RELATIVISTIC QUANTUM PHYSICS From Advanced Quantum Mechanics to Introductory Quantum Field Theory

Quantum physics and special relativity theory were two of the greatest breakthroughs in physics during the twentieth century and contributed to paradigm shifts in physics. This book combines these two discoveries to provide a complete description of the fundamentals of relativistic quantum physics, guiding the reader effortlessly from relativistic quantum mechanics to basic quantum field theory.

The book gives a thorough and detailed treatment of the subject, beginning with the classification of particles, the Klein–Gordon equation and the Dirac equation. It then moves on to the canonical quantization procedure of the Klein–Gordon, Dirac, and electromagnetic fields. Classical Yang–Mills theory, the LSZ formalism, perturbation theory and elementary processes in QED are introduced, and regularization, renormalization, and radiative corrections are explored. With exercises scattered through the text and problems at the end of most chapters, the book is ideal for advanced undergraduate and graduate students in theoretical physics.

TOMMY OHLSSON is Professor of Theoretical Physics at the Royal Institute of Technology (KTH), Sweden. His main research field is theoretical particle physics, especially neutrino physics and physics beyond the Standard Model.

RELATIVISTIC QUANTUM PHYSICS

From Advanced Quantum Mechanics to Introductory Quantum Field Theory

> TOMMY OHLSSON Royal Institute of Technology (KTH), Sweden

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521767262

© T. Ohlsson 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Ohlsson, Tommy, 1973– Relativistic quantum physics : from advanced quantum mechanics to introductory quantum field theory / Tommy Ohlsson. p. cm. ISBN 978-0-521-76726-2 (Hardback) 1. Quantum theory. I. Title. QC174.12.O35 2011 530.12-dc23

2011018860

ISBN 978-0-521-76726-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

In memory of my father Dick

Contents

	Prefe	ace	<i>page</i> xi
1	Intro	oduction to relativistic quantum mechanics	1
	1.1	Tensor notation	1
	1.2	The Lorentz group	3
	1.3	The Poincaré group	9
	1.4	Casimir operators	11
	1.5	General description of relativistic states	12
	1.6	Irreducible representations of the Poincaré group	13
	1.7	One-particle relativistic states	16
	Problems		21
	Guid	le to additional recommended reading	21
2	The	Klein–Gordon equation	22
	2.1	Transformation properties	24
	2.2	The current	25
	2.3	Solutions to the Klein–Gordon equation	26
	2.4	Charged particles	28
	2.5	The Klein paradox	30
	2.6	The pionic atom	34
	Problems		38
	Guide to additional recommended reading		39
3	The	Dirac equation	40
	3.1	Free particle solutions to the Dirac equation	45
	3.2	Problems with the Dirac equation: the hole theory and the	
		Dirac sea	50
	3.3	Some gamma gymnastics and trace technology	52
	3.4	Spin operators	57

viii		Contents	
	3.5	Orthogonality conditions and energy projection operators	61
	3.6	Relativistic invariance of the Dirac equation	63
	3.7	Bilinear covariants	66
	3.8	Electromagnetic structure of Dirac particles and charge	
		conjugation	68
	3.9	Constants of motion	72
	3.10	Central potentials	74
		The hydrogenic atom	77
		The Weyl equation	86
		Helicity and chirality	89
	Probl		90
	Guid	e to additional recommended reading	92
4	Quar	ntization of the non-relativistic string	94
	4.1	Equation of motion for the non-relativistic string	94
	4.2	Solutions to the wave equation: normal modes	97
	4.3	Generalized positions and momenta	98
	4.4	Quantization	99
	4.5	Quanta as particles	101
	Probl		103
	Guid	e to additional recommended reading	104
5	Introduction to relativistic quantum field theory:		
		agators, interactions, and all that	105
	5.1	Propagators	106
	5.2	Lagrangians	109
	5.3	Gauge interactions	111
	5.4	Scattering theory and Møller wave operators	113
	5.5 Cuid	The S operator	115 121
		e to additional recommended reading	
6	-	ntization of the Klein–Gordon field	122
	6.1	Canonical quantization	122
	6.2	Field operators and commutators	126
	6.3	Green's functions and propagators	129
	6.4 6.5	The energy–momentum tensor Classical external sources	132 134
	0.5 6.6		134 135
	o.o Probl	The charged Klein–Gordon field	135
			135
	Guid	e to additional recommended reading	137

Cambridge University Press
978-0-521-76726-2 - Relativistic Quantum Physics: From Advanced Quantum Mechanics to Introductory
Quantum Field Theory
Tommy Ohlsson
Frontmatter
More information

