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Relativistic Electrodynamics is a field of physics capable of having either an immensely 

complicated or encouragingly simplistic appearance, depending entirely on the particular formulation it 

is presented in. Under the representation which is perhaps familiar to most, systems of equations must 

be solved and manipulated in order to perform basic operations on, and transformations of, the familiar 

electric and magnetic fields of Maxwell’s Equations. With adequate abstraction, however, these systems 

may be reduced to equations of only three to five terms and to operators with well-defined algorithms 

and structures. In particular, the reduction of the aforementioned fields and operators to what is 

commonly referred to as tensor notation, allows for a condensed presentation of some of the most 

fundamental laws of physics.  

While the thought of representing systems of equations illustrating these laws in tensor 

notation may, on inspection, sound a bit daunting to many, there are many arguments to be made for 

this formulation. One such argument is in favor of the sheer reduction of information necessary to be 

presented directly.  For example, under ordinary formulation, Maxwell’s Equations are represented as1: 

𝑖) ∇ ⋅ 𝐄 = α𝜌 

𝑖𝑖𝑖) ∇×𝐄 = −𝛾
𝜕𝐁

𝜕𝑡
 

𝑖𝑖) ∇ ⋅ 𝐁 = 0 

𝑖𝑣) ∇×𝐁 = 𝛽𝐉 +
𝛽

𝛼

𝜕𝐄

𝜕𝑡

This formulation requires four vector equations with intermixed fields and cumbersome coefficients 

which may be different depending on the unit system in which they are derived and presented, as 

indicated by Table 11. 



*A complete derivation of which may be found in Griffiths [2], for movement along the 𝑥 direction, as is assumed here. 

 

 

When one then considers even the most basic of relativistic transformations*, Lorentz contraction, 

where the three component vectors 𝐁 and 𝐄 transform as (assuming relative motion in exclusively the 𝑥 

direction)2: 

𝐸̅𝑥 = 𝐸𝑥 

𝐵̅𝑥 = 𝐵𝑥 

𝐸̅𝑦 = 𝛾(𝐸𝑦 − 𝑣𝐵𝑧) 

𝐵̅𝑦 = 𝛾 (𝐵𝑦 −
𝑣

𝑐2
𝐸𝑧) 

𝐸̅𝑧 = 𝛾(𝐸𝑧 + 𝑣𝐵𝑦) 

𝐵̅𝑧 = 𝛾(𝐵𝑧 −
𝑣

𝑐2
𝐸_𝑦)

each of which must then input to Maxwell’s equations, the desire to condense information becomes 

evident. It should be noted that in the equations above, 𝐸̅𝑛 and 𝐵̅𝑛 represent the transformed 𝑛𝑡ℎ 

component of the respective field, 𝑣 is the velocity relative to some inertial frame, and 𝛾 is the Lorentz 

factor, not the 𝛾 indicated in Table 1 which will henceforth be referred to as 𝛾𝑈.𝑆.* for clarity. To observe 

the extent to which Maxwell’s Equations and basic relativistic operations may be condensed under 

tensor notation, the same system of equations become “simply”1,2: 

𝜕𝐹𝜇𝑣

𝜕𝑥𝑣
= 𝛽𝑈.𝑆.𝐽

𝜇 
𝜕𝐺𝜇𝑣

𝜕𝑥𝑣
= 0

with the entire operation of Lorentz contraction capable of being represented as: 

𝐹̅𝜇𝑣 = Λ  𝜆
𝜇
Λ𝜎
   𝑣𝐹𝜆𝜎 

What were technically 12 equations and 6 equations have respectively been reduced to 2 and 1, a 

remarkable degree of abstraction to be sure.  



