
Relational

Database Systems 1

Wolf-Tilo Balke,

Jan-Christoph Kalo, Florian Plötzky,

Janus Wawrzinek and Denis Nagel
Institut für Informationssysteme

Technische Universität Braunschweig

www.ifis.cs.tu-bs.de

• JDBC
– Prepared Statements

– Transactions

– SQL Injection

• Active Databases
– Integrity constraints

– Triggers

– Complex Database Programs
• User-Defined Functions

• Stored Procedures

• Basic security
– Access control

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 2

12 Application Programming 2

• Basic steps when working with JDBC

1. Load the driver

2. Define a connection URL

3. Establish a connection

4. Create a statement(s)

5. Execute a statement(s)

6. Process the result(s)

7. Close the connection

Relational Database Systems 1 – Christoph Lofi – Institut für Informationssysteme – TU Braunschweig 3

12.1 JDBC

1

23

• When performing a simple statement, roughly the following
happens
– the statement is composed in your app using String

manipulation

– the SQL String is wrapped and send to the database via the
JDBC driver

– the DBMS parses and checks the statement

– the DBMS compiles the statement

– the DBMS optimizes the statement and tries to find the best
access path

– the statement is executed

• When you execute the same/similar statement multiple
times, all those steps are performed for each single
statement

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 4

12.1 JDBC: Prepared Statements

• To avoid unnecessary overhead, prepared

statements may be used

• Prepared statements use parameterized SQL

– use ? as markers for parameters

– example:

• SELECT * FROM heroes WHERE id = ?

• generic SQL query for retrieving an hero by it’s ID

– Prepared Statements may either be used for queries

or for updates / DDL operations

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 5

12.1 JDBC: Prepared Statements

? Blah ?

• Prepared Statements use the following workflow

– when creating a (parameterized) prepared statement,

it is wrapped, sent to the DBMS, parsed, checked, and

optimized

• only once for any number of execution

– each time it is executed, the values for the parameters

are transferred to the DBMS and the statement is

executed

– performance may be significantly

higher compared to using dynamic statements

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 6

12.1 JDBC: Prepared Statements

• To supply values for the placeholders, use
setX(number, value) methods
– like for the get and update methods, there are set methods for

any data type
• placeholders are referenced by the position in the SQL string starting

with 1

– After all placeholders are filled, you may call
• executeQuery() for queries returning a ResultSet

• executeUpdate() for update/DDL statements return the number
of affected rows

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 7

12.1 JDBC: Prepared Statements

PreparedStatement moviesInYears = conn.prepareStatement(
"SELECT * FROM movies WHERE releaseDate=>? AND releaseDate=<?"

);
for(int i=0; i<10; i++) {
moviesInYears.setInt(1, 1990+i*2);
moviesInYears.setInt(2, 1991+i*2);
ResultSet rs = moviesInYears.executeQuery();
// … do something

}

• Of course, you can use transactions within

JDBC

– transactions are normally disabled by default (

depending on the DBMS)

• "auto-commit"-mode is normally active

– use setAutoCommit(boolean switch) to

change transactional behavior

• true: Every statement is executed immediately

• false: Statement execution is held back

until COMMIT is called

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 8

12.2 JDBC: Transactions

• When transactions are enabled, any number of
statements is considered as one transaction until
it is committed or canceled

– to commit a transaction use
• conn.commit()

– you may also create save points
• conn.setSavepoint(String savepointName)

– to roll back use
• conn.rollback()

• or conn.rollback(String savepointName) to
return to a given safe point

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 9

12.2 JDBC: Transactions

conn.setAutoCommit(false);

PreparedStatement changeNameStmt = conn.prepareStatement(
"UPDATE hero SET name=? WHERE name=?"

);

changeNameStmt.setString(1, "Jean Grey-Summers");
changeNameStmt.setString(2, "Jean Grey");
changeNameStmt.executeUpdate();

changeNameStmt.setString(1, "Scott Grey-Summers");
changeNameStmt.setString (2, "Scott Summers");
changeNameStmt.executeUpdate();

conn.commit();

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 10

12.2 JDBC: Transactions

• Wrong usage of JDBC can cause security
problems, e.g. SQL injection

• SQL injection is a security vulnerability
of an application using an SQL database

• Characteristic

– user input is directly embedded into an
SQL statement without further checking

– user is able to extend the SQL statement
or even inject completely new ones

– thus, data may be corrupted,
deleted, or stolen

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 11

12.3 SQL Injection

• Example scenario

– A web interface asking for

a username and a password.

