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What is Reliability? 
 
Measurements in counseling, education, and related behavioral fields are not completely 

accurate and consistent. There is always some error involved due to person’s conditions 

(e.g., mood, fatigue, and momentary distraction) and/or external conditions such as noise, 

temperature, light, etc., that may randomly occur during the measurement process. The 

instrument of measurement (e.g., tests, inventories, or raters) may also affect the accuracy 

of the scores (observations). For example, it is unlikely that the scores of a person on two 

different forms of an anxiety test would be equal. Also, different scores are likely to be 

assigned to a person when different counselors evaluate a specific attribute of this person.  

In another scenario, if a group of persons take the same test twice within a short period of 

time, one can expect the rank order of their scores on the two test administrations to be 

somewhat similar, but not exactly the same. In other words, one can expect a relatively 

high, yet not perfect, positive correlation of test-retest scores for the group of examinees.   

Inconsistency occurs also in different criterion-referenced classifications (e.g., pass-fail 

or mastery- nonmastery) based on measurements obtained through testing or subjective 

expert judgments.   

        In measurement parlance, the higher the accuracy and consistency of measurements 

(scores, observations), the higher their reliability. Thus, the reliability of measurements  

indicates the degree to which the measurements are accurate, consistent, and repeatable 

when (a) different people conduct the measurement, (b) using different instruments that 

purport to measure the same trait (e.g., proficiency, attitude, anxiety), and (c) there is 

incidental variation in measurement conditions. The reliability is a key condition for 

quality measurements with tests, inventories, or individuals (raters, judges, observers, 

etc.). Most importantly, reliability is a necessary (yet, not sufficient) condition for the 

validity of measurements. To remind, validity has to do meaningfulness, accuracy, and 

appropriateness of interpretations and decisions based on measurement data.  

        It is important to note that reliability refers to the measurement data obtained with an  
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instrument and not to the instrument itself. Previous studies and recent editorial policies 

of professional journals (e.g., Dimitrov, 2002; Sax, 1980; Thompson & Vacha-Haase, 

2000) emphasize that it is more accurate to talk about reliability of measurement data 

than reliability of tests (items, questions, and tasks). Tests cannot be accurate, stable, or 

unstable, but observations (scores) can. Therefore, any reference to “reliability of a test” 

should be interpreted to mean the “reliability of measurement data derived from a test”.  

 
         CLASSICAL MODEL OF RELIABILITY 

True Score 

        Measurements with performance tests, personality inventories, expert evaluations, 

and even physical measurements, are not completely accurate, consistent, and replicable. 

For example, although the height of a person remains constant throughout repeated 

measurements within a short period of time (say, 15 minutes) using the same scale, the 

observed values would be scattered around this constant due to imperfection in the visual 

acuity of the measurer (same person or somebody else). Thus, if T denotes the person’s 

constant (true) height, then the observed height, X, in any of the repeated measurements 

will deviate from T with an error of measurement, E. That is, 

 
                   X = T + E.                                                         (1) 

 
        To grasp what is meant by true score in classical test theory, imagine that a person 

takes a standardized intelligence test each day for 100 days in a raw. The person would 

likely obtain a number of different observed scores over these occasions. The mean of all 

observed scores would represent an approximation of the person’s true score, T, on the 

standardized intelligence test. In general, the true score, T, is the mean of the theoretical 

distribution of X scores that would be observed in repeated independent measurements of 

the same person with the same test. Evidently, the true score, T, is a hypothetical concept 

because it is not practically possible to test the same person infinity times in independent 

repeated measurements (i.e., each testing does not influence any subsequent testing).  
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        It is important to note that the error in Equation 1 is assumed to random in nature. 

Possible sources of random error are: (1) fluctuations in the mood or alertness of persons 

taking the test due to fatigue, illness, or other recent experiences, (2) incidental variation 

in the measurement conditions due, for example, to outside noise or inconsistency in the 

administration of the instrument, (3) differences in scoring due to factors such as scoring 

errors, subjectivity, or clerical errors, and (4) random guessing on response alternatives in 

tests or questionnaire items. Conversely, systematic errors that remain constant from one 

measurement to another do not lead to inconsistency and, therefore, do not affect the 

reliability of the scores. Systematic errors will occur, for example, when a counselor X 

assigns two points lower than a counselor Y to each person in the stress evaluation of a 

group of individuals. So, again, the reliability of any measurement is the extent to which 

the measurement results are free of random errors.  

Classical Definition of Reliability 

        Equation 1 represents the classical assumption that any observed score, X, consists 

of two parts: true score, T, and error of measurement, E. Because errors are random, it is 

assumed that they do not correlate with the true scores (i.e., rTE = 0). Indeed, there is no 

reason to expect that persons with higher true scores would have systematically larger (or 

systematically smaller) measurement errors than persons with lower true scores. Under 

this assumption, the following is true for the variances of observed scores, true scores, 

and errors for a population of test-takers: 

 
                                                      σ σ σX T E

2 2 2= + ,                                                           (2) 

 
i.e., the observed score variance is the sum of true score variance and error variance. 

Given this, the reliability of measurement indicates what proportion of the observed 

score variance is true score variance. The analytic translation of this definition is 

                                                     rxx
T

X
=
σ
σ

2

2 .                                                                (3) 
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Note: The notation for reliability, rxx, stems from the equivalent definition that the 

reliability is also the correlation between the observed scores on two parallel tests (i.e., 

tests with equal true scores and equal error variances for every population of persons 

taking the two tests; e.g., Allen & Yen, p. 73). The reliability can also be represented as 

the squared correlation between observed scores and true scores: r rXX XT= 2 .  

        Any definition of reliability (e.g., Equation 3) implies that the reliability may take 

values from 0 to 1, with rxx = 1 indicating perfect reliability - this is possible only when 

the total observed score variance is true score variance (σ σX T
2 2= ) or, equivalently, when 

the error variance is zero (σE
2 0= ). The closer rxx  to zero, the lower the score reliability.  

Standard Error of Measurement (SEM) 

        Classical test theory also assumes that (a) the distribution of observed scores that a 

person may have under repeated independent testings is normal and (b) the standard 

deviation of the normal distribution, referred to as standard error of measurement (SEM), 

is the same for all persons taking the test. Under these assumptions, Figure 1 represents 

the (hypothetical) normal distribution of observed scores for repeated measurements of 

one person with the same test. The mean of this distribution is, in fact, the person’s true 

score (T = 20) and the standard deviation is the standard error of measurement (SEM = 2).  

