
1

Database Systems

Session 5 – Main Theme

Relational Algebra, Relational Calculus, and SQL

Dr. Jean-Claude Franchitti

New York University

Computer Science Department

Courant Institute of Mathematical Sciences

Presentation material partially based on textbook slides

Fundamentals of Database Systems (6th Edition)

by Ramez Elmasri and Shamkant Navathe

Slides copyright © 2011 and on slides produced by Zvi

Kedem copyight © 2014

http://www.cs.nyu.edu/kedem/DataBaseClass/

2

Agenda

1 Session Overview

5 Summary and Conclusion

2 Relational Algebra and Relational Calculus

3 Relational Algebra Using SQL Syntax

3

Session Agenda

 Session Overview

 Relational Algebra and Relational Calculus

 Relational Algebra Using SQL Syntax

 Summary & Conclusion

4

What is the class about?

Course description and syllabus:

» http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001

» http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/

 Textbooks:
» Fundamentals of Database Systems (6th Edition)

 Ramez Elmasri and Shamkant Navathe

 Addition Wesley

 ISBN-10: 0-1360-8620-9, ISBN-13: 978-0136086208 6th Edition (04/10)

http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001
http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/
http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/
http://www.amazon.com/gp/reader/0136086209/ref=sib_dp_kd

5

Icons / Metaphors

5

Common Realization

Information

Knowledge/Competency Pattern

Governance

Alignment

Solution Approach

6

Agenda

1 Session Overview

5 Summary and Conclusion

2 Relational Algebra and Relational Calculus

3 Relational Algebra Using SQL Syntax

7

Agenda

 Unary Relational Operations: SELECT and

PROJECT

 Relational Algebra Operations from Set Theory

 Binary Relational Operations: JOIN and

DIVISION

 Additional Relational Operations

 Examples of Queries in Relational Algebra

 The Tuple Relational Calculus

 The Domain Relational Calculus

8

 The Relational Algebra and Relational Calculus

 Relational algebra

 Basic set of operations for the relational model

 Relational algebra expression

 Sequence of relational algebra operations

 Relational calculus

 Higher-level declarative language for specifying

relational queries

9

 Unary Relational Operations: SELECT and PROJECT (1/3)

 The SELECT Operation

 Subset of the tuples from a relation that

satisfies a selection condition:

• Boolean expression contains clauses of the form

<attribute name> <comparison op> <constant

value>

• or

• <attribute name> <comparison op> <attribute

name>

10

 Unary Relational Operations: SELECT and PROJECT (2/3)

 Example:

 <selection condition> applied independently

to each individual tuple t in R

 If condition evaluates to TRUE, tuple selected

 Boolean conditions AND, OR, and NOT

 Unary

 Applied to a single relation

11

 Unary Relational Operations: SELECT and PROJECT (3/3)

 Selectivity

 Fraction of tuples selected by a selection

condition

 SELECT operation commutative

 Cascade SELECT operations into a single

operation with AND condition

12

 The PROJECT Operation

 Selects columns from table and discards

the other columns:

 Degree

 Number of attributes in <attribute list>

 Duplicate elimination

 Result of PROJECT operation is a set of

distinct tuples

13

 Sequences of Operations and the RENAME Operation

 In-line expression:

 Sequence of operations:

 Rename attributes in intermediate results

 RENAME operation

14

 Relational Algebra Operations from Set Theory (1/2)

 UNION, INTERSECTION, and MINUS

 Merge the elements of two sets in various ways

 Binary operations

 Relations must have the same type of tuples

 UNION

 R U S

 Includes all tuples that are either in R or in S or

in both R and S

 Duplicate tuples eliminated

15

 Relational Algebra Operations from Set Theory (2/2)

 INTERSECTION

 R ∩ S

 Includes all tuples that are in both R and S

 SET DIFFERENCE (or MINUS)

 R – S

 Includes all tuples that are in R but not in S

16

 The CARTESIAN PRODUCT (CROSS PRODUCT) Operation

 CARTESIAN PRODUCT

 CROSS PRODUCT or CROSS JOIN

 Denoted by ×

 Binary set operation

 Relations do not have to be union compatible

 Useful when followed by a selection that

matches values of attributes

17

 Binary Relational Operations: JOIN and DIVISION (1/2)