– following statement is used to authenticate the user:

– the application simply inserts the user input into the

SQL string (using string concatenation)

– if there is the given username/password combination,

the application proceeds to the protected member area

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 12

12.3 SQL Injection

String s = "SELECT * FROM users " +

"WHERE username = '" + user + "'" +

"AND password = '" + passwd + "';"

• Possible attacks

– authenticate as admin

• username = admin

• password = ' OR 1=1 '

– drop the user table

• username = admin

• password = '; DROP TABLE users; --

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 13

12.3 SQL Injection

SQL comment

SELECT * FROM users WHERE username = 'admin'

AND password = '' OR 1=1'';

SELECT * FROM users WHERE username = 'admin'

AND password = ''; DROP TABLE users; --';

– even worse – capture the whole system!

• some DBMS systems provide stored procedures to access

the underlying operating system itself (e.g. MS SQL)

• '; EXEC xp_cmdshell 'format c: /s';

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 14

12.3 SQL Injection

• What hackers usually do
– hackers usually don’t know the queries,

tables, and inner workings of applications
• vulnerabilities need to be discovered

– start with entering information containing any
SQL control characters (e.g. ')
• if this results into an error,

the application is potentially prone to injection attacks

– inject SQL code in order to guess the structure of the
tables and columns, and also the security boundaries of
the system
• observe the error codes to validate your guesses

– as soon as the extend of the vulnerability data schema is
known, data can be freely manipulated or stolen

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 15

12.3 SQL Injection

• How to prevent injection attacks?

• Sanitize the input!

– restrict all user input to only safe characters

(i.e. remove control characters)

– will also delete characters which might be needed in

the input (e.g. ')

– won’t protect you in case of integer values

• … WHERE id = 17 OR 1 = 1

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 16

12.3 SQL Injection

• Quote and escape the input
– escape all control characters

• this might be quite tricky and often depends on the DBMS
– e.g. backslash is not a special character in DB2 but in MySQL it is used

as default escape character

• most database APIs provide special functions for quoting and
escaping
– e.g. mysql_real_escape_string() in PHP

– example:
input: \'; DROP TABLE users; --
escaped:

WHERE email = '\\\'; DROP TABLE users; --'

– Notice: for DB2 this would not work:
WHERE email = '\\\'; DROP TABLE users; --'

• dedicated escape procedures for each DBMS are needed

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 17

12.3 SQL Injection

• Use strongly typed parameters

– cast/parse each user input to its intended data type

• prevents e.g. integer input with injected code

• together with sanitized input or escaping and quoting,

typing provides a acceptable minimum amount of protection

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 18

12.3 SQL Injection

String s = readUserInput();

try {

Integer.parseInt(s);

} catch (NumberFormatException ex) {

// respond to invalid input

}

• Use prepared statements

– the structure of a prepared

statement is fixed

• user input is just data and cannot

change the predefined statement

structure

– simplest and most secure way to sanitize your input

– besides the security benefit, prepared statements may also

increase your query performance

– BEST SOLUTION – USE PREPARED STATEMENTS!

• If you do not use prepared statements in an application, have a good

reason for that!

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 19

12.3 SQL Injection

σpassword=%1

equal

password %1

• Isolate your Web/DB server

– put your servers in a secure DMZ (DeMilitarized Zone)

• even if the attacker is able to completely capture the machine,
he/she won’t be able to do much harm

• Restrict your error reporting

– many programming frameworks are by
default configured into developer mode

– on failure, they report in detail what went wrong

• e.g. display the faulty query and excerpts from the call hierarchy
or the DB schema

• this information is very helpful in finding security vulnerabilities,
so don’t give it to your foes!

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 20

12.3 SQL Injection

• MySQL and PostgreSQL
– very good open source RDBMS

• server-client architecture

– also good for practicing
• with a little bit more administrative overhead

– recommended if you need a fully featured RDBMS for an
application

– MySQL
• comes with a set of storage engines

– MyISAM: no ACID, no fail recovery, no
foreign keys but fast!