                           
12 14 16 18 20 22 24 26 28

0
T SEM SEMSEMSEM

95% of possible observed scores

`````` 

Figure 1. Normal distribution of observed scores for repeated testings of one person. 
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      Based on basic statistical properties for normal distributions, Figure 1shows that (a) 

almost all possible observed scores for this person are expected to fall in the interval from 

T – 3(SEM) to T – 3(SEM), which in this case is from 14 to 26, and (b) about 95% of 

these observed scores are expected to fall in the interval from T – 2(SEM) to T + 2(SEM), 

which in this case is from 16 to 24. The latter property may be used reversely to construct 

(approximately) a 95% confidence interval of a person’s true score, T, given the observed 

score, X, of the person in a real testing: 

 
                                           X – 2(SEM) < T < X + 2(SEM)                                          (4) 

 
For example, if X = 23 is the person’s observed score in a single real testing, then his/her 

true score is expected (with about 95% confidence) to be in the interval from X – 2(SEM) 

to X + 2(SEM). Thus, with X = 23 and SEM = 2, the 95% confidence interval for the true 

score of this person is from 23 – 2(2) to 23 + 2(2), i.e., from 19 to 27.  

        Evidently, smaller SEM will produce smaller confidence intervals for the person’s 

true score thus leading to higher accuracy of measurement. Given that SEM is inversely 

related to reliability, one can infer that the higher the reliability, the higher the accuracy 

of measurements. As some previous studies indicate, however, although the reliability 

coefficient is a convenient unitless number between 0 and 1, the SEM relates directly to 

the meaning of the original scale of measurement (e.g., number-right correct answers) 

and is therefore more useful for score interpretations (e.g., Feldt & Brennan, 1989; 

Thissen, 1990). Using the following equation, one can determine the SEM from the 

reliability, rxx, and the standard deviation of the observed scores: 

 
                                             SEM rX XX= −σ 1 .                                                      (5) 

 
  (Note: One can easily derive Equation 5 from Equations 2 and 3, taking into account that SEM = σE.) 

For example, if the reliability is .90 and the standard deviation of the persons’ observed 

scores is 5, then the standard error of measurement is: SEM = − = =5 1 9 5 3162 1581. (. ) . .   
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        Caution: The concept of SEM is based on two assumptions: (a) normality – the 

distribution of possible observed scores under repeated independent testings is normal 

and (b) homoscedasticity – the standard deviation of this normal distribution of possible 

observed scores is the same for all persons taking the test. These assumptions, however, 

are generally not true, particularly for persons with true scores that are far away (higher 

or lower) from the average true score for a sample of examinees. Therefore, results based 

on the classical SEM (e.g., confidence intervals for true scores) should be perceived only 

as overall rough estimations and interpreted with caution. There are more sophisticated  

(yet, mathematically more complex) measurement methods that provide higher accuracy 

in estimating (conditional) standard errors of measurement for persons with different true 

scores. Brief notes on such methods are provided later in this chapter.   

 
Standard Error of Estimation 

        As shown in the previous section, X  ± 2SEM is a 95% confidence interval for the 

true score, T, of a person, given the person’s observed score, X, and the standard error of 

measurement, SEM (see Equation 5). Still within classical test theory, an estimation of a 

person’s true score from his/her observed score can be obtained by simply regressing T 

on X.  In fact, the regression coefficient in predicting T from X is equal to the reliability 

of the test scores, rXX (Lord & Novick, 1968, p. 65). Specifically, if µ is the population 

mean of test scores, the regression equation for estimating true scores from observed 

scores is 

                        
                                                      $ ( ) .T r X rXX XX= + −1 µ                                                  (6) 

 
        Note. Equation 6 shows also that the estimated (predicted) true score, $,T  is closer to 

the observed score when the reliability, rXX, is high and, conversely, closer to the mean, µ, 

when the reliability is low. In the extreme cases, (a) $ ,T X=  with perfectly reliable scores 

(rXX = 1), and (b) $ ,T = µ  with totally unreliable scores (rXX = 0).     
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        All persons with the same observed score, X, will have the same predicted true 

score, $,T  obtained with Equation 6, but not necessarily the same actual true scores, T.           

The standard deviation of the estimation error (ε = T - $T ) is referred to as standard error 

of estimation,σε  (or, SEE), and is evaluated as follows:   

 
                                                 SEE r rX XX XX= −σ ( ) ,1                                                 (7) 

 
whereσ X  is the standard deviation of the observed scores and rXX is the score reliability.  

        The standard error of estimation, obtained with Equation 7, is always smaller than 

the standard error of measurement, obtained with Equation 5 (SEE < SEM). Thus, when 

estimating true scores is of primary interest, the regression approach (Equation 6) 

provides more accurate estimation of a person’s true score, T, compared to confidence 

intervals for T based on SEM.  

        Caution. Keep in mind that the SEM is an overall estimate of differences between 

observed and true scores (X – T), whereas the SEE is an overall estimate of differences 

between actual and predicted true scores (T - $T ). Also, the estimation of true scores using 

Equation 6 requires information about the population mean of observed scores, µ, (or at 

least the sample mean, X ,  for a sufficiently large sample), whereas obtaining confidence 

intervals for true scores using SEM (e.g., X  ± 2SEM) does not require such information.  
 
        Example 1. Given the standard deviation, σ X = 5, and the reliability, rXX = .91, for 

the observed scores, X, one can use Equation 5 to obtain the SEM and Equation 7 for the 

SEE. Specifically, SEM = − =5 1 91 2 0732(. ) .  and SEE = − =5 91 1 91 1431(. )( . ) . ;  (note 

that SEE < SEM). If the observed score for a person is X = 30, the interval X  ± 2SEM (in 

this case, 30 ± 2 x 2.073), shows that the true score of this person is somewhere between  

25.854 and 34.146. Given the mean of the observed scores (say, µ = 25), a more accurate 

estimate of the true score is obtained using Equation 6: $T = (.91)(30)+(1-.91)(25) = 29.55 

(why is the true score estimate, $,T  close to the observed score, X = 30, in this example?) 
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                           TYPES OF RELIABILITY 

The reliability of test scores for a population of examinees is defined as the ratio of their 

true score variance to observed score variance (Equation 3). Equivalently, the reliability 

can also be represented as the squared correlation between true and observed scores (e.g., 

Allen & Yen, 1979, p. 73). In empirical research, however, true scores cannot be directly 

determined and therefore the reliability is typically estimated by coefficients of internal 

consistency, test-retest, alternate forms, and other types of reliability estimates adopted in 

the measurement literature. It is important to note that different types of reliability relate 

to different sources of measurement error and, contrary to some common misconceptions, 

are generally not interchangeable.   

Internal Consistency 

        Internal consistency estimates of reliability are based on the average correlation 

among items within a test or scale. A widely known method for determining internal 

consistency of test scores yields a split-half reliability estimate. With this method, the test 

is split into two halves which are assumed to be parallel (i.e., the two halves have equal 

true scores and equal error variances). The score reliability of the whole test is estimated 

then by the Spearman-Brown formula:  

                                                          r r
rXX =

+
2

1
12

12

,                                                           (8) 

where r12 is the Pearson correlation between the scores on the two halves of the test. For 

example, if the correlation between the two test halves is 0.6, then the split-half reliability 

estimate is: rXX  = 2(0.6)/(1+0.6) = 0.75.  

        One commonly used approach to  forming test halves, called the odd/even method, 

is to assign the odd-numbered test items to one half and the even-numbered test items to 

the other half of the test. A more recommended approach, called matched random 

subsets, involves three steps. First, two statistics are calculated for each item: (a) the 

proportion of individuals who answered the item correctly and (b) the point-biserial 
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correlation between the item and the total test score. Second, each item is plotted on a 

graph using these two statistics as coordinates of a dot representing the item. Third, items 

that are close together on the graph are paired and one item from each pair is randomly 

assigned to one half of the test.     

        The Spearman-Brown formula is not appropriate when there are indications that the 