 The JOIN Operation

 Denoted by

 Combine related tuples from two relations into

single “longer” tuples

 General join condition of the form <condition>

AND <condition> AND...AND <condition>

 Example:

18

 Binary Relational Operations: JOIN and DIVISION (2/2)

 THETA JOIN

 Each <condition> of the form Ai θ Bj

 Ai is an attribute of R

 Bj is an attribute of S

 Ai and Bj have the same domain

 θ (theta) is one of the comparison operators:

• {=, <, ≤, >, ≥, ≠}

19

 Variations of JOIN: The EQUIJOIN and NATURAL JOIN (1/2)

 EQUIJOIN

 Only = comparison operator used

 Always have one or more pairs of attributes

that have identical values in every tuple

 NATURAL JOIN

 Denoted by *

 Removes second (superfluous) attribute in an

EQUIJOIN condition

20

 Variations of JOIN: The EQUIJOIN and NATURAL JOIN (2/2)

 Join selectivity

 Expected size of join result divided by the

maximum size nR * nS

 Inner joins

 Type of match and combine operation

 Defined formally as a combination of

CARTESIAN PRODUCT and SELECTION

21

 A Complete Set of Relational Algebra Operations

 Set of relational algebra operations {σ, π,

U, ρ, –, ×} is a complete set

 Any relational algebra operation can be

expressed as a sequence of operations from

this set

22

 The DIVISION Operation

 Denoted by ÷

 Example: retrieve the names of employees

who work on all the projects that ‘John

Smith’ works on

 Apply to relations R(Z) ÷ S(X)

 Attributes of R are a subset of the attributes of

S

23

 Operations of Relational Algebra (1/2)

24

 Operations of Relational Algebra (2/2)

25

 Notation for Query Trees

 Query tree

 Represents the input relations of query as leaf

nodes of the tree

 Represents the relational algebra operations

as internal nodes

26

 Sample Query Tree for Relational Algebra Expression

27

 Additional Relational Operations (1/2)

 Generalized projection

 Allows functions of attributes to be included in

the projection list

 Aggregate functions and grouping

 Common functions applied to collections of

numeric values

 Include SUM, AVERAGE, MAXIMUM, and

MINIMUM

28

 Additional Relational Operations (2/2)

 Group tuples by the value of some of their

attributes

 Apply aggregate function independently to

each group

29

 Sample Aggregate Function Operation

30

 Recursive Closure Operations

 Operation applied to a recursive

relationship between tuples of same type

31

 OUTER JOIN Operations

 Outer joins

 Keep all tuples in R, or all those in S, or all

those in both relations regardless of whether or

not they have matching tuples in the other

relation

 Types

• LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL

OUTER JOIN

 Example:

32

 The OUTER UNION Operation

 Take union of tuples from two relations that

have some common attributes

 Not union (type) compatible

 Partially compatible

 All tuples from both relations included in the

result

 Tuples with the same value combination will

appear only once

33

 Examples of Queries in Relational Algebra (1/3)

34

 Examples of Queries in Relational Algebra (2/3)

35

 Examples of Queries in Relational Algebra (3/3)

36

 The Tuple Relational Calculus

 Declarative expression

 Specify a retrieval request

 Non-procedural language

 Any retrieval that can be specified in basic

relational algebra

 Can also be specified in relational calculus

37

 Tuple Variables and Range Relations

 Tuple variables

 Ranges over a particular database relation

 Satisfy COND(t):

 Specify:

 Range relation R of t

 Select particular combinations of tuples

 Set of attributes to be retrieved (requested

attributes)

38

 Expressions and Formulas in Tuple Relational Calculus

 General expression of tuple relational

calculus is of the form:

 Truth value of an atom

 Evaluates to either TRUE or FALSE for a

specific combination of tuples

 Formula (Boolean condition)

 Made up of one or more atoms connected via

logical operators AND, OR, and NOT

39

 Existential and Universal Quantifiers

 Universal quantifier (inverted “A”)

 Existential quantifier (mirrored “E”)

 Define a tuple variable in a formula as free

or bound

40

 Sample Queries in Tuple Relational Calculus

41

 Notation for Query Graphs

42

 Transforming the Universal and Existential Quantifiers

 Transform one type of quantifier into other

with negation (preceded by NOT)

