL

- Experiments:
 - continuous bandit, pendulum, mountain car, 2D puddle world, Octopus Arm

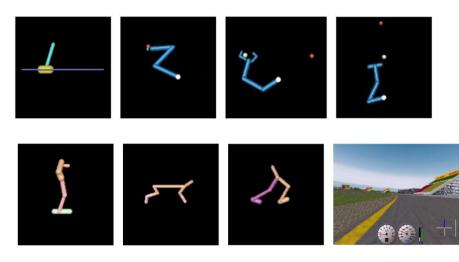
Octopus Arm:

- State: 50 continuous joint state variables
- Action: 20 variables to control muscles
- Reward: change in distance between arm and target
- Critic: NN Multilayer Perceptron (MLP)
- Actor: MLP (8 hidden units)



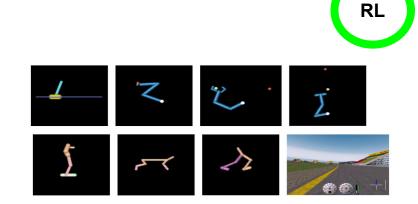


- Deterministic Policy Gradient Algorithms (Silver et al. 2014) **DPG**
 - Critic: linear function, Actor: Gaussian policy
 - Critic: NN(MLP), Actor: NN(MLP)
- Continuous control with deep reinforcement learning (Lillicrap et al. 2016) **DDPG**
 - Critic: DNN, Actor: DNN

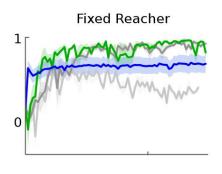


DDPG (Lillicrap 2016)

- Batch normalization
- Target Networks







- original DDPG with batch normalization (light grey),
- with target network (dark grey),
- with target networks and batch norm (green),
- with target networks from pixel-only inputs (blue)

• Reward definition: Where does R come from?