– InnoDB: ACID compliant, referential integrity,
etc. but slower.

– NDB Cluster: in-memory DB

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 24

Recommended DB Software

• MySQL and PostgreSQL

– PostgreSQL

• more serious implementing the

SQL standard

• architecture closer to database

theory

• used to be slower than MySQL, but

performance and scalability increased dramatically in the last

years

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 25

Recommended DB Software

• H2 and SQLite
– light weight and fast RDBMS

• recommended, if a server-client
architecture is not needed
– no shared data among applications

– no remote/distributed data access needed

– H2
• pure Java (and only available for Java)

• also capable of in-memory storage

– SQLite
• Integrated in Android!

• available for a large number of programming languages
– currently 37 languages, covering C, C#, C++, Haskell, Java, JavaScript,

Lua, Perl, PHP, Python, R, Ruby, Visual Basic and many more...

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 26

Recommended DB Software

• SQLite Browser

– ideal for practicing SQL

– download from http://sqlitebrowser.org/

– create or load

a database file

and start using

SQL!

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 27

Recommended DB Software

• JDBC
– Prepared Statements

– Transactions

– SQL Injection

• Active Databases
– Integrity constraints

– Triggers

– Complex Database Programs
• User-Defined Functions

• Stored Procedures

• Basic security
– Access control

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 28

12 Application Programming 2

• There is a growing need for databases that

can actively manipulate their data

– in particular, the first wave of object databases

encouraged many RDBMS vendors to provide

active functionalities within their systems

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 29

12.5 Active Databases

• Active databases are RDBMS that can

– recognize predefined situations and

– respond to those situations with

individual predefined actions.

• Initially proposed by S. Ceri

and J. Widom in 1990

– Deriving Production Rules for Constraint Maintenance.

In 16th International Conference on Very Large Data

Bases, Brisbane, Australia,1990.

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 30

12.5 Active Databases

• Active databases allow programmers and admins

to enhance the functionality of the DBMS

by defining

– constraints

– triggers

– user-defined data types (UDTs)

– user-defined functions (UDFs)

– stored procedures

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 31

12.5 Active Databases

• Most of these active extensions started as

proprietary technologies

– the exact syntax strongly differs

among database vendors

• Some of them have been

standardized in SQL

– constraints and assertions

– triggers

– procedural statements

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 32

12.5 Active Databases

• JDBC
– Prepared Statements

– Transactions

– SQL Injection

• Active Databases
– Integrity constraints

– Triggers

– Complex Database Programs
• User-Defined Functions

• Stored Procedures

• Basic security
– Access control

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 33

14 Active Databases

• The original aim of active components in

database systems was to respond to attempted

violations of integrity constraints

– integrity constraints describe

• what is a valid database state

• how to make valid transitions between database states

– examples

• primary/foreign key constraints

• data types and domains

• CHECK conditions in SQL

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 34

12.5 Integrity Constraints

• Types of constraints include

– static integrity constraints

• bound to a single DB state (e.g. data types, key constraints)

– dynamic integrity constraints

• transitional integrity constraints are bound to

a change of the DB state (e.g. update, insert, delete)

• temporal integrity constraints are bound to

a sequence of DB states (e.g. transactions, periodical checks)

• Some constraints may be difficult to evaluate and

require predicate logic for specification

– Master Course:

Knowledge-Based Systems and Deductive Databases

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 35

12.5 Integrity Constraints

• An integrity constraint is called

– local, if it only concerns a single relation

• e.g. value domains, data types of attributes

– global, if more than one relation is concerned

• e.g. foreign keys

– implicit, if it is a consequence of the data model

• e.g. data types of attributes

– explicit, if it is not implicit, but can be expressed in DDL

• e.g. primary key

– external, if it is neither implicit, nor explicit

• e.g. semantic check clauses

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 36

12.5 Integrity Constraints

• Constraints (or assertions) are conditions which

have to be true for all data in the database instance

– we already introduced constraints briefly (SQL)

• Constraints may be defined

– explicitly by the CREATE CONSTRAINT statement

– implicitly within the DDL table/column definition

(CREATE TABLE … CHECK …)

