Chapter 5 – Relationships within Triangles

In this chapter we address three **Big IDEAS**:

1) Using properties of special segments in triangles

2) Using triangle inequalities to determine what triangles are possible

3) Extending methods for justifying and proving relationships

Section:	5 – 1 Midsegment Theorem
Essential Question	What is a midsegment of a triangle?

Warm Up:

Key Vocab:

Midsegment of a	A segment that connects the midpoints of two sides of the triangle.	M
Triangle	Example: $\overline{MO}, \overline{MN}, \overline{NO}$ are <i>midsegments</i>	

Show:

Ex 1: In the diagram of an A-frame house, \overline{DG} and \overline{DH} are midsegments of $\triangle ABC$. Find DG and BF.

Ex 2: In the diagram, $\overline{RS} \cong \overline{TS}$ and $\overline{RW} \cong \overline{VW}$. Explain why $\overline{VT} \parallel \overline{WS}$

 $\overline{RS} \cong \overline{TS}$ and $\overline{RW} \cong \overline{VW}$, so *S* and *W* are the midpoints of \overline{RT} and \overline{RV} , and \overline{SW} is a midsegment of ΔRTV . Therefore, $\overline{VT} \parallel \overline{WS}$ by the *Midsegment Theorem*.

w

R

Try it:

Ex 3: Use $\triangle RST$ to answer each of the following **a.** If If UV = 13, find *RT*.

 $RT = 2 \cdot 13 = 26$

b. If the perimeter of $\Delta RST = 68$ inches, find the perimeter of ΔUVW .

Perimeter_{$\Delta UVW} = <math>\frac{1}{2} \cdot 68 = 34$ inches</sub>

c. If VW = 2x - 4 and RS = 3x - 3, what is VW?

$$2(2x-4) = 3x-3$$

$$4x-8 = 3x-3$$

$$x = 5$$

$$VW = 2(5)-4 = 6$$

Section:	5 – 2 Use Perpendicular Bisectors
Essential Question	How do you find the point of concurrency of the perpendicular bisectors of the sides of triangle?

*Review Definitions for Euler Line Project:

- points of concurrency
- circumcenter
- centroid
- orthocenter

Key Vocab:

Perpendicular Bisector	A segment, ray, line, or plane, that is perpendicular to a segment at its midpoint.	$A \qquad B$ Line <i>n</i> is \perp <i>bisector</i> of \overline{AB}
Circumcenter	The point of concurrency of the three perpendicular bisectors of the triangle	Point <i>C</i> is the <i>circumcenter</i>

Perpendicular Bisector Theorem		
In a plane, if	then	
a point is on the perpendicular bisector of a segment,	it is equidistant from the endpoints of the segment.	
Point C is on the \perp bisector of \overline{AB}	$\overline{AC} \cong \overline{BC}$	

Converse of the Perpendicular Bisector Theorem		
In a plane, if	then	
a point is equidistant from the endpoints of a segment,	it is on the perpendicular bisector of the segment.	
$\overline{AC} \cong \overline{BC}$	Point C is on the \perp bisector of \overline{AB}	

Show:

Ex 1: In the diagram, \overrightarrow{RS} is the perpendicular bisector of \overrightarrow{PQ} . Find *PR*.

Ex 2: In the diagram, \overrightarrow{JM} is the perpendicular bisector of \overrightarrow{HK} .

a. Which lengths in the diagram are equal?

HM = KM; HJ = KJ; HL = KLb. Is *L* on \overrightarrow{JM} ?

<mark>Yes</mark>

Given:	<i>C</i> is on the perp. bis. of \overline{AB}
Prove:	$\overline{AC} \cong \overline{BC}$

Statements	Reasons
1. <i>C</i> is on the perp. bis. of \overline{AB}	1. Given
2. $\overline{AD} \cong \overline{DB}$	2. Def of segment bisector
3. $\overline{CD} \cong \overline{CD}$	3. Reflexive Prop.
4. $\angle ADC$ and $\angle BDC$ are right $\angle s$	4. Def of perp.
5. $\angle ADC \cong \angle BDC$	5. Rt. Angles cong. Thm
$6. \Delta ADC \cong \Delta BDC$	6. SAS \cong Post
7. $\overline{AC} \cong \overline{BC}$	7. CPCTC

Section:	5 – 3 Use Angle Bisectors of Triangles
Essential Question	When can you conclude that a point is on the bisector of an angle?

Key Vocab:

Incenter	The point of concurrency of the three angle bisectors of the triangle.	I
		Point <i>I</i> is the <i>incenter</i> .