test halves are not parallel (e.g., when the two test halves do not have equal variances). In 

such cases, the internal consistency of the scores for the whole test can be estimated with 

the Cronbach’s coefficient α (Greek letter alpha) using the formula (Cronbach, 1951): 

 

                                α =
−2 1 2[ ) )]

( )
,VAR( ) - VAR( VAR(

VAR
X X X

X
                                 (9) 

 
where VAR(X), VAR(X1), and VAR(X2), represent the sample variance of the whole test,                              

its first half, and its second half, respectively. For example, it the observed score variance 

for the whole test is 40 and the observed variances for the two test halves are 12 and 11, 

respectively, then coefficient alpha is: α = 2(40 – 12 – 11)/40 = 0.85.  

        Caution. With speed tests, the split-half correlation coefficient would be close to 

zero since most examinees would answer correctly almost all items in the first half and 

(running out of time) will miss most items in the second half of the test.  

        In the general case, the coefficient α is calculated for more than two components of 

the test. Each test component is an item or a set of items. The formula for coefficient α is 

simply an extension of Formula 9 for more than two components of the test.  

 

                                          α =
−

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∑n
n

X i

1
1

VAR(
VAR(X)

)
,                                                (10) 

 
where  n is the number of test components,  

           X is the observed score for the whole test,  

           Xi is the observed score on the ith test component (i.e., X = X1 + X2 + … + Xn),    

           VAR(X) is the variance of X,    
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           VAR(Xi) is the variance of Xi, and 

           Σ (Greek capital letter “sigma”) is the summation symbol.              

If each test component is a dichotomous item (1= correct, 0 = incorrect), the coefficient α 

can be calculated by an equivalent formula, called Kuder-Richarson formula 20, with the 

notation KR20 (or α-20) for the coefficient of internal consistency: 

 

                                             KR n
n

p p
X

i i20
1

1
1

=
−

−
−⎛

⎝
⎜

⎞

⎠
⎟∑ ( )

( )
,

VAR
                                 (11) 

 
where   n is the number of dichotomous test items, 

            X is the observed score for the whole test, 

            VAR(X) is the variance of X 

            pi is the proportion of persons who answered correctly item i,   

            pi(1 - pi) is the variance of the observed binary scores on item i (Xi = 1 or 0),  

            that is VAR(Xi) = pi(1 - pi). 

 
Example 2: Table 1 illustrates the calculation of the KR20 coefficient (Formula 11) for 

the observed scores of 50 persons on a test of four dichotomous items (n = 4) given that 

the variance of the total observed scores on the test is 1.82 [i.e., VAR(X) = 1.82].   

Table 1  

 

    Item   Ni             pi               1 - pi        pi(1 - pi)   
_____________________________________________                                                         

      1          7       7/50 = .14      .86      .14 x .86 = .1204                                                                                                                         

      2        12     12/50 = .24      .76      .24 x .76 = .1824             KR20 4
3

1 0 7526
182

782= −⎛
⎝⎜

⎞
⎠⎟
=

.
.

.                                    

      3        18     18/50 = .36      .64      .36 x .64 = .2304       
                                            
      4        13     13/50 = .26      .74      .26 x .74 = .1924                                                   
                                                           ________________ 
 
                             Summation: Σ pi(1 - pi) = 0.7526 

 
Note.  Ni = number of persons responding correctly on item i (i = 1, 2, 3, 4)   
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        Caution: It is important to note that coefficient α (or KR20) is an accurate estimate  

of reliability, rXX , only if there is no correlation among measurement  errors and the test 

components (if not parallel) are at least essentially tau-equivalent. By definition, test 

components are essentially tau-equivalent if the persons’ true scores on the components 

differ by a constant. Tau-equivalency implies also that the test components measure the 

same trait (e.g., anxiety) and their true scores have equal variances in the population of 

respondents. When measurement errors do not correlate, but the test components are not 

essentially tau-equivalent, coefficient α will underestimate the actual reliability (α  <  rXX).   

If, however, the measurement errors with some test components correlate, coefficient α 

may substantially overestimate the reliability (α  >  rXX). Correlated errors may occur, for 

example, (a) with items related to a common stimulus (e.g., same paragraph or graph) and 

(b) with tests presented in a speeded fashion.  

         
Test-Retest Reliability   

        When test developers and practitioners are interested is assessing the extent to which 

persons consistently respond to the same test, inventory, or questionnaire administered on 

different occasions, this is a question of  test-retest reliability (stability) of test data. Test-

retest reliability is estimated by the correlation between the observed scores of the same 

people taking the same test twice. The resulting correlation coefficient is referred to also 

as coefficient of stability.  

        The major problem with test-retest reliability estimates is the potential for carry-over 

effects between the two test administrations. Readministration of the test within a short 

period of time (e.g., a few days or weeks) may produce carry-over effects due to memory 

and/or practice. For example, students who take a history test may look up some answers 

they were unsure of after the first administration of the test thus changing their true 

knowledge on the history content measured by the test. Likewise, the process of 

completing an anxiety inventory could trigger an increase in the anxiety level of some 
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people thus causing their true anxiety scores to change from one administration of the 

inventory to the next.  

          If the construct (attribute) being measured varies over time (e.g., cognitive skills, 

depression), a long period of time between the two administrations of the instrument may 

produce carry-over effects due to biological maturation, cognitive development, changes 

in information, experience, and/or moods. Thus, test-retest reliability estimates are most 

appropriate for measurements of traits that are stable across the time period between the 

two test administrations (e.g., visual or auditory acuity, personality, and work values). In 

addition to carry-over effect problems with estimates of test-retest reliability, there is also 

a practical limitation to retesting because it is usually time-consuming and/or expensive. 

Therefore, retesting solely for the purpose to estimate score stability may be impractical.   

        Caution: Test-retest reliability and internal consistency are independent concepts. 

Basically, they are affected by different sources of error and, therefore, it may happen 

that measures with low internal consistency have high temporal stability and vice versa. 

Previous research on stability showed that the test-retest correlation coefficient can serve 

well as a surrogate for the classical reliability coefficient if an essentially tau-equivalent 

test model with equal error variances or a parallel test model is present (Tisak & Tisak, 

1996).  

Alternate Form Reliability 

      If two versions of an instrument (test, inventory, or questionnaire) have very similar 

observed-score means, variances, and correlations with other measures, they are called 

alternate forms of the instrument. In fact, any decent attempt to construct parallel tests is 

expected to result in alternate test forms as it is practically impossible to obtain perfectly 

parallel tests (i.e., equal true scores and equal error variances). Alternate forms usually 

are easier to develop for instruments that measure, for example, intellectual abilities or 

specific academic abilities than those that measure constructs that are more difficult to 

represent with measurable variables (e.g., personality, motivation, temperament, anxiety).  
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        Alternate form reliability is a measure of the consistency of scores on alternate test 

forms administered to the same group of individuals. The correlation between observed 

scores on two alternate test forms, referred to also as coefficient of equivalence, provides 

an estimate of the reliability of either one of the alternate forms. Estimates of alternate 

form reliability are subject to carry-over effects as test-retest reliability coefficients, but 

in lesser degree due to the fact that the persons are not tested twice with the same items. 

A recommended rule-of-thumb is to have a 2-week time period between administrations 

of alternate test forms.  

        Whenever possible, it is important to obtain both internal consistency coefficients 

and alternate forms correlations for a test. If the correlation between alternate forms is 

much lower than the internal consistency coefficient (e.g., a difference of 0.20 or more), 

this might be due to (a) differences in content, (b) subjectivity of scoring, and (c) changes 

