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R E L A T I O N S H I P  B E T W E E N  D E F O R M A T I O N - R E L A X A T I O N  

AND H E A T - A N D - M A S S - T R A N S F E R  P R O C E S S E S  IN T H E  

DRYING OF C A P I L L A R Y - P O R O U S  BODIES  

Ya. I. Sokolovskii UDC 539.372 

In the convection drying of capillary-porous bodies with coupled heat and mass transfer, the bodies undergo 
deformation because the specific volume of the constituent material depends on temperature and humidity. In the high-rate 
treatment of such bodies by heat and moisture, the attendant change in their volume due to mechanical stresses can lead to 

partial or complete failure of the material. In turn, the deformation also has a certain effect on heat and mass transfer. Thus, 
the optimization of many hydrothermal technologies is closely allied with study of the relationship between deformation- 

relaxation and heat-and-mass-transfer processes. A general approach was proposed in [7, 10] for describing the effect of heat 

and mass transfer on the stress- strain state of solids within the framework of the theory of small elastoplastic strains. Coupled 

equations of thermoviscoelasticity were derived as part of the basic research reported in [4, 5, 6]. Diffusion processes in a 

viscoelastic body undergoing deformation were examined in [11]. 
In this investigation, we proceed on the basis of the thermodynamics of irreversible processes to derive general 

equations describing coupled deformation-relaxation and heat-and-mass-transfer processes with allowance for failure during the 

drying of capillary-porous bodies. 
To do this, we examine free energy [2] as the main thermodynamic potential of a system which undergoes changes 

in temperature and volume 

a r  = d L  + d,~ 2. (1) 

Here, dF t is the change in free energy as a result of heat and mass transfer 

dF~ = - S d T  + P o l ~ d U ,  (2) 

S is the entropy of a unit volume V; T is temperature; U is moisture content; tt is chemical potential; Po is the density of the 
substance when it is completely dry; dF 2 is the change in free energy during deformation and failure 

d F  2 = ~ d e  e + p=~dWm, (3) 

oij and eij are the components of the stress and strain tensors, respectively; r are the components of the damage tensor; r 

- ; p o / ~ =  ; 
0 ,  t t j  . Wnm T . t i j  , a~nm 

a. ; ~~ = O " 
T ' U ' ~ n m  ' ' i j  

is the corresponding potential. 
It follows from Eqs. (1-3) that 

(4) 

We represent the relative change in a unit volume of the material due to heat and mass transfer processes in the form 
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where 

dV V - V o  

1 OV 1 OV 1 #V 
% = 3 V  o o r ;  r  oo-E;  Y = 3 v  o o r I  (5) 

are the coefficient of  linear expansion, expansion factor, and coefficient of  structural expansion; II  is the volume of  the damages 

(pores, cracks, etc.); the subscript "0" denotes the corresponding characteristics of  the material in the equilibrium state. 

In accordance with [1, 9], we describe the damage tensor 60nm by means of  a single parameter l = H/ I I  o. Then ~nm 

= l when n = m and own = 0 when n # m. 

For relatively small elastic and viscoelastic strains, free energy can be expanded into a series in the neighborhood of 

the undeformed states F(T, U, l 0) in the invariants I l , 12 of the principal values of  the strain tensor [4]. Here,  l o is the damage 

in the undeformed material. In a special case, we can take/o = 1 for eij = 0. 

We thus have 

OF o OF o I, 2 02Fo 
F= F~ +1'-~-i" + I2-~'-i- + ~'2 01, - - - 7 ,  (6) 

where 

II ~" Eli ' I2 = g'ij Eii" 

Numerical values of  the coefficients of  the expansion can be found on the basis of  Hooke 's  empirical laws and the 

expansion of  the bodies that accompanies the heating and moistening of their materials [4, 10] 

[o r ) O ro aro e O P o = _ d V  3 - - + 2 #  ; =2;  
oI, v o oi ,  2 o i  2 - 2 0 + v ) '  

where # = #(T, U), E = E(T, U), and v = v(T, U) are respectively the shear modulus, elastic modulus, and Poisson's ratio; 

h = Ev/(1 - 2v)(1 + v) is the Lain6 constant. To generalize Eq. (6) to the case of  viscoelastic strains, we write it in the form: 

F = F o - -  ~ -K-~oe~a +P % -  

_ 1 ~,~ E~ + ~ 

(7) 

where K = ), + 2#/3 is the compressive bulk modulus; 6ij is the unit tensor; 6ij = 1 when i = j; ~Sij = 0 when i # j. 
To further generalize the problem, we isolate the deviatoric part of  the stress and strain tensors by means of the 

formulas rij = oij - 6ijOkk/3, tij = Eij -- cSijeij/3 in Hooke 's  law. This part of  the tensors accounts for the damage to the 

material and heat and mass transfer processes and is obtained from Eqs. (4), (6) 

(8) 

where P is the pressure of  the liquid. 

