
Reinforcement	Learning	with	
DNNs:	AlphaGo to	AlphaZero

CS	760:	Machine	Learning
Spring	2018

Mark	Craven	and	David	Page

www.biostat.wisc.edu/~craven/cs760

1



Goals	for	the	Lecture

• You	should	understand	the	following	concepts:

• Monte	Carlo	tree	search	(MCTS)
• Self-play
• Residual	neural	networks
• AlphaZero algorithm

2



A	Brief	History	of	Game-Playing	as	a	CS/AI	Test	of	Progress
• 1944:	Alan	Turing	and	Donald	Michie simulate	by	hand	their	chess	algorithms	during	
lunches	at	Bletchley	Park

• 1959:	Arthur	Samuel’s	checkers	algorithm	(machine	learning)

• 1961:	Michie’s Matchbox	Educable	Noughts And	Crosses	Engine	(MENACE)

• 1991:	Computer	solves	chess	endgame	thought	draw:	KRB	beats	KNN	(223	moves)

• 1992:	TD	Gammon trains	for	Backgammon	by	self-play	reinforcement	learning

• 1997:	Computers	best	in	world	at	Chess	(Deep	Blue	beats	Kasparov)

• 2007:	Checkers	“solved”	by	computer	(guaranteed	optimal	play)

• 2016:	Computers	best	at	Go	(AlphaGo beats	Lee	Sodol)

• 2017	(4	months	ago):	AlphaZero extends	AlphaGo to	best	at	chess,	shogi



Only	Some of	these	involved	Learning
• 1944:	Alan	Turing	and	Donald	Michie simulate	by	hand	their	chess	algorithms	during	
lunches	at	Bletchley	Park

• 1959:	Arthur	Samuel’s	checkers	algorithm	(machine	learning)

• 1961:	Michie’s Matchbox	Educable	Noughts And	Crosses	Engine	(MENACE)

• 1991:	Computer	solves	chess	endgame	thought	draw:	KRB	beats	KNN	(223	moves)

• 1992:	TD	Gammon trains	for	Backgammon	by	self-play	reinforcement	learning

• 1997:	Computers	best	in	world	at	Chess	(Deep	Blue	beats	Kasparov)

• 2007:	Checkers	“solved”	by	computer	(guaranteed	optimal	play)

• 2016:	Computers	best	at	Go	(AlphaGo beats	Lee	Sodol)

• 2017	(4	months	ago):	AlphaZero extends	AlphaGo to	best	at	chess,	shogi



Only	Some of	these	involved	Learning
• 1944:	Alan	Turing	and	Donald	Michie simulate	by	hand	their	chess	algorithms	during	
lunches	at	Bletchley	Park

• 1959:	Arthur	Samuel’s	checkers	algorithm	(machine	learning)

• 1961:	Michie’s Matchbox	Educable	Noughts And	Crosses	Engine	(MENACE)

• 1991:	Computer	solves	chess	endgame	thought	draw:	KRB	beats	KNN	(223	moves)

• 1992:	TD	Gammon trains	for	Backgammon	by	self-play	reinforcement	learning

• 1997:	Computers	best	in	world	at	Chess	(Deep	Blue	beats	Kasparov)

• 2007:	Checkers	“solved”	by	computer	(guaranteed	optimal	play)

• 2016:	Computers	best	at	Go	(AlphaGo beats	Lee	Sodol)

• 2017	(4	months	ago):	AlphaZero extends	AlphaGo to	best	at	chess,	shogi



Background:	Game	Playing

• Until	last	year,	state-of-the-art	for	many	games	including	chess	was	
minimax search	with	alpha-beta	pruning	(recall	Intro	to	AI)

• Most	top-performing	game-playing	programs	didn’t	do	learning

• Game	of	Go	was	one	of	the	few	games	where	humans	still	
outperformed	computers



Minimax	in	a	Picture	(thanks	Wikipedia)



Monte	Carlo	Tree	Search	(MCTS)	in	a	Picture
(thanks	Wikipedia)

Rollout
(Random	Search)



Reinforcement	Learning	by	AlphaGo,	AlphaGo Zero,	
and	AlphaZero:	Key	Insights

• MCTS	with	Self-Play
• Don’t	have	to	guess	what	opponent	might	do,	so…
• If	no	exploration,	a	big-branching	game	tree	becomes	one	path
• You	get	an	automatically	improving,	evenly-matched	opponent	who	is	accurately	
learning	your	strategy

• “We	have	met	the	enemy,	and	he	is	us”	(famous	variant	of	Pogo,	1954)
• No	need	for	human	expert	scoring	rules	for	boards	from	unfinished	games

• Treat	board	as	an	image:	use	residual	convolutional	neural	network

• AlphaGo Zero:	One	deep	neural	network	learns	both	the	value	function	and	
policy	in	parallel

• Alpha	Zero:	Removed	rollout	altogether	from	MCTS	and	just	used	current	
neural	net	estimates	instead



AlphaZero (Dec	2017):	Minimized	Required	Game	
Knowledge,	Extended	from	Go	to	Chess	and	Shogi



AlphaZero’s version	of	Q-Learning

• No	discount	on	future	rewards

• Rewards	of	0	until	end	of	game;	then	reward	of	-1	or	+1

• Therefore	Q-value	for	an	action	a or	policy	p from	a	state	S is	exactly	
value	function:	Q(S,p) =	V(S,p)

• AlphaZero uses	one	DNN	(details	in	a	bit)	to	model	both	p and	V

• Updates	to	DNN	are	made	(training	examples	provided)	after	game

• During	game,	need	to	balance	exploitation	and	exploration



AlphaZero Algorithm

Initialize	DNN	!"	
	