in the trait being measured over time between the administrations of alternate forms. To 

determine the relative contribution of these sources of error, it is usually recommended to 

administer the two alternate forms on the same day for some respondents and then within 

a 2-week time interval for others. If the correlation between the scores on the alternate 

forms for the same-day administration is much higher than the correlation for the 2-week 

time interval, then variation in the trait being measured is a major source of error. For 

example, it is likely that measures of mood will change over a 2-week time interval and 

thus the 2-week correlation will be lower than the same-day correlation between the 

alternate forms of the instrument. However, if the two correlations are both low, the 

persons’ scores may be stable over the 2-week time interval but the alternate forms 

probably differ in content.  

        Caution: When scores on alternate forms of an instrument are assigned by raters 

(e.g., counselors or teachers), one may check for scoring subjectivity by using a three-

step procedure: (1) randomly split a large sample of persons, (2) administer the alternate 

forms on the same day for one group of people, and (3) administer the alternate forms 

within a 2-week time interval for the other group of people. If the correlations between 
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raters are high for both groups, there is probably little scoring error due to subjectivity. If 

the correlation over the 2-week time interval and the same-day correlation are both 

consistently low across different raters, it is difficult to determine the major sources of 

scoring errors. Such errors can be reduced by training the raters in using the instrument 

and providing clear guidelines for scoring behaviors or traits being measured.  

 
Criterion-Referenced Reliability 

        Criterion-referenced measurements report how the examinees stand with respect to 

an external criterion. The criterion is usually some specific educational or performance 

objective such as “know how to apply basic algebra rules” or “being able to recognize 

patterns”. Because a criterion-referenced test may cover numerous specific objectives 

(criteria), each objective should be measured as accurately as possible. When the results 

of criterion-referenced measurements are used for dichotomous classifications related to 

mastery or nonmastery of the criterion, the reliability of such classifications is often 

referred to as classification consistency. This type of reliability shows the consistency 

with which classifications are made, either by the same test administered on two 

occasions or by alternate test forms.  

        Two classical indices of classification consistency are (a) Po = the observed 

proportion of persons consistently classified as masters/nonmasters and (b) Cohen’s κ 

(Greek letter kappa) = the proportion of nonrandom consistent classifications. Their 

calculation is illustrated for the two-way data layout in Table 2 where the entries are 

proportions of persons classified as masters/nonmasters by two alternate test forms of a 

criterion-referenced test (Test A and Test B). Specifically, p11 is the proportion of persons 

classified as masters by both test forms, p12 is the proportion of persons classified as 

masters by test A and nonmasters by test B, and so on. Also, PA1 , PA2, PB1, and PB2 are 

notations for marginal proportions, that is: PA1 = p11 + p12,  PB1 = p11 + p21, and so on. 

Thus, the observed proportion of consistent classifications (masters/nonmasters) is 
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                                                         Po = p11 + p22                                                         (12) 
 
Table 2.  

Contingency Table for Mastery-Nonmastery Classifications 

________________________________________________ 
                                                    Test B   
                                          _________________ 
                                           Master   Nonmaster 
______________________________________________ 
 
                Master                   p11                p12                    PA1 
Test A 
                Nonmaster            p21                 p22                    PA2 

                       ------------------------------------------------------------------------------------  

                                                                   PB1                PB2 

_______________________________________________________________________ 
 

        However, Po can be a misleading indicator of classification consistency because part 

of it may occur by chance. Cohen’s kappa takes into account the proportion of consistent 

classification that is (theoretically) expected to occur by chance, Pe, and provides a ratio 

of nonrandom consistent classifications        

 

                                                      κ =
−
−

P P
P

e

e

o

1
,                                                          (13) 

where Pe is (theoretically) the sum of the crossproducts of the marginal proportions in 

Table 2: Pe = PA1PB1 + PA2PB2. In Formula 13, the numerator (Po - Pe) is the proportion 

of nonrandom consistent classification being detected, whereas the denominator (1 - Pe) 

is the maximum proportion of nonrandom consistent classification that may occur. Thus, 

Cohen’s kappa indicates what proportion of the maximum possible nonrandom consistent 

classifications is found with the data.  

        Example 3.   Let us use specific numbers for the proportions in Table 2: p11 = 0.3, 

p12 = 0.2, p21 = 0.1, and p22 = 0.4. The marginal proportions are: PA1 = 0.3 + 0.2 = 0.5, 

PA2 = 0.1 + 0.4 = 0.5, PB1 = 0.3 + 0.1 = 0.4, and PB2 = 0.2 + 0.4 = 0.6. With these data, 

the observed proportion of consistent classification is Po = 0.3 + 0.4 = 0.7 (Formula 12). 
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The proportion of consistent classifications that may occur by chance in this hypothetical 

example is: Pe = (0.5)(0.4) + (0.5)(0.6) = 0.5. Using Formula 13, the Cohen’s kappa ratio 

is: κ = (0.7 – 0.5)/(1 – 0.5) = 0.2/0.5 = 0.4. Thus, the initially obtained 70% of observed 

consistent classifications (Po = 0.7) is reduced to 40% consistent classifications after 

taking into account the proportion of consistent classifications that may occur by chance. 

Given the conservative estimation provided by kappa, it is reasonable to report that the 

classification consistency is somewhere between .40 and .70 (i.e., between κ and Po).   

        Note:  For practical purposes, it is recommended to report both Po and the Cohen’s 

kappa as the latter is very conservative thus underestimating the actual rate of consistent 

classifications. Previous research (e.g., Chase, 1996; Peng & Subkoviak, 1980) provides 

additional procedures for estimating classification consistency, including scenarios with a 

single test administration or prior to the initial application of the test.   

 
Inter-rater Reliability  

        The chances of measurement error usually increase when the scores are based on 

subjective judgments of the person(s) doing the scoring. Such situations occur, for 

example, with classroom assessment of essays or portfolios where the teacher is, in fact, 

the “instrument” of assessment. In another scenario, involving some projective tests of   

personality, the scorer (e.g., counselor or psychotherapist) should decide if the person’s 

responses suggest normal functioning or some form of psychopathology. Also, subjective 

judgments of raters (experts, judges) are often used for classification purposes (e.g., to 

determine a “minimum level of competency” in pass/fail decisions). The person doing the 

scoring is referred to in this section as a rater (scorer, expert, judge). In all cases of rater 

scoring, it is important to estimate to the degree to which the scores are unduly affected 

by the subjective judgment of the rater(s). Such estimation is provided by coefficients of 

inter-rater reliability (called also inter-scorer reliability, inter-judge reliability, or inter-

rater agreement).  
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        Depending on the context of measurement, there are different methods of estimating 

inter-rater reliability. Most frequently used classical measures of inter-rater reliability are 

the Person correlation coefficients and the Cohen’s kappa coefficient (or some extended 

versions of kappa). For example, the two indexes of classification consistency illustrated 

with Table 2 (observed proportion of consistent classification, Po, and Cohen’s kappa) 

can be used as estimates of inter-rater reliability if two raters (instead of two test forms) 

classify persons as masters or nonmasters. One can use Formula 13 to calculate Cohen’s 

kappa when persons (or their products) are classified by two raters into more than two 

categories, but Po and Pe should be calculated with a contingency table for the respective 

number of categories. Thus, with classifications into three categories (e.g., low, medium, 

and high performance), we have: Po = p11 + p22 + p33 and Pe = PA1PB1 + PA2PB2 + PA3PB3. 

        If, however, two raters independently assign scores to portfolios of students, then the 

Pearson correlation coefficient for the two sets of scores can be used as an estimate of 

inter-rater agreement. The higher the correlation coefficient, the lower the error variance 

due to scorer differences and thus the higher the inter-rater agreement.  

        When scoring with alternate forms of a measurement instrument is done by (two or 