 AND and OR replace one another

 Negated formula becomes un-negated

 Un-negated formula becomes negated

43

 Using the Universal Quantifier in Queries

44

 Safe Expressions

 Guaranteed to yield a finite number of

tuples as its result

 Otherwise expression is called unsafe

 Expression is safe

 If all values in its result are from the domain of

the expression

45

 The Domain Relational Calculus (1/2)

 Differs from tuple calculus in type of

variables used in formulas

 Variables range over single values from

domains of attributes

 Formula is made up of atoms

 Evaluate to either TRUE or FALSE for a

specific set of values

• Called the truth values of the atoms

46

 The Domain Relational Calculus (2/2)

 QBE language

 Based on domain relational calculus

47

 Summary

 Formal languages for relational model of

data:

 Relational algebra: operations, unary and

binary operators

 Some queries cannot be stated with basic

relational algebra operations

• But are important for practical use

 Relational calculus

 Based predicate calculus

48

Agenda

1 Session Overview

4 Summary and Conclusion

2 Relational Algebra and Relational Calculus

3 Relational Algebra Using SQL Syntax

49

Agenda

 Relational Algebra and SQL

 Basic Syntax Comparison

 Sets and Operations on Relations

 Relations in Relational Algebra

 Empty Relations

 Relational Algebra vs. Full SQL

 Operations on Relations

» Projection

» Selection

» Cartesian Product

» Union

» Difference

» Intersection

 From Relational Algebra to Queries (with Examples)

 Microsoft Access Case Study

 Pure Relational Algebra

50

Relational Algebra And SQL

 SQL is based on relational algebra with many extensions

» Some necessary

» Some unnecessary

 “Pure” relational algebra, use mathematical notation with Greek

letters

 It is covered here using SQL syntax; that is this unit covers

relational algebra, but it looks like SQL

 And will be really valid SQL

 Pure relational algebra is used in research, scientific papers, and

some textbooks

 So it is good to know it, and material is provided at the end of this

unit material from which one can learn it

 But in anything practical, including commercial systems, you will be

using SQL

51

Key Differences Between SQL And “Pure” Relational Algebra

 SQL data model is a multiset not a set; still rows in tables (we

sometimes continue calling relations)

» Still no order among rows: no such thing as 1st row

» We can (if we want to) count how many times a particular row appears

in the table

» We can remove/not remove duplicates as we specify (most of the time)

» There are some operators that specifically pay attention to duplicates

» We must know whether duplicates are removed (and how) for each

SQL operation; luckily, easy

 Many redundant operators (relational algebra had only one:

intersection)

 SQL provides statistical operators, such as AVG (average)

» Can be performed on subsets of rows; e.g. average salary per

company branch

52

Key Differences Between Relational Algebra And SQL

 Every domain is “enhanced” with a special

element: NULL

» Very strange semantics for handling these

elements

 “Pretty printing” of output: sorting, and

similar

 Operations for

» Inserting

» Deleting

» Changing/updating (sometimes not easily

reducible to deleting and inserting)

53

Basic Syntax Comparison (1/2)

Relational Algebra SQL

p a, b SELECT a, b

s (d > e)  (f =g) WHERE d > e AND f = g

p  q FROM p, q

p a, b s (d > e)  (f =g) (p  q) SELECT a, b

FROM p, q

WHERE d > e AND f = g;

{must always have SELECT even if all

attributes are kept, can be written as:

SELECT *}

renaming AS {or blank space}

p := result INSERT INTO p

result {assuming p was empty}

p a, b (p) (assume a, b are the only

 attributes)

SELECT *

FROM p;

54

Basic Syntax Comparison (2/2)

Relational Algebra SQL

p  q SELECT *

FROM p

UNION

SELECT *

FROM q

p − q SELECT *

FROM p

EXCEPT

SELECT *

FROM q

Sometimes, instead, we have DELETE

FROM

p  q SELECT *

FROM p

INTERSECT

SELECT *

FROM q

55

Sets And Operations On Them

 If A, B, and C are sets, then we have the operations

  Union, A  B = { x  x  A  x  B }

  Intersection, A  B = { x  x  A  x  B }

  Difference, A  B = { x  x  A  x  B }

  Cartesian product, A  B = { (x,y)  x  A  y  B }, A

 B  C = { (x,y,z)  x  A  y  B  z  B }, etc.