Angle Bisector Theorem		
If	then	
a point is on the bisector of an angle,	it is equidistant from the two sides of the angle.	
\overrightarrow{BD} bisects $\angle ABC$	$\overline{DE} \cong \overline{DF}$	
A E	A E	

Show:

Ex 1: Find the measure of $\angle BAD$.

Ex 2: For what value of *x* does *P* lie on the bisector of $\angle A$?

$$x^{2} = -3x + 18$$

$$x^{2} + 3x - 18 = 0$$

$$(x + 6)(x - 3) = 0$$

$$x = -6, x = 3$$

Ex 3: In the diagram, G is the incenter of ΔRST . Find GW.

Statements	Reasons
1. <i>D</i> is on the angle bis. of $\angle ABC$	1. Given
2. Draw $\overline{DE} \perp \overline{AB}$ and $\overline{DF} \perp \overline{BC}$	2. Perp. Post.
3. $\angle DEB$ and $\angle DFB$ are right $\angle s$	3. Def of Perp.
$4. \angle DEB \cong \angle DFB$	4. Right Angles Cong. Thm.
5. $\overline{BD} \cong \overline{BD}$	5. Reflexive Prop.
$6. \angle EBD \cong \angle FBD$	6. Def of ang. bisector
7. $\Delta EBD \cong \Delta FBD$	7. AAS \cong Post
8. $\overline{DE} \cong \overline{DF}$	8. CPCTC

Section:	5 – 4 Use Medians and Altitude
Essential Question	How do you find the centroid of a triangle?

Key Vocab:

Median of a Triangle	A segment from one vertex of the triangle to the midpoint of the opposite side	G C E
Centroid	The point of concurrency of the three medians of the triangle.	D H H $F\overline{DE}, \overline{FG}, \text{ and } \overline{HI} \text{ are medians. Point}C$ is the centroid.
Altitude of Triangle	The perpendicular segment from one vertex of the triangle to the line that contains the opposite side.	N M O
Orthocenter	The point of concurrency of the three altitudes of a triangle.	$\overline{JK}, \overline{LM}, \text{ and } \overline{NP} \text{ are altitudes. Point}$ $\overline{O} \text{ is the orthocenter.}$

Ex 2: Show that the orthocenter can be inside, on, or outside the triangle.

Ex 3: Decide whether *YW* is a *perpendicular bisector, angle bisector, medians,* and/or *altitude.* Name **ALL** terms that apply.

- **a.** $\overline{YW} \perp \overline{XZ}$ Altitude
- **b.** $\angle XYW \cong \angle ZYW$ angle bisector
- c. $\overline{XW} \cong \overline{ZW}$ median

d. $\overline{YW} \perp \overline{XZ}$ and $\overline{XW} \cong \overline{ZW}$ perpendicular bisector, angle bisector, medians, &

<mark>altitude</mark>

- e. $\Delta XYW \cong \Delta ZYW$ perpendicular bisector, angle bisector, medians, & altitude
- **f.** $\overline{YW} \perp \overline{XZ}$ and $\overline{XY} \cong \overline{ZY}$ perpendicular bisector, angle bisector, medians, & altitude

Closure:

- Name the four points of concurrency of a triangle and describe how each is formed.
- 1. Circumcenter-intersection of the perpendicular bisectors
- 2. Incenter-intersection of the angle bisectors
- 3. Centroid-intersection of the medians
- 4. Orthocenter-intersection of the altitudes

Section:	5 – 5 Use Inequalities in a Triangle
Essential Question	How do you find the possible lengths of the third side of a triangle if you know the lengths of two sides?

If	then	
one side of a triangle is longer than another side,	the angle opposite the longer side is larger than the angle opposite the shorter side.	
AC > AB	$m \angle B > m \angle C$	
If	then	
one angle of a triangle is larger than another angle,	the side opposite the larger angle is longer than the side opposite the smaller angle.	
$m\angle B > m\angle A$	AC > BC	

Triangle Inequality Theorem		
The sum of the lengths of any two sides of a triangle is greater than the length of the third side.	AB + BC > AC $BC + AC > AB$ $AC + AB > BC$	

Ex 1: Three wooden beams will be nailed together to form a brace for a wall. The bottom edge of the brace is about 8 feet. One of the angles measures about 86° and the other measure about 35° . What is the angle measure opposite the largest side of the brace?

А.	35°	C.	59°
<mark>B.</mark>	<mark>86°</mark>	D.	96°

Ex 2: A triangle has one side of length 11 and another of length 6. Describe the possible lengths of the third side.