more) raters, one can check for measurement error due to subjectivity of scoring by 

administering the alternate forms (a) one the same day for one group of subjects and (b) 

with a 2-week delay for another group of subjects. If the correlations between raters are 

high for both groups, there is probably little error due to subjectivity of scoring. If, 

however, the correlation over the 2-week time interval and the same-day correlation are 

both consistently low across different raters, it is difficult to say what is the major source 

of unreliability (subjectivity of scoring or, say, differences in content for the two alternate 

forms of the instrument). The inter-rater reliability can be improved by training the raters 

in the use of the instrument and providing clear guidelines for scoring.  

        RELIABILITY OF COMPOSITE SCORES 

In many situations, scores from two or more scales are combined into composite scores to 

measure and interpret a more general dimension (trait or proficiency) related to these 
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scales. Composite scores are often used with test battery for achievement, intelligence, 

aptitude, depression, or eating disorders. For example, the scores on nine scales (factors) 

with the Symptom Checklist-90-Revised (SCL-90-R; Derogatis, …) are combined into 

three “global” (composite) scores in measuring current psychological symptom status. 

One frequently reported composite score is the sum of verbal and quantitative scores of 

the Graduate Record Examination (GRE).    

        Although the composite score may be simply the sum of several scale scores, its 

reliability is usually not just the mean of the reliabilities for the scales being combined. 

The issue of reliability estimation for composite scores is addressed in this section when 

the composite score is (a) the sum of two scale scores, (b) the difference (gain) score for 

pretest to posttest measurements, and (c) the sum of three or more scale scores.     

Reliability of Sum of Scores 

        Let us have two scale scores, X1 and X2, and a composite score which is the sum of 

these two scores: Y = X1 + X2. For example, with the GRE scoring, the composite score is 

the sum of the verbal and quantitative scores. The formula for estimating the reliability of 

the composite score, rYY, is a special case (for two scale scores) of a more general formula 

provided in pervious research (e.g., Nunnally & Bernstein, 1994, p. 268): 

                        

                                          r
r r

YY
Y

= −
− + −

1
1 11

2
11 2

2
22

2

σ σ
σ

( ) ( )
,                                         (14) 

 
where  σ1

2 is the variance of X1, that is:σ1
2 = VAR(X1)],  

            σ 2
2 is the variance of X2 , that is:σ 2

2 = VAR(X2), 

            σY
2  is the variance of the composite score Y, that is:σY

2 = VAR(Y),  

             r11 is the reliability of X1, and 

             r22 is the reliability of X2.  

        Example 4: The estimation of the reliability for a composite score, Y = X1 + X2, is 

illustrated in this example with data from a real study on attitudes and behaviors of 
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students related to their sexual activities. Specifically, X1 is the score on a scale labeled 

“Love as Justification for Sexual Involvement” and X2 is the score on a scale labeled 

“Sex for Approbation”. With the notations adopted in Formula 12, the following results 

were obtained from the study data for (a) the variances of X1, X2, and Y: σ1
2 = 13.750, 

σ 2
2 = 10.433, σY

2 = 38.5992 and (b) the reliabilities of X1 and  X2: r11 = .8334, r22 = .8217.   

        Replacing these components for their values in Formula 12, we obtain: 

 

               rYY = −
− + −

=1
13750 1 8334 10 433 1 8217

38592
892

. ( . ) . ( . )
.

. .     

 
Thus, the reliability estimate of the composite score Y (.892) in this example is higher 

than the reliability estimates of its components, X1 (.8334) and X2 (.8217). This, however, 

is not always the case.  

        Caution: Although not explicitly present in Formula 14, the correlation between X1 and 

X2, denoted hereafter r12, affects the reliability of the composite score; (in the above example, 

r12 = .598). In fact, when X1 and X2 do not correlate (r12 = 0), the reliability of their sum (Y 

= X1 + X2) is the average of their reliabilities: rYY = (r11 + r22)/2.  

 
       In many cases, the scores that are combined into a composite score come from scales 

with different units of measurement (e.g., 3-point and 5-point survey scales). Therefore,  

to present the measurements on a common scale (and for some technical reasons), the 

raw scores are often converted into standard scores (z- scores) before being summed. 

This is done, for example, with the raw scores of the primary psychological symptoms 

measured with the self-report symptom inventory SCL-90-R. For the special case of 

standard (z-) scores, Formula 14 is converted into a much simpler equivalent form  

 

                                            r
r r

YY
Yz

= −
− +

1
2 11 22

2

( )
,

σ
                                                  (15) 
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where σYz
2  is the variance of the sum of the z-scores for X1 and X2 (i.e., Yz = z1 + z2), 

            r11 is the reliability of X1, and 

             r22 is the reliability of X2.  

        For the data in Example 4, σYz
2 = 3.203 and, as before, r11 = .8334, r22 = .8217. With 

this, using Formula 15, we obtain the same value for the reliability of the composite score 

Y = X1 and X2 (or, equivalently, for Yz = z1 + z2): 

 

                                          rYY = −
− +

=1
2 8334 8217

3203
892

(. . )
.

. .  

 
     Note. Formula 15 follows directly from Formula 14, taking into account that the 

variance of the standard (z-) scores for any variable is 1 and, thus, σ σ2
1

2
2 2( ) ( ) .z z+ =   

        Formulas 14 and 15 can be readily extended when the composite score is a sum of 

more than two scale scores. For example, when Y = X1 + X2 + X3, the reliability of the 

composite score Y can be estimated by extending Formula 15 as follows: 

 

                                                r
r r r

YY
Yz

= −
− + +

1
3 11 22 33

2

( )
,

σ
                                            (16) 

 
where σYz

2  is the variance of the sum of the standard (z-) scores for X1, X2, and X3, that is 

Yz = z1 + z2 + z2 ; (r11, r22, and r33 are the reliabilities for X1, X2, and X3, respectively).   

Reliability of Difference Scores 

      The difference between two observes scores for the same person, called difference 

score, is widely used in behavioral research primarily (a) to measure the person’s growth 

across time points and (b) to compare the person’s scores on academic, psychological, or 

personality variables. For example, measurement of change using the person’s difference 

(or gain) score from pretest to posttest is used to assess the effect of specific educational 

programs, counseling treatments, and rehabilitation services or allied health interventions. 
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Clearly, the quality of the results and the validity of interpretations in studies on change 

and profile analysis depend, among other things, on the reliability of difference scores.   

        Technically, the difference of two scores, Y = X2 - X1, is a composite score of the 

sum Y = X2 + (- X1). Therefore, the reliability of the difference score, Y, can be estimated 

with Formula 14 (or its z-score version, Formula 15).  

        Example 5: As in Example 4, the data in this example also come from the study on 

attitudes and behaviors of students related to their sexual activities. However, instead of 

summing the scores on two scales, the composite score is now the difference (gain) from 

pretreatment to posttreatment measurements on a scale labeled “Self-affirmation”, that is, 

Y = X2 - X1, where X1 is the pretreatment score and X2, the posttreatment score on this 

scale. With these data, the variance of the difference Yz = z2 – z1 (where z1 and z2 are the 

standard values for X1 and X2 ) was σYz
2 = 0.786. The Cronbach’s alpha reliability estimates 

for X1 and  X2 were r11  = .8282 and r22 = .8374, respectively. Using Formula 15, the 

reliability of the difference scores is 

                                           rYY = −
− +

=1
2 8282 8374

0 786
575

(. . )
.

. .  

 
        Evidently, the reliability of the difference score (.575) is smaller than the reliability 

of the scores entering the difference (.8282 and .8374). As noted earlier, the reliability of 

the difference score, rYY, is (implicitly) influenced by the correlation between X1 and X2 

(in this case, r12 = .606) because this correlation affects the value of σYz
2  in Formula 15. 

        Caution. The use of difference (gain) scores in measurement of change has been 

criticized because of the (generally false) assertion that the difference between scores is 

less reliable than the score themselves (e.g., Cronbach & Furby, 1970; Linn & Slindle, 

1977; Lord, 1956). This assertion is true, however, if the prettest scores and the posttest 

scores have equal variances and equal reliability. When this is not the case, which may 

happen in many situations, the reliability of the gain score is reasonably high (e.g., 

Overall & Woodward, 1975; Zimmerman & Williams, 1982). The relatively low 



 24

reliability of gain scores does not preclude valid testing of the null hypothesis of zero 

mean gain score in a population of examinees, but it is not appropriate to correlate the 