 The above operations form an algebra, that is you can

perform operations on results of operations, such as (A

 B)  (C  A)

 So you can write expressions and not just programs!

56

Relations in Relational Algebra

 Relations are sets of tuples, which we will also call

rows, drawn from some domains

 Relational algebra deals with relations (which look like

tables with fixed number of columns and varying

number of rows)

 We assume that each domain is linearly ordered, so for

each x and y from the domain, one of the following

holds

» x < y

» x = y

» x < y

 Frequently, such comparisons will be meaningful even if

x and y are drawn from different columns

» For example, one column deals with income and another with

expenditure: we may want to compare them

57

Reminder: Relations in Relational Algebra

 The order of rows and whether a row appears once or

many times does not matter

 The order of columns matters, but as our columns will

always be labeled, we will be able to reconstruct the

order even if the columns are permuted.

 The following two relations are equal:

 R A B

1 10

2 20

R B A

20 2

10 1

20 2

20 2

58

Many Empty Relations

 In set theory, there is only one empty set

 For us, it is more convenient to think that for each

relation schema, that for specific choice of column

names and domains, there is a different empty relation

 And of, course, two empty relations with different

number of columns must be different

 So for instance the two relations below are different

 The above needs to be stated more precisely to be

“completely correct,” but as this will be intuitively clear,

we do not need to worry about this too much

59

Relational Algebra Versus Full SQL

 Relational algebra is restricted to querying the database

 Does not have support for

» Primary keys

» Foreign keys

» Inserting data

» Deleting data

» Updating data

» Indexing

» Recovery

» Concurrency

» Security

» …

 Does not care about efficiency, only about specifications

of what is needed

60

Operations on relations

 There are several fundamental operations on

relations

 We will describe them in turn:

» Projection

» Selection

» Cartesian product

» Union

» Difference

» Intersection (technically not fundamental)

 The very important property: Any operation on

relations produces a relation

 This is why we call this an algebra

61

Projection: Choice Of Columns

 SQL statement

SELECT B, A, D

FROM R

 We could have removed the duplicate

row, but did not have to

R A B C D

1 10 100 1000

1 20 100 1000

1 20 200 1000

B A D

10 1 1000

20 1 1000

20 1 1000

62

Selection: Choice Of Rows

 SQL statement:

SELECT * (this means all columns)

FROM R

WHERE A <= C AND D = 4; (this is a predicate, i.e., condition)

R A B C D

5 5 7 4

5 6 5 7

4 5 4 4

5 5 5 5

4 6 5 3

4 4 3 4

4 4 4 5

4 6 4 6

A B C D

5 5 7 4

4 5 4 4

63

Selection

 In general, the condition (predicate) can be

specified by a Boolean formula with

 NOT, AND, OR on atomic conditions, where a

condition is:

» a comparison between two column names,

» a comparison between a column name and a

constant

» Technically, a constant should be put in quotes

» Even a number, such as 4, perhaps should be put in

quotes, as ‘4’, so that it is distinguished from a

column name, but as we will never use numbers for

column names, this not necessary

64

Cartesian Product

 SQL statement

 SELECT A, R.B, C, S.B, D

 FROM R, S; (comma stands for Cartesian product)

A R.B C S.B D

1 10 40 10 10

1 10 50 20 10

2 10 40 10 10

2 10 50 20 10

2 20 40 10 10

2 20 50 20 10

R A B

1 10

2 10

2 20

S C B D

40 10 10

50 20 10

65

A Typical Use Of Cartesian Product

 SQL statement:
SELECT ID#, R.Room#, Size

FROM R, S

WHERE R.Room# = S.Room#;

R Size Room#

140 1010

150 1020

140 1030

S ID# Room# YOB

40 1010 1982

50 1020 1985

ID# R.Room# Size

40 1010 140

50 1020 150

66

A Typical Use Of Cartesian Product

 After the Cartesian product, we got

 This allowed us to correlate the information from
the two original tables by examining each tuple
in turn