• An SQL statement is executed only if

it does not result in a constraint violation

– usually critical: insert, delete, and update operations

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 37

12.5 Defining Constraints

• Summary of constraint types:

– data type constraint,
NOT NULL constraint,
UNIQUE constraint
• usually within column definition

– primary key constraint (key integrity)
• usually within table or column definition

– foreign key constraints (referential integrity)
• usually within table or column definition

– check constraints
• support any arbitrary complex condition expressible in SQL

• usually defined explicitly or within a table definition

– informational constraints
• this type of constraint is not enforced

• used by the query optimizer to better understand the data

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 38

12.5 Defining Constraints

• Example:

Aliases of superheroes

– data types, primary key,

foreign key, check clause

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 39

12.5 Defining Constraints

CREATE TABLE has_alias (
hero_id INTEGER REFERENCES hero

ON DELETE CASCADE ON UPDATE CASCADE,
alias VARCHAR(100) NOT NULL,
PRIMARY KEY (hero_id, alias),
CONSTRAINT no_silly_alias CHECK (alias <> ’Stupid Man’)

)

• Constraints are used to enforce valid DB states

by rejecting all operations resulting in

invalid DB states

– simple and robust tool for enforcing

some basic (static) constraints

• But invalid DB operations cannot be repaired

depending on the type of constraint violation

– example: If a tuple in some insert statement refers to a

non-existing foreign key, why not simply add the respective

foreign key before the insert is committed?

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 40

12.5 Constraint Definitions

• JDBC
– Prepared Statements

– Transactions

– SQL Injection

• Active Databases
– Integrity constraints

– Triggers

– Complex Database Programs
• User-Defined Functions

• Stored Procedures

• Basic security
– Access control

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 41

12 Application Programming 2

• We will cover three main technologies for

executing code on server side

– triggers

• a trigger is automatically executed by the DBMS

when a predefined event occurs

– UDFs (user-defined functions)

• a UDF can used in any SQL statement as a function

(similar to MIN, MAX, and COUNT)

– stored procedures

• a stored procedure can be executed using

SQL’s CALL statement (also, parameters may be specified)

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 42

12.5 Server-Side Code

• Triggers link user-defined actions

to standard database operations

– whenever a certain DB operation is

performed, the trigger fires

– very helpful to implement

dynamic integrity constraints

– each operation can have assigned several triggers

• sequence of execution is usually non-deterministic

– several triggers can fire within a transaction

– again, different vendors use different syntax…

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 43

12.6 Triggers

• Standardized in SQL:1999

• Some DBMS offer native extensions
to SQL for specifying the triggers

– examples:
PL/SQL (Oracle), Transact SQL (MS SQL Server)

• Some DBMS allow the use of
general purpose programming languages

– examples: Java (Oracle, DB2), C#/VB (MS SQL Server)

• Some DBMS use an extended trigger concept

– example: triggers on views (Oracle)

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 44

12.6 Triggers

• Triggers implement the event-condition-action model

– triggers are active rules
• typical syntax: ON <event> IF <condition> DO <action>

– events activate a rule
• usually, triggers are fired upon data modifications

• in general, it may be any external event

– the condition determines whether the action is executed
• optional; contains a Boolean expression

– the action is executed for every event satisfying the condition
• usually, this is done as a series of SQL (update) statements

within the same transaction as the triggering event

• but an action may also be the call of an external program

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 45

12.6 Triggers

Event Condition Action

• Types of events include

– timed events

• absolute, relative, or periodic

– database events

• begin/end of some insert, delete, or update statement

– DBMS events

• DDL commands

• transaction events: begin, commit, or abort

• changes in user accounts, or access control

• Today’s commercial databases typically
support triggers only for database events

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 46

12.6 Triggers

• What to use triggers for?

– auditing table operations

• write a protocol of each data access

– tracking record value changes

• write a modification log and archive all previous data

– preserving a database’s referential integrity

• retaining referential integrity by actively changing

all affected records

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 47

12.6 Triggers

– maintenance of semantic integrity

• Example: When a super villain is caught,

all henchmen should become unemployed.