A reduced formulation may be desirable for such functions, but such a reduction becomes 

useless if the remaining information is insufficient for efficient and effective problem solving. So, what 

do all of these variables and subscripts mean? 𝐹𝜇𝑣 is a second rank, antisymmetric tensor referred to as 

the Field Tensor. Basically, it’s a 4×4 matrix of values pertaining to 𝐄 and 𝐁. 𝐺𝜇𝑣, referred to as the Dual 

Tensor, is essentially the same matrix with substitutions of 
𝑬

𝑐
→  𝑩 and 𝑩 → −

𝑬

𝑐
. Finally, Λ𝜆

𝜇
 is the 

Lorentz transformation matrix and all of the subscripts and superscripts are simply indicators of row, 

column indices in the matrices being operated on+, with the implication that each operator is applied 

across all elements of the matrices in the end. All of this is made clear with the explicit operations being 

provided, as they are in the following equation illustrating the calculation of 𝐹̅𝜇𝑣 where movement is 

assumed again to be in the 𝑥 direction. 

𝐹̅𝜇𝑣 = 

(

 
 𝛾
−𝛾𝛽
0
0

−𝛾𝛽
𝛾
0
0

 
0
0
1
0

   
0
0
0
1)

 
 

(

 
 0
−𝐸𝑥/𝑐 
−𝐸𝑦/𝑐

−𝐸𝑧/𝑐

  

𝐸𝑥/𝑐
0
𝐵𝑧
−𝐵𝑦

  

𝐸𝑦/𝑐

−𝐵𝑧
0
𝐵𝑥

  

𝐸𝑧/𝑐
𝐵𝑦
−𝐵𝑥
0 )

 
 
 

(

 
 𝛾
−𝛾𝛽
0
0

−𝛾𝛽
𝛾
0
0

 
0
0
1
0

   
0
0
0
1)

 
 

 

𝐹̅𝜇𝑣 =

(

  
 0

−𝐸𝑥/𝑐 
−𝛾(𝐸𝑦/𝑐 − 𝛽𝐵𝑧) 

−𝛾(𝐸𝑧/𝑐 + 𝛽𝐵𝑦)

  

𝐸𝑥/𝑐
0

𝛾(𝐵𝑧 − 𝛽𝐸𝑦/𝑐)

−𝛾(𝐵𝑦 + 𝛽𝐸𝑧/𝑐)

  

𝛾(𝐸𝑦/𝑐 − 𝛽𝐵𝑧)

−𝛾(𝐵𝑧 − 𝛽𝐸𝑦/𝑐)

0
𝐵𝑥

  

𝛾(𝐸𝑧/𝑐 + 𝛽𝐵𝑦)

𝛾(𝐵𝑦 + 𝛽𝐸𝑧/𝑐)

−𝐵𝑥
0 )

  
 

 

If one compares the elements of 𝐹𝜇𝑣 containing components of vectors 𝐁 and 𝐄 prior to the transform 

to the identical row, column positions post transform, the equations match identically to those obtained 

through ordinary algebra. Proof that tensors indeed transform identically, with proper application of 

operators and algorithms. 

 But an observant individual may notice that there are 6 additional equations with the calculation 

of the Lorentz contraction. Indeed, there is superfluous information with this calculation. However, the 

additional information is 1) correct, being only the negation of the positive values, and 2) only obtained 



 

upon elaboration of the tensors in matrix representation. Whilst in tensor notation, the observer is 

nonethewise to the additional information. Furthermore, the additional elements are critical when 

applying simple derivatives to the tensors, multiplying them by ordinary 4-vectors such as space-time 

location or Proper velocity, or when calculating invariants, quantities which have the same value in all 

inertial frames and do not change under a Lorentz transformation3. Such values provide extremely 

useful information for understanding the underlying nature of the observed fields, including profound 

implications such as the identical appearance of electromagnetic waves in all inertial reference frames. 

These invariants are obtained by multiplying a contravariant tensor by a covariant one, or equally, a 

covariant tensor by another covariant tensor and two applications of the metric, 𝜂𝜇𝑣, where 

𝜂𝜇𝑣 = 

(

 
 1
0
0
0

  
0
−1
0
0

 
0
0
−1
0

  
0
0
0
−1)

 
 

 

Covariant tensors are simply tensors with indices provided as subscripts (𝐹𝜇𝑣), where contravariant 

tensors have indices provided as superscripts (𝐹𝜇𝑣). The metric (𝜂𝜇𝑣) is simply a matrix used to raise and 

lower subscripts and superscripts on tensors and 4-vectors for proper application of matrix operations. 