Size R.Room# ID# S.Room

YOB

140 1010 40 1010 1982

140 1010 50 1020 1985

150 1020 40 1010 1982

150 1020 50 1020 1985

140 1030 40 1010 1982

140 1030 50 1020 1985

67

A Typical Use Of Cartesian Product

 This example showed how to correlate information from

two tables

» The first table had information about rooms and their sizes

» The second table had information about employees including

the rooms they sit in

» The resulting table allows us to find out what are the sizes of

the rooms the employees sit in

 We had to specify R.Room# or S.Room#, even though

they happen to be equal due to the specific equality

condition

 We could, as we will see later, rename a column, to get

Room#
ID# Room# Size

40 1010 140

50 1020 150

68

Union

 SQL statement

(SELECT *

FROM R)

UNION

(SELECT *

FROM S);

 Note: We happened to choose to remove duplicate

rows

 Note: we could not just write R UNION S (syntax quirk)

R A B

1 10

2 20

S A B

1 10

3 20

A B

1 10

2 20

3 20

69

Union Compatibility

 We require same -arity (number of columns),

otherwise the result is not a relation

 Also, the operation “probably” should make

sense, that is the values in corresponding

columns should be drawn from the same

domains

 Actually, best to assume that the column names

are the same and that is what we will do from

now on

 We refer to these as union compatibility of

relations

 Sometimes, just the term compatibility is used

70

Difference

 SQL statement

(SELECT *

FROM R)

MINUS

(SELECT *

FROM S);

 Union compatibility required

 EXCEPT is a synonym for MINUS

R A B

1 10

2 20

S A B

1 10

3 20

A B

2 20

71

Intersection

 SQL statement

(SELECT *

FROM R)

INTERSECT

(SELECT *

FROM S);

 Union compatibility required

 Can be computed using differences only: R – (R – S)

R A B

1 10

2 20

S A B

1 10

3 20

A B

1 10

72

From Relational Algebra to Queries

 These operations allow us to define a large

number of interesting queries for relational

databases.

 In order to be able to formulate our examples,

we will assume standard programming

language type of operations:

» Assignment of an expression to a new variable;

 In our case assignment of a relational expression to

a relational variable.

» Renaming of a relations, to use another name to

denote it

» Renaming of a column, to use another name to

denote it

73

A Small Example

 The example consists of 3 relations:

 Person(Name,Sex,Age)

 This relation, whose primary key is Name, gives information about the

human’s sex and age

 Birth(Parent,Child)

 This relation, whose primary key is the pair Parent,Child, with both being

foreign keys referring to Person gives information about who is a parent of

whom. (Both mother and father would be generally listed)

 Marriage(Husband,Wife, Age) or

 Marriage(Husband,Wife, Age)

 This relation listing current marriages only, requires choosing which spouse

will serve as primary key. For our exercise, it does not matter what the

choice is. Both Husband and Wife are foreign keys referring to Person. Age

specifies how long the marriage has lasted.

 For each attribute above, we will frequently use its first letter to refer to

it, to save space in the slides, unless it creates an ambiguity

 Some ages do not make sense, but this is fine for our example

74

Relational Implementation

 Two options for selecting the primary key of Marriage

 The design is not necessarily good, but nice and simple

for learning relational algebra

 Because we want to focus on relational algebra, which

does not understand keys, we will not specify keys in

this unit

Marriage

PK,FK2 W

FK1 H

Person

PK N

 S

 A

Birth

PK,FK1 P

PK,FK2 C

Marriage

PK,FK1 H

FK2 W

Person

PK N

 S

 A

Birth

PK,FK1 P

PK,FK2 C

75

Microsoft Access Database

 Microsoft Access Database with this example

has been posted

» The example suggests that you download and install

Microsoft Access 2007

» The examples are in the Access 2000 format so that

if you have an older version, you can work with it

 Access is a very good tool for quickly learning

basic constructs of SQL DML, although it is not

suitable for anything other than personal

databases

76

Microsoft Access Database

 The database and our queries (other than the one with

MINUS at the end) are the appropriate “extras” directory

on the class web in “slides”