– storing derived data

• customized update of materialized views

• computing complex aggregations that

cannot be expressed easily using pure SQL

– access control

• checking user privileges when accessing

sensitive information

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 48

12.6 Triggers

• When creating a trigger, the following
information needs to be specified

– trigger name

• triggers use qualified names within a given schema

– trigger event

• trigger events may either monitor row updates
(ON INSERT/ ON DELETE) or column updates (ON UPDATE)

• a trigger gets attached to the table mentioned in the event

– activation time

• the trigger can be activated either before or after
the event occurred

• BEFORE or AFTER keywords

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 49

12.6 Triggers

– granularity

• a trigger’s actions may be executed

per statement (statement trigger) or

per row (row trigger)

• per statement

– default

– the whole body is executed once per event

– FOR EACH STATEMENT keyword

• per row

– the body is executed once per affected row

– FOR EACH ROW keyword

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 50

12.6 Triggers

– transition variables

• optional

• often triggers need access to the updated

(new and old values), deleted, or added data

• REFERENCING clause

• there are four types of transition variables:

– old row (OLD):

references the modified row before the triggering event

– new row (NEW):

references the modified row after the triggering event

– old table (OLD_TABLE):

references the table as it was before the triggering event (read-only)

– new table (NEW_TABLE):

references the table as it is after the triggering event

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 51

12.6 Triggers

• Not all combinations of trigger events,

activation times, granularities, and

transition variables are possible

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 52

12.6 Triggers

Event and time ROW TRIGGER STATEMENT TRIGGER

BEFORE INSERT NEW

BEFORE UPDATE OLD, NEW

BEFORE DELETE OLD

AFTER INSERT NEW, NEW_TABLE NEW_TABLE

AFTER UPDATE OLD, NEW,
OLD_TABLE, NEW_TABLE

OLD_TABLE , NEW_TABLE

AFTER DELETE OLD, OLD_TABLE OLD_TABLE

– trigger condition

• optional

• WHEN clause

• use any Boolean expression

(as in SQL’s WHERE clause)

– trigger body

• can be any number of SQL statements,

separated by semicolon

• embedded into a BEGIN-END block

• some DBMS also allow calling code

written in other languages or even binary programs

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 53

12.6 Triggers

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 54

12.6 Triggers

CREATE TRIGGER trigger name

CREATE TRIGGER STATEMENT

BEFORE

AFTER

INSERT

UPDATE

DELETE

OF column name

,

ON table name

REFERENCING NEW

OLD

NEW_TABLE

OLD_TABLE

AS

transition variable

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 55

12.6 Triggers

FOR EACH STATEMENT

FOR EACH ROW WHEN ()condition

triggered SQL statement

BEGIN triggered SQL statement END;

• Example

– a DB storing the current location of things and heroes

– trigger: As soon as Superman comes near kryptonite,

delete him!

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 56

12.6 Triggers

CREATE TRIGGER kill_superman
AFTER UPDATE OF location ON heroes
REFERENCING NEW AS hn
FOR EACH ROW
WHEN hn.name = ’Superman’

AND EXISTS(SELECT * FROM stuff s
WHERE s.name = ’Kryptonite’

AND s.location = hn.location)
BEGIN

DELETE FROM heroes h WHERE h.id = hn.id;
END

• The previous example is standard SQL:1999

– it won’t necessarily work on all DBMS

– example DB2:

• replace BEGIN by BEGIN ATOMIC
– or just don’t use BEGIN-END at all

• add MODE DB2SQL before WHEN

– read the technical documentation of your DBMS!

• There are some prototype implementations

for active databases based on ECA rules,

thus also supporting a larger group of events

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 57

12.6 Triggers

• Trigger execution order

1. Execute all BEFORE STATEMENT triggers

2. Temporarily disable all integrity constraints defined
on each affected table

3. Loop for each row in the table

1. Execute all BEFORE ROW triggers

2. Execute the SQL statement against the row and
perform integrity constraint checks of the data

3. Execute all AFTER ROW triggers

4. Complete deferred integrity constraint checks
on the table

5. Execute all AFTER STATEMENT triggers

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 58

12.6 Triggers

• Trigger chaining
– when using triggers, the actions of one

trigger might activate another trigger
• that trigger may actually activate even more triggers

– it is very easy to lose track of what happens…

– you need to be very careful here!