Thus, by using a differential relation that is linear with respect to time [4], we obtain the following formula to express 

the relationship between the first invariants of  the stress and strain tensors in a rheological model of  viscoelastic bodies that 

is sufficiently general in scope 
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A % = B (% - ~o e~/3  ) + ~o A K e~ - 
(9) 

where A and B are differential operators that are linear with respect to time [4]. 
Resorting to a rheological description of capillary-porous bodies such as wood [12], we use (9) to obtain relations to 

determine the stress-strain state with allowance for heat and mass transfer processes 

O 2 
= E 2 0 ( %  - 6oe**/3) + ~12~-i-i( % - 6 o e . / 3 )  + 

+ 
(!o) 

where E t, F_ a,  */1, and I/2 are the rheological coefficients of wood. The values of these coefficients depend on the temperature- 

moisture conditions and are found experimentally. 

Thus, proceeding on the basis of the thermodynamics of irreversible processes, we have obtained relations to determine 

the thermohydroviseoelastic stress-strain state of capillary-porous bodies in general and wood in particular. 

If convection takes place among the liquid components in a capillary-porous medium, as it typically does in high-rate 

drying operations (drying with high-frequency currents, contact drying, etc.), additional heat and mass transfer occurs in the 

material due to the existence of a gradient of the total pressure of the moist air in the medium. The gradient is the result of 

vaporization of the liquid and the resistance presented by the skeleton of the body to the motion of the vapor. Convection is 

facilitated by the presence of microcapillaries. Molecular infiltration of air into the body from the surrounding medium takes 

place through the system of microcapillaries, and diffusion also takes place in the system. There may therefore be a difference 

between the stresses applied to a unit area of the skeleton of the porous body oSij and a unit area of the liquid a tij that fills the 

pores of the skeleton. The effective stresses on a unit area are equal to [10] 

% = o , ~ 0  - ~) +%~, 

where ~ is the volume fraction of liquid in the body. 

In the general case, determination of the stress tensor dij entails solving a problem of fluid flow. If the velocity of the 

liquid in the pores of the given capillary-porous body is low and inertial forces can be ignored compared to viscous and 

pressure forces, then the stress tensor dij becomes part of the fluid pressure P and the motion of the fluid is described by the 

corresponding filtration equation. In terms of structure, this equation is analogous to the equations that describe heat conduction 

and diffusion. 

Proceeding on this basis, we can write the following to account for the additional stresses due to the action of excess 

pressure in the wood 

0I  = ~ P -  ~ +~  v o' 

where the quantity ~ can be determined from the following relation on the basis of the change in pressure and the corresponding 

change in specific volume Avp at T = const and U = const 

Av 
~ _ ..__.__.e_ 

_ 3VoV~,  +3~1. 
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In addition to generalizing relations (8), (10), we use (4) and (6) to determine the values of chemical potential, entropy, 

and damage potential. 
In accordance with the formula that determines heat capacity at constant volume in the absence of strains [10], the free 

energy function can be represented in the form 

~" T C 

, to=-  f dT f TdT. 
r o r o 

We should note that S = 0 and F = 0 when eij = 0 and T = T o. 

We then have 

,s- T d T + e ~ - ~  Vo ~+; t ) -~P  - - 
r ~ ,s% aT " 2 r " a - ~ ;  

t v ~ + , , , , 0 o ,  . 

(11) 

(12) 

(13) 

where the components of the tensor (~n are represented in a form analogous to ~0nm 

o ( 0 t o )  = h ,  . = m ;  # m .  

Here, h is determined by the intrinsic properties of the body and its structure. Alternative tensor descriptions of capillary-porous 

bodies were given in [1, 9]. 
In accordance with the law of thermodynamics of irreversible processes, the product of absolute temperature and the 

rate of increase in entropy is equal to the stun of the products of the fluxes and the corresponding thermodynamic forces [2]. 