» MINUS is frequently specified in commercial databases in a

roundabout way

» We will cover how it is done when we discuss commercial

databases

 Our sample Access database: People.mdb

 The queries in Microsoft Access are copied and pasted

in these notes, after reformatting them

 Included copied and pasted screen shots of the results

of the queries so that you can correlate the queries with

the names of the resulting tables

77

Our Database With Sample Queries - Open In Microsoft Access

78

Our Database

Person N S A

Albert M 20

Dennis M 40

Evelyn F 20

John M 60

Mary F 40

Robert M 60

Susan F 40

Birth P C

Dennis Albert

John Mary

Mary Albert

Robert Evelyn

Susan Evelyn

Susan Richard

Marriage H W A

Dennis Mary 20

Robert Susan 30

79

Our Instance In Microsoft Access

80

A Query

 Produce the relation Answer(A) consisting of all

ages of people

 Note that all the information required can be

obtained from looking at a single relation,

Person

 Answer:=

 SELECT A

 FROM Person;

 Recall that whether duplicates are removed is

not important (at least for the time being in our

course)

A

20

40

20

60

40

60

40

81

The Query In Microsoft Access

 The actual query was copied and pasted

from Microsoft Access and reformatted for

readability

 The result is below

82

A Query

 Produce the relation Answer(N) consisting of all

women who are less or equal than 32 years old.

 Note that all the information required can be

obtained from looking at a single relation,

Person

 Answer:=

 SELECT N

 FROM Person

 WHERE A <= 32 AND S =‘F’;

N

Evelyn

83

The Query In Microsoft Access

 The actual query was copied and pasted

from Microsoft Access and reformatted for

readability

 The result is below

84

A Query

 Produce a relation Answer(P, Daughter) with

the obvious meaning

 Here, even though the answer comes only from

the single relation Birth, we still have to check in

the relation Person what the S of the C is

 To do that, we create the Cartesian product of

the two relations: Person and Birth. This gives

us “long tuples,” consisting of a tuple in Person

and a tuple in Birth

 For our purpose, the two tuples matched if N in

Person is C in Birth and the S of the N is F

85

A Query

Answer:=

SELECT P, C AS Daughter

 FROM Person, Birth

 WHERE C = N AND S = ‘F’;

 Note that AS was the attribute renaming

operator

P Daughter

John Mary

Robert Evelyn

Susan Evelyn

86

Cartesian Product With Condition: Matching Tuples Indicated

Person N S A

Albert M 20

Dennis M 40

Evelyn F 20

John M 60

Mary F 40

Robert M 60

Susan F 40

Birth P C

Dennis Albert

John Mary

Mary Albert

Robert Evelyn

Susan Evelyn

Susan Richard

87

The Query In Microsoft Access

 The actual query was copied and pasted

from Microsoft Access and reformatted for

readability

 The result is below

88

A Query

 Produce a relation Answer(Father, Daughter)

with the obvious meaning.

 Here we have to simultaneously look at two

copies of the relation Person, as we have to

determine both the S of the Parent and the S of

the C

 We need to have two distinct copies of

Person in our SQL query

 But, they have to have different names so we

can specify to which we refer

 Again, we use AS as a renaming operator,

these time for relations

 Note: We could have used what we have

already computer: Parent,Daughter

89

A Query

 Answer :=

 SELECT P AS Father, C AS Daughter

 FROM Person, Birth, Person AS Person1

 WHERE P = Person.N AND C = Person1.N

 AND Person.S = ‘M’ AND Person1.S = ‘F’;

Father Daughter

John Mary

Robert Evelyn

90

Cartesian Product With Condition: Matching Tuples Indicated

Person N S A

Albert M 20

Dennis M 40

Evelyn F 20

John M 60

Mary F 40

Robert M 60

Susan F 40

Birth P C

Dennis Albert

John Mary

Mary Albert

Robert Evelyn

Susan Evelyn

Susan Richard

Person N S A

Albert M 20

Dennis M 40

Evelyn F 20

John M 60

Mary F 40

Robert M 60

Susan F 40

91

The Query In Microsoft Access

 The actual query was copied and pasted

from Microsoft Access and reformatted for

readability

 The result is below

92

A Query

 Produce a relation: Answer(Father_in_law,

Son_in_law).

 A classroom exercise, but you can see the

solution in the posted database.