• Recursive triggers
– special case of chaining: A trigger activates itself again

– it is easy to create infinite loops

– even if you do not create infinite loops,
most DBMS don’t handle this too well
• Example: DB2 aborts with a TOO COMPLEX error,

if a trigger activates itself more than once.

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 59

12.6 Triggers

• JDBC
– Prepared Statements

– Transactions

– SQL Injection

• Active Databases
– Integrity constraints

– Triggers

– Complex Database Programs
• User-Defined Functions

• Stored Procedures

• Basic security
– Access control

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 60

12 Application Programming 2

• Next, we will introduce two flavors of

complex database programs

– Stored Procedures

– User-Defined Functions (UDFs)

• Both reside within the DBMS and

may be called explicitly

– exchange of information possible via input and/or

output parameters and result sets

– application programmers and users may

define and create those database programs

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 61

12.7 Complex Database Programs

• Stored procedures are called directly

by the application or by other procedures

– CALL removeInactiveHeroes(00200000)

• UDFs can be used within any SQL statement

as a functional expression

– SELECT *
FROM villains v

WHERE notoriety(v.id) > 100

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 62

12.7 Complex Database Programs

• What are possible advantages?

– move parts of program logic (code!) to the server

– improve application performance by
reducing client/server communication

• database program is executed in the DBMS

– control access to database objects

• database programs can be used instead of queries,
thus enabling fine-grained access control

– integrate some non-database functionality
into the DBMS

– readability and reliability of common, complex queries
can be increased by encapsulation of some functionality

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 63

12.7 Complex Database Programs

• What problems can you encounter?
– database server may end up being

a performance bottleneck

– writing database programs disturbs your
usual application development and deployment process
• they are usually written in a different language

• they have to be installed and registered with the DBMS

– database programs can be tricky to debug
• it can be cumbersome to get debug information from DBMS

• your normal debugging environment may not work

• there may be complex dependencies among DB programs

– you can easily lose track of your database programs
and versions
• they reside outside your normal source control programs

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 64

12.7 Complex Database Programs

• DB2 offers three kinds of stored procedures

– SQL stored procedures

• directly written in procedural SQL as defined by SQL:1999

– external stored procedures

• written in one of the many higher programming languages

supported by DB2

– e.g. C, CL, RPG, Cobol, ...

– Java stored procedures

• actually, they are also external stored procedures

• due to the different implementation and

deployment mechanics, they are treated as an extra case

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 65

12.7 Stored Procedures in DB2

• Stored procedures

– defined by the CREATE PROCEDURE statement:

CREATE PROCEDURE name

(list of input and output variables)

Procedure properties

Procedure body

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 66

12.7 Stored Procedures in DB2

interface variables

e.g. programming language,
IO properties, ...

e.g. list commands in SQL or an
external method written in Java

• Example: Modify data using SQL

– create a new table numbers

• containing all numbers between 0 and x

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 67

12.7 Stored Procedures in DB2

CREATE PROCEDURE create_numbers

(IN x INTEGER)

LANGUAGE SQL

MODIFIES SQL DATA

BEGIN

DECLARE v_counter INTEGER DEFAULT 0;

CREATE TABLE numbers (num INTEGER);

WHILE v_counter < x DO

INSERT INTO numbers VALUES (v_counter);

SET v_counter = v_counter + 1;

END WHILE;

END

• DB2 also allows to create stored procedures
written in Java
– DB2 comes with its own Java Virtual Machine

– class files containing the procedure can be uploaded and
bound to the DBMS

– a single Java class can define multiple stored
procedures

– classes have to inherit from StoredProc
• provided by DB2’s JDK

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 68

12.7 Stored Procedures in DB2

CREATE PROCEDURE get_random_number

(OUT number double)

LANGUAGE JAVA

PARAMETER STYLE JAVA

EXTERNAL NAME 'ifis.SomeJavaStoredProcedures!getRandomNumber';

• SPs are usually used to manipulate data

• User Defined Functions are functions

that can be used in SQL statements

– implement a grouping function for

standard deviations, medians, etc.