		Contents	ix
7	Qua	ntization of the Dirac field	138
	7.1	The free Dirac field	138
	7.2	Quantization	140
	7.3	Positive energy	141
	7.4	The charge operator	144
	7.5	Parity, time reversal, and charge conjugation	145
	7.6	The Majorana field	148
	7.7	Green's functions and propagators	150
	7.8	Perturbation of electromagnetic interaction	152
	7.9	Expansion of the S operator	153
	Prob	lems	154
	Guid	le to additional recommended reading	154
8	Max	well's equations and quantization of the electromagnetic field	155
	8.1	Maxwell's equations	155
	8.2	Quantization of the electromagnetic field	157
	8.3	The Casimir effect	163
	8.4	Covariant quantization of the electromagnetic field	167
	Prob	lems	174
	Guid	le to additional recommended reading	174
9	The electromagnetic Lagrangian and introduction to Yang-Mills		
	theo	ry	176
	9.1	The electromagnetic Lagrangian	176
	9.2	Massive vector fields	180
	9.3	Gauge transformations and the covariant derivative	182
	9.4	The Yang–Mills Lagrangian	183
	Problems		186
	Guid	le to additional recommended reading	187
10	Asyr	nptotic fields and the LSZ formalism	188
	10.1	Asymptotic fields and the S operator	188
	10.2	The LSZ formalism for real scalar fields	192
	10.3	Proton-meson scattering	195
	Guid	le to additional recommended reading	196
11	Perturbation theory		
	11.1	Three different pictures	198
	11.2	-	199
	11.3		202
		The relation between the physical vacuum $ \Omega\rangle$ and the free	
		theory ground state $ 0\rangle$	205

Cambridge University Press
978-0-521-76726-2 - Relativistic Quantum Physics: From Advanced Quantum Mechanics to Introductory
Quantum Field Theory
Fommy Ohlsson
Frontmatter
More information

х		Contents	
	11.5	Specific correlation functions	207
		Wick's theorem	211
	11.7	Feynman rules and diagrams	215
	11.8	Kinematics for binary reactions	222
	11.9	The S matrix, the T matrix, cross-sections, and decay rates	225
	Prob	lems	232
	Guid	e to additional recommended reading	234
12	Elem	nentary processes of quantum electrodynamics	235
	12.1	$e^+ + e^- ightarrow \mu^+ + \mu^-$	236
		$e^- + \mu^- ightarrow e^- + \mu^-$	240
		$e^+ + e^- ightarrow e^+ + e^-$	242
		$e^- + e^- ightarrow e^- + e^-$	246
		$e^- + \gamma \rightarrow e^- + \gamma$ and $e^+ + e^- \rightarrow 2\gamma$	250
	Prob		253
	Guid	e to additional recommended reading	255
13		oduction to regularization, renormalization, and radiative	
		ections	257
		The electron vertex correction	260
		The electron self-energy	265
		The photon self-energy	268
		The renormalized electron charge	272
	Prob		275
	Guid	e to additional recommended reading	276
Appe	e <mark>ndix</mark> A	••••••••	278
	A.1	Groups	278
	A.2	Lie groups	279
	A.3	Lie algebras	281
		Lie algebras of Lie groups	282
	A.5	The angular momentum algebra	283
	Bibliography		286
	Index	c	288

Preface

This book is based on my lectures in the course 'Relativistic Quantum Physics' at the Royal Institute of Technology (KTH) in Stockholm, Sweden. These lectures have been given four times during the academic years 2006–2007, 2007–2008, 2008–2009, and 2009–2010. The main sources of inspiration for the lectures were the books A. Z. Capri, Relativistic Quantum Mechanics and Introduction to Quantum Field Theory, World Scientific (2002) and M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley (1995), and indeed, this book serves as a textbook for relativistic quantum mechanics with continuation to basic quantum field theory. The book is mainly intended for final-year undergraduate students in physics or first-year graduate students in physics and/or theoretical physics, who want to learn relativistic quantum mechanics, the basics of quantum field theory, and the techniques of calculating cross-sections for elementary reactions in quantum electrodynamics. Thus, the book should be suitable for any course on relativistic quantum mechanics as well as it might be suitable for a beginners' course on quantum field theory. In summary, the book is a self-contained technical treatment on relativistic quantum mechanics, introductory quantum field theory, and the step in between, i.e. it should fill the gap between advanced quantum mechanics and quantum field theory, which I have called relativistic quantum physics. It contains a thorough and detailed mathematical treatment of the subject with smaller exercises throughout the whole text and larger problems at the end of most chapters.

I am deeply grateful to Johannes Bergström, Jonas de Woul, and Dr Jens Wirstam for careful proof-reading of earlier versions of the manuscript of this book and for useful comments, discussions, and suggestions how to improve the book. I am indebted to my former Ph.D. supervisor Professor emeritus Håkan Snellman for teaching me that physics is a descriptive science, which indeed does not explain anything. I would also like to thank my two friends Björn Sjödin and Jens Wirstam, who left science for 'industry', but never lost interest in it, and with whom I

xii

Preface

obtained many inspiring ideas how to develop this book further. Discussions with Dr Mattias Blennow, Dr Tomas Hällgren, Henrik Melbéus, and Dr He Zhang have been helpful in the process of development. In addition, I would like to thank Professor Mats Wallin, who suggested to me to include the topic 'graphene' in this book.

The author gratefully acknowledges financial support from the degree program 'Engineering Physics' (especially, Professor Leif Kari) at KTH for the development of this book.

Finally, last but not least, I would like to thank my family and friends for always being there for me. This applies particularly to my wife Linda, but also to my mother Inga-Lill and my sister Therése.