 Hint: you need to compute the Cartesian

product of several relations if you start from

scratch, or of two relations if you use the

previously computed (Father, Daughter) relation

F_I_L S_I_L

John Dennis

93

The Query In Microsoft Access

 The actual query was copied and pasted

from Microsoft Access and reformatted for

readability

 The result is below

94

A Query

 Produce a relation:

Answer(Grandparent,Grandchild)

 A classroom exercise, but you can see

the solution in the posted database

G_P G_C

John Albert

95

Cartesian Product With Condition: Matching Tuples Indicated

Birth P C

Dennis Albert

John Mary

Mary Albert

Robert Evelyn

Susan Evelyn

Susan Richard

Birth P C

Dennis Albert

John Mary

Mary Albert

Robert Evelyn

Susan Evelyn

Susan Richard

96

The Query In Microsoft Access

 The actual query was copied and pasted

from Microsoft Access and reformatted for

readability

 The result is below

97

Further Distance

 How to compute (Great-grandparent,Great-grandchild)?

 Easy, just take the Cartesian product of the

(Grandparent, Grandchild) table with (Parent,Child)

table and specify equality on the “intermediate” person

 How to compute (Great-great-grandparent,Great-great-

grandchild)?

 Easy, just take the Cartesian product of the

(Grandparent, Grandchild) table with itself and specify

equality on the “intermediate” person

 Similarly, can compute (Greatx-grandparent,Greatx-

grandchild), for any x

 Ultimately, may want (Ancestor,Descendant)

98

Relational Algebra Is Not Universal:Cannot Compute (Ancestor,Descendant)

 Standard programming languages are
universal

 This roughly means that they are as powerful as
Turing machines, if unbounded amount of
storage is permitted (you will never run out of
memory)

 This roughly means that they can compute
anything that can be computed by any
computational machine we can (at least
currently) imagine

 Relational algebra is weaker than a standard
programming language

 It is impossible in relational algebra (or standard
SQL) to compute the relation Answer(Ancestor,
Descendant)

99

Relational Algebra Is Not Universal: Cannot Compute (Ancestor,Descendant)

 It is impossible in relational algebra (or standard SQL)
to compute the relation Answer(Ancestor, Descendant)

 Why?

 The proof is a reasonably simple, but uses cumbersome
induction.

 The general idea is:
» Any relational algebra query is limited in how many relations or

copies of relations it can refer to

» Computing arbitrary (ancestor, descendant) pairs cannot be
done, if the query is limited in advance as to the number of
relations and copies of relations (including intermediate results)
it can specify

 This is not a contrived example because it shows that
we cannot compute the transitive closure of a directed
graph: the set of all paths in the graph

100

A Sample Query

 Produce a relation Answer(A) consisting

of all ages of visitors that are not ages of

marriages

 SELECT

A FROM Person

MINUS

SELECT

A FROM MARRIAGE;

101

The Query In Microsoft Access

 We do not show this here, as it is done in

a roundabout way and we will do it later

102

It Does Not Matter If We Remove Duplicates

 Removing duplicates

 - =

 Not removing duplicates

 - =

A

20

40

20

60

40

60

40

A

20

30

A

40

60

40

60

40

A

20

40

60

A

20

30

A

40

60

103

It Does Not Matter If We Remove Duplicates

 The resulting set contains precisely ages: 40, 60

 So we do not have to be concerned with whether the

implementation removes duplicates from the result or not

 In both cases we can answer correctly

» Is 50 a number that is an age of a marriage but not of a person

» Is 40 a number that is an age of a marriage but not of a person

 Just like we do not have to be concerned with whether it

sorts (orders) the result

 This is the consequence of us not insisting that an

element in a set appears only once, as we discussed

earlier

 Note, if we had said that an element in a set appears

once, we would have to spend effort removing

duplicates!

104

Now To “Pure” Relational Algebra

 This was described in several slides

 But it is really the same as before, just the

notation is more mathematical

 Looks like mathematical expressions, not

snippets of programs

 It is useful to know this because many

articles use this instead of SQL

 This notation came first, before SQL was

invented, and when relational databases

were just a theoretical construct

105

p: Projection: Choice Of Columns

 SQL statement Relational

Algebra

SELECT B, A, D pB,A,D (R)

FROM R

 We could have removed the duplicate row,

but did not have to

R A B C D

1 10 100 1000

1 20 100 1000

1 20 200 1000

B A D

10 1 1000

20 1 1000

20 1 1000

106

s: Selection: Choice Of Rows

 SQL statement: Relational Algebra

SELECT * sA  C  D=4 (R) Note: no need for p

FROM R

WHERE A <= C AND D = 4;