– create a function returning the number

of days passed since your birthday

– return the response of a web service,

the parsed content of a text file, etc.

• There are two types of UDFs

– scalar functions returning just a single value

– table functions returning a whole table

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 69

12.7 User-Defined Functions in DB2

• UDFs

– Defined by the CREATE FUNCTION statement

CREATE FUNCTION name

(list of input parameters)

Returns

Function properties

Routine body

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 70

12.7 User-Defined Functions in DB2

name and type of
input variables

type of output

programming language,
optional interpreter hints, ...

SQL commands
or external call

• Example: Simple function with scalar return value

• Example: Simple function with tabular return value

• External UDFs (in Java, C, Cobol, ...) are also possible

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 71

12.7 User-Defined Functions in DB2

CREATE FUNCTION display_name

(firstname VARCHAR(50), lastname VARCHAR(50))

RETURNS VARCHAR(100)

LANGUAGE SQL

SPECIFIC displayName01

DETERMINISTIC CONTAINS SQL

RETURN firstname || ' ' || lastname;

CREATE FUNCTION alias_of(heroname VARCHAR(50))

RETURNS TABLE(alias VARCHAR(50))

LANGUAGE SQL

SPECIFIC alias_of_01

READS SQL DATA

RETURN

SELECT alias FROM aliases a, heroes h

WHERE a.hero_id = h.id AND h.name = heroname

• JDBC
– Prepared Statements

– Transactions

– SQL Injection

• Active Databases
– Integrity constraints

– Triggers

– Complex Database Programs
• User-Defined Functions

• Stored Procedures

• Basic Security
– Access control

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 72

12 Application Programming 2

• A major concern in databases is data security

– remember: views can be used for restricting
the data access of some application

• e.g. Salaries of employees are not shown in staff listing.

• of course, this works only if the original table
cannot be accessed by the application

– a basic mechanism to enforce
access rights to data is so-called
discretionary access control

• grants privileges to users, including the
capability to access specific data files,
records, or fields in a specific mode (r/w)

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 73

12.8 Basic Access Control

12.8 Discretionary Access Control

• Discretionary policies require that,

for each user, authorization rules specify the

privileges granted on the database objects

– access requests are checked against

the granted privileges

– discretionary means that users

may grant/revoke permissions

(usually based on ownership)

– by grants, access privileges can be

propagated through the system

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 74

12.8 Discretionary Access Control

• The SQL GRANT/REVOKE statement can be
used to grant privileges to users

– GRANT privileges ON table(s)/column(s)
TO grantees [WITH GRANT OPTION]

– REVOKE privileges ON table(s)/column(s)
FROM grantees

• Possible privileges are:

– SELECT: user can retrieve data

– UPDATE: user can modify existing data

– DELETE: user can remove data

– INSERT: user can insert new data

– REFERENCES: user can define foreign keys to the table

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 75

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 76

12.8 Discretionary Access Control

GRANT

ALTER

CONTROL
DELETE
INDEX

INSERT

SELECT

UPDATE
column name

ALL

REFERENCES
()

,

ON table name

view name

TO auth. name
USER

GROUP

ROLE

WITH GRANT OPTION

12.8 Discretionary Access Control

• The WITH GRANT OPTION option permits the

propagation of grant permissions to other users

– allows other users to define permissions

for certain tables

• The list of grantees does not need not be

(a set of) usernames

– it is permitted to specify PUBLIC, which means that

the privileges are granted to everyone

• be very careful with that!

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 77

12.8 Discretionary Access Control

• Checking discretionary access control is often

implemented by an authorization matrix

– the rows represent users

– the columns represent the

database objects

– the fields contain the

respective privileges

• Similar concept in

Windows file security

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 78

• Granting or revoking permissions of users
manually for every possible access is a
very time-consuming task

– more refined concepts of database security exist,
for example role-based access control

• But data security needs more than
simple access control

– authentication:
Is the user really who he/she claims to be?

– concepts are discussed in detail in master course
Relational Databases 2

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 79

12.8 Discretionary Access Control

Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 80

13 Next Lecture

• Persistence

– Object Persistence

– Manual Persistence

– Persistence Frameworks

• Generating IDs

• Persistence Frameworks

• Object Databases