Repeat	Forever 

Play	Game 
Update	" 

 
Play	Game: 

Repeat	Until	Win	or	Lose: 
From	current	state	S,	perform	MCTS	
Estimate	move	probabilities	#	by	MCTS	
Record	(S,	#)	as	an	example	
Randomly	draw	next	move	from	#	
	

Update ": 
Let	z	be	previous	game	outcome	(+1	or	-1)	
Sample	from	last	game’s	examples	(S,	#, &)	
Train	DNN	!"	on	sample	to	get	new	"	

	
	
	 

	



AlphaZero Play-Game



AlphaZero Train	DNN



AlphaZeroMonte	Carlo	Tree	Search	(MTCS)



Why	Need	MCTS	At	All?

• Could	always	make	move	DNN	says	has	highest	Q:	no	exploration
• Could	just	draw	move	from	DNN’s	policy	output
• Papers	say	MCTS	output	probability	vector	p selects	stronger	moves	
that	just	directly	using	the	neural	network’s	policy	output	itself	(is	
there	a	possible	lesson	here	for	self-driving	cars	too??)
• Still	need	to	decide	how	many	times	to	repeat	MCTS	search	(game-
specific)	and	how	to	tradeoff	exploration	and	exploitation	in	MCTS…
AlphaZero paper	just	says	choose	move	with	“low	count,	high	move	
probability,	and	high	value”—AlphaGo paper	more	specific:	maximize	
upper	confidence	bound
• Where	𝝉 is	temperature	[1,2],	and	N𝝉(s,b)	is	count	of	time	action	b	
has	been	taken	from	state	s,	raised	to	the	power	1/𝝉,	choose:



AlphaZero DNN	Architecture:	Input	Nodes	Represent	
Current	Game	State,	Including	any	needed	History



AlphaZero DNN	Architecture:	Output	Nodes	
Represent	Policy	and	Value	Function

• A	policy	is	a	probability	distribution	over	all	possible	moves	from	a	state,	so	
need	units	to	represent	all	possible	moves

• Chess	is	most	complicated	to	describe	moves	(though	Go	and	Shogi	have	
higher	numbers	of	moves	to	consider),	so	here	is	for	Chess	moves:
• 8	x	8	=	64	possible	starting	positions	for	a	move
• 56	possible	destinations	for	queen	moves:	8	compass	directions	{N,	NE,	E,	SE,	S,	
SW,	W,	NW}	times	7	possible	move-lengths

• Another	17	possible	destinations	for	irregular	moves	such	as	knight
• Some	moves	impossible,	depending	on	the	particular	piece	at	a	position	(e.g.,	
pawn	can’t	make	all	queen	moves)	and	location	of	other	pieces	(queen	can’t	
move	through	2	other	pieces	to	attack	a	third)

• Weights	for	impossible	moves	are	set	to	0	and	not	allowed	to	change
• Another	layer	to	normalize	results	into	probability	distribution

• One	deep	neural	network	learns	both	the	value	function	and	policy	in	
parallel:	one	additional	output	node	for	the	value function,	which	estimates	
the	expected	outcome	in	the	range	[-1,1]	for	following	the	current	policy
from	present	(input)	state



Deep	Neural	Networks	Trick	#9:	ResNets
(Residual	Networks)

• What	if	your	neural	network	is	too	deep?

• In	theory,	that’s	no	problem,	given	sufficient	nodes	and	connectivity:	
early	(or	late)	layers	can	just	learn	identity	function	(autoencoder)

• In	practice	deep	neural	networks	fail	to	learn	identity	when	needed

• A	solution:	make	identity	easy	or	even	the	default;	have	to	work	hard	
to	actually	learn	a	non-zero	residual	(and	hence	a		non-identity)



Residual	Network	in	a	Picture	(He,	Zhang,	Ren,	Sun,	
2015):	Identity	Skip	Connection

Note:	output	and	input	dimensionality	need	to	be	the	same.

Why	called	“residual”?			



Deep	Residual	Networks	(ResNets):	Start	of	a	35-layer	
ResNet (He,	Zhang,	Ren,	Sun,	2015)

Dotted	line	denotes	increase	in
Dimension	(2	more	such	increases)



A	Brief	Aside:	Leaky	ReLUs

• Rectifiers	used	could	be	ReLU or	”Leaky	ReLU”

• Leaky	ReLU addresses	“dying	ReLU”	problem-–when	input	sum	is	
below	some	value,	output	is	0,	so	no	gradient	for	training

• ReLU:	f(x)	=	max(0,x)

• Leaky	ReLU:	

• ReLU Leaky	ReLU



AlphaZero DNN	Architecture:	Hidden	Units	Arranged	
in	a	Residual	Network	(a	CNN	with	Residual	Layers)

Policy	Head

Conv	Block
3x3,	256,	/1

Res	Block
3x3,	256,	/1

Res	Block
3x3,	256,	/1

... Repeat	for	39	Res	Blocks

Value	Head



AlphaZero DNN	Architecture:	Convolution	Block



AlphaZero DNN	Architecture:	Residual	Blocks



AlphaZero DNN	Architecture:	Policy	Head	(for	Go)



AlphaZero DNN	Architecture:	Value	HeadAlphaZero DNN	Architecture:	Value	Head



AlphaZero Compared	to	Recent	World	Champions