R A B C D

5 5 7 4

5 6 5 7

4 5 4 4

5 5 5 5

4 6 5 3

4 4 3 4

4 4 4 5

4 6 4 6

A B C D

5 5 7 4

4 5 4 4

107

Selection

 In general, the condition (predicate) can be

specified by a Boolean formula with

   and  on atomic conditions, where a

condition is:

» a comparison between two column names,

» a comparison between a column name and a

constant

» Technically, a constant should be put in quotes

» Even a number, such as 4, perhaps should be put in

quotes, as ‘4’ so that it is distinguished from a

column name, but as we will never use numbers for

column names, this not necessary

108

: Cartesian Product

 SQL statement Relational Algebra

 SELECT A, R.B, C, S.B, D R  S

 FROM R, S

A R.B C S.B D

1 10 40 10 10

1 10 50 20 10

2 10 40 10 10

2 10 50 20 10

2 20 40 10 10

2 20 50 20 10

R A B

1 10

2 10

2 20

S C B D

40 10 10

50 20 10

109

A Typical Use Of Cartesian Product

 SQL statement: Relational Algebra
SELECT ID#, R.Room#, Size p ID#, R.Room#, Size (sR.B = S.B (R  S))

FROM R, S

WHERE R.Room# = S.Room#

R Size Room#

140 1010

150 1020

140 1030

S ID# Room# YOB

40 1010 1982

50 1020 1985

ID# R.Room# Size

40 1010 140

50 1020 150

110

: Union

 SQL statement Relational Algebra

(SELECT * R  S

FROM R)

UNION

(SELECT *

FROM S)

 Note: We happened to choose to remove duplicate

rows

 Union compatibility required

R A B

1 10

2 20

S A B

1 10

3 20

A B

1 10

2 20

3 20

111

: Difference

 SQL statement Relational

Algebra

(SELECT * R  S

FROM R)

MINUS

(SELECT *

FROM S)

 Union compatibility required

R A B

1 10

2 20

S A B

1 10

3 20

A B

2 20

112

: Intersection

 SQL statement Relational

Algebra

(SELECT * R  S

FROM R)

INTERSECT

(SELECT *

FROM S)

 Union compatibility required

R A B

1 10

2 20

S A B

1 10

3 20

A B

1 10

113

 Summary (1/2)

 A relation is a set of rows in a table with labeled columns

 Relational algebra as the basis for SQL

 Basic operations:

» Union (requires union compatibility)

» Difference (requires union compatibility)

» Intersection (requires union compatibility); technically not a basic

operation

» Selection of rows

» Selection of columns

» Cartesian product

 These operations define an algebra: given an expression

on relations, the result is a relation (this is a “closed”

system)

 Combining this operations allows production of

sophisticated queries

114

Summary (2/2)

 Relational algebra is not universal: We can write

programs producing queries that cannot be

specified using relational algebra

 We focused on relational algebra specified

using SQL syntax, as this is more important in

practice

 The other, “more mathematical” notation came

first and is used in research and other venues,

but not commercially

115

Agenda

1 Session Overview

4 Summary and Conclusion

2 Relational Algebra and Relational Calculus

3 Relational Algebra Using SQL Syntax

116

 Summary

 Relational algebra and relational calculus are formal

languages for the relational model of data

 A relation is a set of rows in a table with labeled columns

 Relational algebra and associated operations are the

basis for SQL

 These relational operations define an algebra

 Relational algebra is not universal as it is possible to write

programs producing queries that cannot be specified

using relational algebra

 Relational algebra can be specified using SQL syntax

 The other, “more mathematical” notation came first and is

used in research and other venues, but not commercially

117

Assignments & Readings

 Readings

» Slides and Handouts posted on the course web site

» Textbook: Chapters 6

 Assignment #3

» Textbook exercises: Textbook exercises: 9.3, 9.5, 10.23, 6.16, 6.24, 6.32

 Project Framework Setup (ongoing)

http://www.amazon.com/gp/reader/0136086209/ref=sib_dp_kd

118

Next Session: Standard Query Language (SQL) Features

 SQL as implemented in commercial

databases

119

Any Questions?