gain score with other variables for these examinees (Mellenbergh, 1999). An important 

practical implication is that, without ignoring the caution urged by some authors, 

researchers should not always discard gain score and should be aware when gain scores 

are useful.         

 
Reliability of Weighted Sums 
 
        Let the scores from two tests, X1 and X2, have different “weights” (say w1 and w2, 

respectively) in a composite score,Y w X w X= +1 1 2 2 . To estimate the reliability of the 

composite score, Y, given the reliabilities of X1 and X2, one can (for simplicity) use the 

weighted composite score, Yz, of the standardized variables Z1 and Z2 which are obtained 

by transforming the raw scores of X1 and X2 into z- scores. That is, 
 
                                                        Yz w Z w Z= +1 1 2 2 .  

 
With this, the reliability of the composite score, Y (or Yz ) is given by the formula 
 

                                        r
r w r w

YY
Yz

= −
− + −

1
1 111 1

2
22 2

2

2
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,

σ
                                         (17) 

 
where   rYY  is the reliability of the composite score Y (or Yz), 

             r11   is the reliability of X1, 

             r22 is the reliability of X2, and 

             σYz
2  is the variance of the composite score Yz (the weighed sum of  Z1 and Z2). 

        Example 6. The reliability estimates (e.g., Cronbach’s alpha coefficients) for the 

scores from two tests, X1 and X2, are r11  = .72 and r22 = .80, respectively. The scores on 

the two tests are summed into a composite score, Y, with X1 given an importance of 40 

percent (w1 = 0.4) and X2, an importance of 60 percent (w2 = 0.6):Y X X= +( . ) ( . ) .0 4 0 61 2  
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        After transforming the scores on X1 and X2 into z- scores to obtain the standardized 

variables Z1 and Z2, respectively, the variance ofYz Z Z= +( . ) ( . )0 4 0 61 2  was found to be 

σYz
2 = 1.27. Using Formula 17 with this information, the reliability of the composite score  

Y is  
 

                                  rYY = −
− + −

=1
1 72 0 4 1 80 0 6

127
908

2 2( . )( . ) ( . )( . )
.

. .  

  
        Formula 17 can be easily extended to estimate the reliability of a weighted sum for 

the scores of more than two tests. In case of three tests, Formula 17 for the reliability of 

the composite scoreY w X w X w X= + +1 1 2 2 3 3  extends to  
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r w r w r w
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Yz

= −
− + − + −

1
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2
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                                 (18) 

                                  
where σYz

2  is the variance of Yz w Z w Z w Z= + +1 1 2 2 3 3. .  Formulas 17 and 18 (as well as 

their extensions for more than three tests) apply equally well when some of the weights 

are negative numbers.   
 
                       DEPENDABILITY IN GENERALIZABILITY THEORY 

        Generalizability theory (GT) is an extension of classical measurement theory and 

takes into account all available error sources (facets), such as items, raters, test forms, and 

occasions, that influence the reliability for either relative (norm-referenced) or absolute 

(criterion-referenced) interpretations (e.g., Brennan, 2001; Shavelson & Web, 1991). 

Classical test theory estimates only one source of error at a time and provides estimates 

of reliability only for relative decisions. Indeed, both coefficients of internal consistency 

(e.g., Cronbach’s alpha) and Pearson correlations for test-retest (or alternate forms) 

reliability are based on the relative standing of persons to each other on the measurement 

scale. Thus, classical reliability coefficients do not provide information on dependability 

of the absolute performance of a person regardless of relative performance of this person 

compared to other persons. Such information is provided, instead, with dependability 

coefficients in GT by estimating separately multiple sources of measurement error in a 
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single analysis. Generally, this is done by representing the overall error variance as a sum 

of variance components related to different sources of measurement error using statistical 

methods in the framework of analysis of variance (ANOVA).    

         Caution. As noted earlier, the true score in classical theory is the mean of observed 

scores that a person may obtain under numerous independent administrations of the same 

test. As a person may have different true scores for different sets of items, the classical 

true score theory does not provide information about how generalizable the person’s 

score is over a “universe” of admissible test items. Thus, the test items represent a 

potential source of error in generalization referred to as measurement facet. In GT, the 

universe of person’s admissible observations can be defined also by facets such as raters 

and occasions taken together. The accuracy of generalizing from a person’s observed 

score in a measurement to his/her universe score under all admissible testing conditions 

(e.g., items, raters, and occasions) is referred to in GT as dependability.  

 
Dependability with One-Facet Crossed Design 

        Let us examine the traditional measurement scenario in which persons are scored on 

the items of an instrument. In GT, this is referred to as persons-by-items (p x i) crossed 

design (ach person is scored on each item). Persons (p) are the object of measurement and 

items (i) represent a facet of the measurement (a potential source of  generalization error). 

With the ANOVA analysis of the (p x i) factorial design, in which persons (p) and items 

(i) are two random and crossed factors, the total variance of the observed scores,σ X
2 , can 

be represented as a sum of three variance components: (a) variance for persons, σ p
2 ,  (b) 

variance for items, σ i
2 ,  and (c) variance for “person-by-item” interaction which is 

confounded with the variance of other (unaccounted for) error of measurement (e), σ pi e, .  

The variance of “person-by-item” interaction (pi) cannot be separated from the variance 

of other possible sources of error because there is only one observation (score)  per cell in 
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the two-way (p x i) ANOVA data layout. The GT equation for the total observed variance 

as a sum of variance components with the one-facet crossed design (p x i) is 
 
                                                     σ σ σ σX p i pi e

2 2 2 2= + + , .                                                (19) 

 
        A diagram presentation of Equation 19 is provided in Figure 2. As “persons” are the 

object of measurement, their variance component, σ p
2 ,  is not related to random error of 

measurement. The other two variance components in Equation 19, however, are error 

related. Specifically, the variance component σ pi e,
2  is contributing to relative error of 

measurement because the interaction between persons and items (pi) affects the relative 

standings of persons on the scale of measurement (see Figure 2a). The larger the variance 

component σ pi e, ,2 the more the persons’ relative standings change from item to item.  
                

Fp
2

Fp
2Fi

2

F2
pi,e F2

pi,e

Fi
2

Relative Error Absolute Error

   a.   b.

 
Figure 2. Sources of error for relative and absolute interpretations with the p x i design.    

        The variance component σ i
2  indicates the degree to which the items differ in their 

average difficulty for all persons, but it does not reflect changes in the persons’ relative 

standings and, therefore, does not relate to relative error of measurement. Indeed, items 
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may vary in difficulty but the relative standing of persons may remain the same - if it 

does not, this would be reflected in largeσ pi e,
2 , not in largeσ i

2 .    

           For absolute (criterion-related) interpretations of the persons’ performance, both 

σ i
2 and σ pi e,

2  are taken into account (see Figure 2b) because the absolute performance of a 

person would depend on the items chosen in the test. The item selection (more difficult or 

easier items), however, affects both the average item difficulty and possible changes in 

the persons’ relative standings across items (i.e., both σ i
2 andσ pi e, ,2  respectively).  

        Given the variance components, one can estimate the relative error variance  
 

                                                         σ
σ

Re

,

l

pi e

in
2

2

=                                                            (20) 

and the absolute error variance 
           

                                                   σ
σ σ

Abs

i pi e

in
2

2 2

=
+ , ,                                                         (21) 

where ni is the number of items.  It is important to note that ni can be different from the 

number of items used in ANOVA to estimate the variance componentsσ i
2 andσ pi e, .2  Thus, 

Equations 20 and 21 can be used to “predict” the relative and absolute error variances for 

a test with given number of items, ni.  

        In GT, the score reliability for relative (norm-referenced) interpretations is referred 

to as generallizability (G-) coefficient:  
 

                                                 G p

p l

=
+

σ
σ σ

2

2 2
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.                                                               (22) 

 
A reliability-like coefficient for absolute (criterion-referenced) interpretation is referred 