Thus, the energy and mass transport equations for the high-rate drying of moist capillary-porous bodies can be written in the 

form of a system of differential equations 

T ~ = div (Art grad T ) + div (Arv grad U ) + 

OU. 
+ div (3.re grad P )  +/~ Po 0 t ' 

OF) = div (~trr grad T ) + div (~trv grad U ) + div (hue grad P ), Ot 

(14) 

where Xij represents the thermophysical coefficients and thermodynamic characteristics of the mass transport process, values 

of these quantities having been presented in [8] for specific systems; p is density. 

If we ignore the terms in Eq. (11) that are of second-order smallness relative to the strain eij, then 

O t - T O t + _ . e u . k - - ~ o  p + 2 - ~  . (15) 

Since c v = pc v (where c v is heat capacity at V = const), then heat-conduction equation (14) will appear as follows 

with allowance for the deformation-relaxation processes that take place during the drying of wood-based materials 

0 T = div (Rrr grad T ) + div (~rv grad U ) + div (~rp grad P ) + P C, T f  
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(16) 

In connection with the change in mass content and volume due to deformation, the density of the moist capillary-porous 

body during drying can be written as 

Off_ OU OPo 
o t  = P 0 - ~ 7 "  + 0 + v )  o t  �9 

Allowing for the change in the density of the solid skeleton in the description of the viscoelastic strains leads to 

quantities of second-order smallness, which allows us to take p = const. Given this assumption and with allowance for (12), 

(14), the mass transport equation for a capillary-porous body undergoing deformation during drying has the form 

OU . 
Po- '~  = div (A~ grad T) + div (2vv grad U) + div (~'ve grad P)  - 

0 ~ * * T 6  - + " d t  

E, qnation (17) accounts for molecular transport of the bound substance under the influence of the gradient of the total 

pressure of the vapor-air  medium in the pores of the body. Convective mass transfer in the medium undergoing deformation 

is described by means of the transport equation 

0 ( a o t 0  = _ d i v  j + I o , ( 1 8 )  
Ot 

where J = -(kpTgrad T = ~,pugrad U + Xppgrad P) is the total filtration flux of the vapor-air  mixture and vapor 
interdiffusion; J0 = -P0eOU/a0 is the volumetric capacity of the vapor sources; e is the phase transformation criterion, equal 

to the ratio of the absolute total vapor flow to the sum of the absolute flows of vapor and liquid. 
The mass of the capillary-porous body per unit volume will be expressed through total porosity, which is a variable 

quantity due to the deformation that occurs in the body 

I OU O P  . P OH 
(19) 

where c M is the specific content of vapor-gas moisture (the capacity of the capillary body in terms of moist air); II-l(3II/&) 
is the relative rate of change in total porosity, equal to the rate of deformation of a unit volume of the system, i.e., 

IT - o t "  

form 

With allowance for deformation, the equation that describes convective heat and mass transfer can be written in the 

OP 
dt  

- -  = div (2rr grad T ) + div (,ira grad V ) + 

e OU p 0 * a .  
+ div 0pc grad P ) c B 0t dt 

(20) 

In order to completely describe coupled deformation-relaxation and heat-and-mass-transfer processes at the internal 
points of a capillary-porous body, system (9) (or system (10), (16)-(17), (20), in the case of wood) must be supplemented by 

the equations of motion 

O2ui 
cr + X , = p ~  (21) 

ii,j Ot ~ ' 
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and the relations between the strains and the displacements 

( + % )  
Eij ~" Cji ~ Ui, j 

where u i are the components of the displacement vector; X i a r e  projections of the body force. 

Inserting (9) into (21) and taking the last formulas into account, we obtain a system of scalar equations of nmtion in 
displacements 

V - V I 02u  0 i 
I B(u"tk  + u~k i /3 )  - K A  uk'~" -Vo ' + X = p  Ot z . (22) 

Thus, system of differential equations (9), (16)-(17), (20), and (21) or (22) describes coupled deformation-relaxation 
and heat-and-mass transfer processes in viscoelastic capillary-porous bodies. Third-order heat-and-mass-transfer boundary 
conditions and the initial conditions T(X, t) = T0(X), U(X, t) = Uo(X) (where x is the position vector of a point of the body) 

for the drying of capillary-porous bodies must be assigned in order to solve the system. The specific form of the conditions 
depends on the drying methods and regimes that are used [8]. The boundary conditions for deformation can be assigned in 
displacements or in stresses by the classical method. In the special case when the thermodynamic potentials associated with 
heat and mass transfer are absent, the resulting system leads to the equations of the classical theory of viscoelasticity [4]. If 
the components of the stresses and the displacements are equal to zero, we obtain the heat and mass transfer equations proposed 
by A. V. Lykov [8]. 
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