Note, too that 𝜂𝜇𝑣 = 𝜂𝜇𝜌𝜂𝜎𝑣𝜂𝜌𝜎 ≡ 𝜂𝜇𝑣.  

While necessary attentiveness to subscripts and superscripts and the order thereof may seem a 

bit intensive, as with anything else, as one builds familiarity with the notation, the application of 

operations becomes more intuitive, and the doorway to an easier representation of truly complicated 

theories begins to creak open. Electromagnetic pressure (𝑃) and tangentiality (𝑄), ordinarily 

necessitating systems to represent, are reduced to 

𝑃 =
1

2
𝐹𝜇𝑣𝐹

𝜇𝑣 
and 

𝑄 = −
1

4
𝐹𝜇𝑣𝐺

𝜇𝑣



and the Lorentz force law and rate change of a particles energy moving through an electric field are 

simultaneously represented by a single 4-vector, 𝐾𝜇 where 

𝐾𝜇 = 𝑞𝑈𝑣𝐹
𝜇𝑣 

Tensor notation indeed provides a spectacular generalization and streamlining of information in 

relativistic electrodynamics, with transformations being reduced to simple algorithmic operations, 

reminiscent of calculus where expansion of the formulation necessitates only knowledge of matrix 

algebra.  

 As it is often the case that working through explicit examples assists one in gaining insight on 

new and unfamiliar topics, an example is provided from chapter 12 David Griffiths’ book2: 

Problem 12.54: Show the second of Maxwell’s equations in tensor notation can be expressed in terms of 

the field tensor, 𝐹𝜇𝑣, as follows: 

𝜕𝐹𝜇𝑣

𝜕𝑥𝜆
+
𝜕𝐹𝑣𝜆

𝜕𝑥𝜇
+
𝜕𝐹𝜆𝜇

𝜕𝑥𝑣
= 0.    (+) 

Recall that that in tensor notation, the second of Maxwell’s equations is expressed as, 

𝜕𝐺𝜇𝑣

𝜕𝑥𝑣
= 0, 

which simultaneously represents the equations 

∇ ⋅ 𝐁 = 0 and ∇×𝐄 = −
𝜕𝐁

𝜕𝑡
. 

In order to solve the problem outlined, it must be shown that (+) is equivalent to the two, more 

“simplistic” Maxwell equations. One must consider (+) for each 𝜇, 𝑣, 𝜆 𝛜 {0,1,2,3}. With 4 cases for each 

of the three variables, (+) simultaneously represents 64 separate equations (43 = 64). An observant 

reader might note, however, that many of the equations will be redundant as the variables within the 



 

matrices are identical, sans a coefficient of -1. Considering now the case where 2 variables are 

equivalent, say 𝜇 and 𝑣, (+) becomes 

𝜕𝐹𝜇𝜇

𝜕𝑥𝜆
+
𝜕𝐹𝜇𝜆

𝜕𝑥𝜇
+
𝜕𝐹𝜆𝜇

𝜕𝑥𝜇
= 0. 

However, 𝐹𝜇𝜇 = 0 and 𝐹𝜇𝜆 = −𝐹𝜆𝜇, which leads to the trivial solution, 0 = 0. In order to get exclusively 

non-trivial solutions, the ones we actually care about, it must be the case that each  

𝜇 ≠ 𝑣 ≠ 𝜆 ≠ 𝜇. 

Two cases must then be considered: one where each of the indices considered describe exclusively 

spatial components (are equal to either 1, 2, or 3), and one where a single index is temporal in nature 

(equals 0), while the other describe spatial components. In the first case, considering specifically         

𝜇 = 1, 𝑣 = 2, and 𝜆 = 3, an evaluation of (+) yields 

𝜕𝐹12
𝜕𝑥3

+
𝜕𝐹23
𝜕𝑥1

+
𝜕𝐹31
𝜕𝑥2

= 0, 

which implies, 

𝜕

𝜕𝑧
(𝐵𝑧) +

𝜕

𝜕𝑥
(𝐵𝑥) +

𝜕

𝜕𝑦
(𝐵𝑦) = 0. 