to as index of dependability denoted Φ (phi): 

 

                                                 Φ =
+

σ
σ σ

p

p Abs

2

2 2 .                                                              (23) 



 29

 
        Caution. With the “person-by-item” (p x i) design, or any other one-faceted design  

(e.g., “person-by-rater” or “person-by-occasion”), the G-coefficient is comparable to the 

classical reliability coefficient, both suitable for relative (norm-referenced) interpretations 

only. The G-coefficient and Cronbach’s alpha are expected to have the same value when 

calculated with the same data. Also, the comparison of Formulas 20 and 21 (see Figures 

2a. and 2b.) shows that the relative error variance, σRe ,l
2  is always smaller than the 

absolute error variance, σ Abs
2 .  As these two error variances are in the denominator of the 

ratio for G and Φ (Equations 20 and 21 respectively), it follows that the dependability 

index is always smaller than the G-coefficient (Φ < G).  

        Example 7. Table 3 provides the scores of 20 persons on four items. The goal is first 

to estimate G and Φ with the data in Table 3 and then to “predict” them for a 20-item test. 

The procedure for achieving this goal is described in four steps. 

        Step 1: The ANOVA for the person-by-item (p x i) design with the data in Table 3 

provides the following estimates of the sample variance (“mean square”, MS) for persons 

(MSp = 0.718), items (MSi = 1.613), and the interaction between them confounded with 

other possible sources of error (MSpi,e = 0.437).     

       Step 2: Using the rules for expected mean squares with the (p x i) design (e.g., 

Shavelson & Webb, 1991, p. 29), we estimate the variance components (with a “hat” 

notation, $ ,σ 2  indicating that these are sample estimates, not population variances):   

                           $
. .

. ,,σ p

p pi e

i

MS MS
n

2 0 718 0 437
4

0 0702=
−

=
−

=  

 

  $
. .

. ,,σ i

i pi e

i

MS MS
n

2 1613 0 437
4

0 2940=
−

=
−

=  and 

                         
                         $ . ., ,σ pi e pi eMS2 0 437= =     

       Step 3:  Using Formulas 18 and 19 with the values for the variance components in 

Step 2, we estimate the relative and absolute error variances, respectively 
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                            $
.

.Reσ l
2 437

4
01093= =  ;  $

. .
. .σ Abs

2 437 2940
4

01828=
+

=  

 
       Step 4: Finally, using Formulas 20 and 21, we obtain  
 

                       G =
+

=
0 0702

0 0702 01828
3911

.
. .

.  ;   Φ =
+

=
0 0702

0 0702 01828
2775

.
. .

. .  

Table 3 
_____________________________________ 

  Person      Item 1  Item 2   Item 3   Item 4 

_____________________________________ 

     1  2 3 5  5 
     2  5 5 4 4 
     3  4 3 4 4 
     4  3 3 5 5 
     5  3 3 4 5 
     6  3 4 4 4 
     7  4 5 5 5 
     8  4 4 5 5 
     9  4 5 5 5 
   10  4 4 3 3 
   11  4 4 5 5 
   12  5 5 4 4 
   13  4 4 4 4 
   14  4 3 5 5 
   15         4 4 5 5 
   16  3 3 4 5 
   17  4 5 4 4 
   18  5 5 5 5 
   19  5 5 4 4 
   20  4 4 4 4 
_____________________________________  
 

       The Cronbach’s alpha coefficient for the data in Table 3 is α = .3911 and thus, as 

expected, equal to the GT estimate of reliability for relative interpretations (G = .3911). 

This, however, is true only with the “person-by-item” design (or other one-facet designs 

such as “person-by-rater” or “person-by-occasion”). Let us remind, however, that the 

estimation of the G-coefficient is possible with more than one sources of measurement 

error (facets), whereas classical reliability estimates such as Cronbach’s alpha or test-
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retest correlations are provided only with one-facet designs. Also, the GT index Φ for 

dependability of absolute decisions is not provided with the classical framework.  

        The second part of the assignment with this example relates to estimating G and Φ 

when the test consists of 20 items (ideally, parallel to the initial four items). To do this, 

we replace ni for 20 (instead of 4) in Steps 3 and 4 with the above calculations thus 

obtaining G = .7622 and Φ = .6579. The “predicted” values of G and Φ will further 

increase with the increase of the test length (e.g., with ni = 40 or ni = 60).  

        Note. In classical test theory (one-faceted designs such as “person-by-item), the 

“prediction” of reliability related to changes (increase/decrease) in the test length is 

provided by the Spearman-Brown formula 
 

                                                   r
kr
k rYY

XX

XX

=
+ −1 1( )

,                                                      (24) 

 
where k indicates how many times the number of the items of a test X (with reliability rXX) 

is increased or decreased (k > 1 or k < 1, respectively) to obtain a test Y with “predicted” 

reliability rYY. For example, if the reliability of a test X is rXX = .65, increasing the length 

of test X three times (k =3) would increase the reliability for the resulting test, Y, to rYY = 

3(.65)/[ 1 + 3(.65)] = .848. The Spearman-Brown formula produces classical reliability 

coefficients under assumptions that are difficult to satisfy in real measurements: (a) the  

items being added are parallel to the initial items and (b) the items have equal variances.  

 
Dependability with Two-Facet Crossed Design 
 
        Precision of measurements can be estimated in GT when two or more facets are 

taken into account. For example, if each person is evaluated by each of several raters on 

each of several occasions, the GT design “person-by-rater-by-occasion” (p x r x o) 

includes two facets, rater and occasion. The total variance of observed scores is then a 

sum of the variance component for persons, σ p
2 ,  and error related variance components 

for (a) raters,σ r
2 ,  (b) occasions, σ o

2 ,  (c) interaction “person-by-rater”, σ pr
2 , (d) interaction 
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“person-by-occasion”, σ po
2 ,  (e) interaction “rater-by-occasion”, σ ro

2 ,  and (f) interaction 

person-by-rater-by occasion confounded with other sources of error, σ pro e, ;2 (confounding 

occurs because there is only one observation for the within cell error variance with the 

ANOVA design “p x r x o “).  
 
        Example 8: Table 4 provides data for a GT design “p x r x o” where each of 10 

persons is evaluated by each of three raters on each of two occasions. The estimation of 

reliability for relative decisions (G-coefficient) and dependability for absolute decisions 

(Φ) is illustrated in four steps.  
 
Table 4 
_________________________________ 
                                           
                                            Rater 
                                     ____________ 
 
Person    Occasion         1      2       3 
_______________________________ 
 

1 1  1      1      6 
2      1      4      2 

                         
     2              1  4      7      6    
                     2  2      5      7  
     
     3              1  2      5      2 
                     2  5      6      6  
      

4 1  2      7      6 
                     2   6      4      7 
 

5 1  6      3      3 
2  5      6      7 

 
6 1  4      3      3   

                     2   5      3      5 
 

7 1  5      3      6 
2  5      2      2 

 
8 1  3      7      4 

2  7      7      6 
               
     9              1  4      2      6 
                     2  2      3      5 
 
   10              1  3      2      2 
                     2  3      5      2 
_______________________________    
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       Step 1: The three-way (person x rater x occasion) ANOVA with the data in Table 4 

provides estimates of the sample variances (“mean square”, MS) for the factors person, 

rater, and occasion, as well as the interactions between them: MSp = 6.891,  MSr = 4.067, 

MSo = 4.817, MSpr = 2.974,  MSpo = 3.113, MSro = 0.067, and MSpro,e = 2.863 (variance 

for the interaction between person, rater, and occasion, confounded with other possible 

sources of measurement error).      
              
        Step 2:  Using the rules for expected mean squares with the (p x i) design (Shavelson 

& Webb, 1991, p. 33), we obtain estimates of the variance components. When negative 

variance components occur, they are set to zero [ ≅ 0] because this is due to sampling 

error (variances cannot be negative). 
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        Step 3: Using the values for the variance components in Step 2 in the GT formulas 

for relative and absolute error variances with the “p x r x o” design (e.g., Shavelson & 

Web, 1991, p. 96), we obtain 
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        Step 4: Using Formulas 20 and 21, we obtain the G-coefficient for reliability of 

relative (norm-referenced) interpretations and index Φ for dependability of absolute 

(criterion-related) interpretations, respectively: 
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        One can “predict” the values of G and Φ for any number of raters and/or occasions. 

As an exercise, the reader may do this for 10 raters and 4 occasions, by using nr = 10 and 

no = 4 in Steps 2 and 3 and then conduct Step 4 with the obtained estimates for σ σp l
2 2, ,Re  

andσ Abs
2 .      

        Note. The above example deals with a two-facet crossed design (p x r x o) where 

each person is evaluated by each rater on each occasion. However, if different persons are 

evaluated on different occasions by each rater, then raters are still crossed with both 