Ex 3: A triangle has one side of length 11 and another of length 15. Describe the possible lengths of the third side.

15 - 11 = 4	Greater then	and loss than 26
15 + 11 = 26	Ofeater than 4	

Section:	5 – 6 Inequalities in Two Triangles and Indirect Proof
Essential Question	How do you write an indirect proof?

Hinge Theorem (SAS	Inequality Theorem)	
If two sides of one triangle are congruent to two sides of another triangle, and the included angle of the first is larger than the included angle of the second,	then the third side of the first is longer than the third side of the second.	
$\overline{AC} \cong \overline{XZ}, \overline{AB} \cong \overline{XY}, \text{ AND } m \angle A > m \angle X$	BC > YZ	

Converse of the Hinge Theorem (SSS Inequality Theorem)		
If two sides of one triangle are congruent to two sides of another triangle, and the third side of the first is longer than the third side of the second	then the included angle of the first is larger than the included angle of the second.	
$\overline{AC} \cong \overline{XZ}, \overline{AB} \cong \overline{XY}, \text{ AND } BC > YZ$	$m \angle A > m \angle X$	

Show: **Ex 1:** Given that $\overline{BC} \cong \overline{DC}$, how does $\angle ACB$ compare to $\angle ACD$?

 $\angle ACB > \angle ACD$ by the SSS Inequality (Hinge Converse) Theorem

Ex 2:

a. If PR = PS and $m \angle QPR > m \angle QPS$, which is longer: \overline{SQ} or \overline{RQ} ?

 \overline{RQ} by the SAS Inequality (Hinge) Theorem

b. If PR = PS and RQ < SQ, which is larger: $\angle RPQ$ or $\angle SPQ$?

 $\angle SPQ$ by the SSS Inequality (Hinge Converse) Theorem

Ex 3: Two runners start together and run in opposite directions. Each one goes 1.5 miles, changes direction, and goes 2.4 miles. The first runner starts due north and runs. 100° towards the east. The other runner starts due south and turns 130° towards the west. Both runners return to the starting point. Which runner ran farther? *Explain*.

Key Vocab:

	A proof in which you prove that a statement is true by first assuming that
Indirect Proof	its opposite is true. If this assumption leads to an impossibility or
	contradiction, then you have proved that the original statement is true.

Key Concept:

How to Write an Indirect Proof:

1. <u>Identify</u> the statement you want to prove. <u>Assume</u> temporarily that this statement is false by assuming that its opposite is true.

2. <u>Reason</u> logically until you reach a <u>contradiction</u>

3. <u>Point out</u> that the desired conclusion must be <u>true</u> because the contradiction proves the temporary assumption <u>false</u>.

Ex 4: Write an indirect proof of the Parallel Postulate: *Through a point not on a line, there is exactly one line parallel to a given line.*

С

- Temporarily assume that *m* and *n* are both parallel to *k* through point *P*.
- By the alternate interior angles theorem, $\angle 3 \cong \angle 1$ and $\angle 3 \cong \angle 2$.
- Then, by the transitive property, $\angle 1 \cong \angle 2$.
- $\rightarrow \leftarrow$ But this statement contradicts that fact that $m \angle 1 > m \angle 2$.
- Therefore, the temporary assumption must be false. Only one line through point P may be parallel to k
- **Ex 5:** Write an indirect proof of the Corollary of the Triangle Sum Theorem. *The acute angles of a right triangle are complementary.*
 - Temporarily assume that $m \angle 1 + m \angle 2 \neq 90^\circ$. This presents two cases:
 - **Case 1:** $m \angle 1 + m \angle 2 > 90^{\circ}$
 - If $m \angle 1 + m \angle 2 > 90^\circ$, then $m \angle C < 90^\circ$ because of the

Triangle Sum Theorem. → ← This contradicts the fact that $\angle C$ is right angle. • Case 2: $m \angle 1 + m \angle 2 < 90^{\circ}$

- If $m \angle 1 + m \angle 2 < 90^\circ$, then $m \angle C > 90^\circ$ because of the *Triangle Sum Theorem*.
 - $\rightarrow \leftarrow$ This contradicts the fact that $\angle C$ is a right angle.
- Therefore, the assumption must be false. $m \angle 1 + m \angle 2 = 90^{\circ}$

Closure:

• Describe the difference between the Hinge Theorem and its Converse.

The Hinge Theorem is also called the SAS Inequality Theorem and it makes a conclusion about the third side of a triangle.

The Converse of the Hinge Theorem is also called the SSS Inequality Theorem and it makes a conclusion about the included angle of a triangle.