The above equation represents the divergence of magnetic field, or in explicit mathematical terms; 

𝜕𝐹12

𝜕𝑥3
+
𝜕𝐹23

𝜕𝑥1
+
𝜕𝐹31

𝜕𝑥2
= 0 → ∇ ⋅ 𝐁 = 0.         (∗) 

Any permutations maintaining the relationship 𝜇, 𝑣, 𝜆 𝛜 {1,2,3} and 𝜇 ≠ 𝑣 ≠ 𝜆 ≠ 𝜇 yields an identical 

result, with the only difference being coefficients of -1 that, in the end, do not change the results. 

 Considering now case 2, where a single component is equal to 0, one may consider specifically 

the scenario of 𝜇 = 0, 𝑣 = 1, and 𝜆 = 2, one obtains 



𝜕𝐹01
𝜕𝑥2

+
𝜕𝐹12
𝜕𝑥0

+
𝜕𝐹20
𝜕𝑥1

= 0, 

where it follows that 

𝜕

𝜕𝑦
(−
𝐸𝑥
𝑐
) +

𝜕

𝜕(𝑐𝑡)
(𝐵𝑧) +

𝜕

𝜕𝑥
(
𝐸𝑦

𝑐
) = 0. 

With some manipulation, the aforementioned equation can be written as, 

−
𝜕𝐵𝑧
𝜕𝑡
+ (

𝜕𝐸𝑥
𝜕𝑦

−
𝜕𝐸𝑦

𝜕𝑥
) = 0, 

which some may recognize as the z-component of the famous Maxwell equations, 

−
𝜕𝐁

𝜕𝑡
= ∇×𝐄.      (−) 

The x and y components of (−) are obtained by altering values for 𝑣 and 𝜆, where values of 𝑣 = 1 and 

𝜆 = 3 provide (−)’s y-component and 𝑣 = 2 and 𝜆 = 3 the equation’s x-component. Permutations of 

the variables, where the solver decides to change either 𝑣 or 𝜆 to remain 0, and the remaining two to 

vary, result again in an identical result, with any differences coming in the form of -1 coefficients that 

eventually may be divided out. Therefore, in the case where one of 𝜇, 𝑣, or 𝜆 are equal to 0, one obtains 

𝜕𝐹𝜇𝜇

𝜕𝑥𝜆
+
𝜕𝐹𝜇𝜆

𝜕𝑥𝜇
+
𝜕𝐹𝜆𝜇

𝜕𝑥𝑣
= 0 → −

𝜕𝐁

𝜕𝑡
= ∇×𝐄. 

This demonstrates the fact that the equation provided in (+) is simultaneously representing all spatial 

and temporal information of the magnetic field, and with the use of operators to obtain the dual tensor, 

electric field as well. Profound and concise indeed. 

As noted previously, this condensing of information allows one to explore complicated subjects, 

placing emphasis on ideas and concepts rather than laborious derivations. With careful and deliberate 

derivations, applications of knowledge of relativistic electrodynamics allows one to explore topics such 



 

as plasmas on curved spacetimes, possibly providing indirect evidence of gravitational waves and 

strengthening theories of the early universe. Other topics where relativistic electrodynamics play a 

central role are the radiation of moving charges and the scattering and dispersion of waves and energy 

in lossy media, which have numerous applications to the field of engineering. Tensor notation then 

becomes an invaluable tool to authors attempting to explain theories and designs, without losing the 

reader in pages upon pages of derivations. The beauty of tensors is in the simplistic representation that 

they offer to immensely complex real world situations. Packing copious amounts of information into 

occasionally single term equations, wholly representative of a scenarios underlying physics, the provide 

an appealing notation to mathematicians, physicists, engineers, and interested readers alike. 
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