persons and occasions, but this time occasions are nested within persons (denoted as o:p). 

This is referred to in GT as a partially nested (o:p) x r design. Theoretical and practical 

discussions of with various (crossed, nested, and partially nested) designs are provided in 

numerous sources on generalizability theory (e.g., Brennan, 2001, 2000; Shavelson & 

Webb, 1991). Practical applications of such designs can be tremendously facilitated by 

the use of the computer program for GT analysis GENOVA (Crick & Brennan, 1983).  
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Dependability of Cutting-Score Classifications  

        In many measurement scenarios, criterion-referenced decisions (e.g., pass/fail or 

mastery/nonmastery) are based on a cutting score indicating the proportion of items 

answered correctly. In the context of GT, Brennan and Kane (1977) introduced the 

following dependability index, Φ(λ), for criterion-referenced decisions based on a cutting 

score, λ: 
 

                                          Φ ( )
( )

( )
,λ

σ µ λ
σ µ λ σ

=
+ −

+ − +
p

p Abs

2 2

2 2 2                                          (25) 

 
where  µ is the theoretical mean of persons’ scores (proportion of items correct), 

            λ is the cutting score (proportion of items correct), 

           σ p
2  is the variance component for persons, and  

           σ Abs
2 is the absolute error variance (see Equation 21).  

        Practical estimations of Φ(λ) are obtained by replacing the population parameter µ 

and the variance components by their sample-based estimates. Specifically, an unbiased 

estimate of (µ – λ)2 is provided by ( ) $ ( ),X X− −λ σ2 2 where $ ( )σ 2 X is the estimated 

variability produced by replacing the population mean µ for its sample estimate, X .  For 

example, the calculation of $ ( )σ 2 X  with the  “person x item” (p x i) design discussed in 

the previous section is 

 

                                               $ ( )
$ $ $
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X
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pi e

p i

= + +                                              (26) 

        Example 9:  The purpose of this example is to illustrate the estimation of Φ(λ) for 

the data in Table 5 with the “person x item” (p x i) design when the cutting score for 

“pass/fail” decision is λ = .80 (i.e., 80 percent items correct are required for a person to 

pass the test). It is necessary first to evaluate $ ( )σ 2 X  with Equation 26 and then Φ(λ) 

with Equation 25. The estimation procedure is described in five steps.  
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Table 5 
_______________________________ 
                                  Item 
                 ____________________  
Person      1  2  3  4  5  6  7  8  9 10 
_______________________________ 
     1      1  0  1  0  1  0  0  0  0  0    
     2      1  1  1  1  1  1  0  1  1  1 
     3      1  1  1  0  1  1  0  1  1  1 
     4      1  0  1  1  1  1  1  0  1  0 
     5      1  0  1  0  1  0  0  0  0  0 
     6      1  0  0  0  0  0  0  0  0  0 
     7      1  1  1  0  0  0  1  1  0  0 
     8      0  1  1  1  0  0  0  0  0  0 
     9      1  1  0  1  0  0  1  0  0  1 
   10      0  0  1  0  1  0  0  0  0  0 
   11      1  1  1  1  1  1  0  1  1  1 
   12      0  0  1  0  1  0  0  0  1  0 
   13      1  1  1  0  1  0  1  1  1  1 
   14      1  1  0  0  0  0  0  0  0  0 
   15      1  1  0  0  0  0  0  0  0  0 
   16      1  0  1  0  0  0  0  0  0  0 
   17      1  0  1  0  0  0  0  0  0  0 
   18      1  1  1  1  0  1  0  0  0  0 
   19      1  1  1  1  1  1  0  1  0  1 
   20      0  1  0  0  0  0  0  0  0  0 
_____________________________ 
         

        Step 1:  With the data in Table 5, np = 20, ni = 10, and the sample mean (proportion 

correct) over all persons and items is X = 0 45. .  

        Step 2: By following the first three steps described in Example 7 for the “person-by-

item” (p x i) design, we obtain estimates of the components involved in calculations with 

Equations 26 and 25: $σ p
2 = 0.0628,  $σ i

2 = 0.0366,  $ ,σ pi e
2 = 0.155, and $σ Abs

2 = 0.0192.  

        Step 3: Using Equation 24 with the estimates reported in Step 2, we obtain 

                 $ ( )
. . .

. .σ 2 0 0628
20

0 0366
10

0155
200

0 0076X = + + =  

 
        Step 4: The term (µ – λ)2 in the right-hand side of Equation 25 is estimated as  
 
                    ( ) ( ) $ ( ) (. . ) . . .µ λ λ σ− = − − = − − =2 2 2 245 80 0 0076 01149X X  

 
        Step 5: Using Equation 25 with the values obtained in the previous steps, one can  
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determine Φ ( )λ for any (proportion correct) cutting score, λ, as 
 

                                    Φ ( )
. (. )

. (. ) .
.λ

λ
λ

=
+ −

+ − +
0 0628 45

0 0628 45 0 0192

2

2                                     (27) 

 
 For λ = .8 in Equation 27, we obtain Φ ( )λ = .906. Thus, the dependability for “pass/fail” 

(or mastery/nonmastery) classifications based on a cutting score λ = .8 (i.e., 80 percent 

items correct) is Φ ( )λ = .906.  

        Figure 3 displays values of Φ ( )λ obtained with Equation 27 for different (proportion 

correct) cutting scores, λ, that vary from 0 to 1. The lowest dependability is reached when 

the cutting score equals the mean of proportion correct scores over all persons and items 

(in this case, λ = µ = 0.45). Specifically, replacing  λ for .45 in Equation 27, we obtain the 

lowest dependability index with the data in this example: Φ ( )λ = .766 (see Figure 3). The 

implication is that the less reliable strategy in pass/fail (mastery/nonmastery) decisions is 

to use the mean domain score as a cutting score.  

 

                   

                   
                 Figure 3. Values of the dependability index,Φ ( ),λ as a function of the 

                 cutting score, λ, for the data in Example 9.  
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     SUMMARY 

This chapter introduces the concept of reliability, types of reliability, different methods of 

estimating reliability, and principles in interpreting and comparing reliability coefficients. 

Some major points are summarized here in the form of pith-laden responses to questions 

addressed in this chapter.   

What is reliability?  

        Generally, reliability of measurements (e.g., test scores and survey ratings) indicates 

their accuracy and consistency under random variations in measurement conditions. Such 

variations may be produced by person’s conditions (e.g., fatigue or mood) and/or external 

sources (e.g., noise, temperature, different raters, and different test forms). It is important 

to emphasize that reliability relates to the measurement data obtained with an instrument, 

not to the instrument itself. Therefore, accidental reference to “reliability of a test” should 

be interpreted as “reliability of measurement data derived from a test”. 

        In classical test theory, the true score of a person is defined as the theoretical mean 

of the observed scores that this person may have under numerous independent testings 

with the same test. A basic assumption is that the person’s observed score is a sum of 

his/her true score and an error. Tests with equal true scores and equal error variances, for 

any population of examinees, are referred to as parallel tests. The reliability of test scores 

is defined as the correlation between observed scores on parallel tests or, equivalently, as 

the ratio of the true score variance to observed score variance for the same test. 

        Standard error of measurement (SEM) is the standard deviation of the (assumed 

normal) distribution of the difference between the persons’ observed scores and their true 

scores. Standard error of estimation (SEE) is the standard deviation of the differences 

between the persons’ actual true scores and estimated true scores when observed scores 

are used to predict true scores in a simple linear regression. The SEE is always smaller 

than the SEM. Therefore, when the estimation of true scores is of primary interest, the 

regression prediction of true scores using SEE should be preferred to confidence intervals 

for true scores using SEM.  
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What are the classical types of reliability? 

        Five types of classical reliability were discussed in this chapter: internal consistency, 

test-retest reliability, alternate form reliability, classification consistency, and inter-rater 

reliability.  

       Internal consistency estimates of reliability are based on the average correlation 

among items within an instrument. If the instrument consists of different scales, internal 

consistency should be estimated for each scale. Widely used estimates of internal 

consistency are the split-half reliability coefficient and the Cronbach’s coefficient alpha 

(or its equivalent version, KR20, for dichotomously scored items). The split-half method 

is appropriate under the strong assumption that the two halves of test being used represent 

parallel (sub)tests. A weaker assumption, tau-equivalency of test components, is required 

with Cronbach’s alpha (or KR20). Internal consistency estimates are appropriate mostly 

with achievement tests. It is always useful to report the internal consistency of test scores 

even when other types of reliability are of primary interest. With speed tests, however, it 

would be misleading to report estimates of internal consistency.   

        Test-retest reliability indicates the extent to which persons consistently respond to 

the same test, inventory, or questionnaire administered on different occasions. It is 

estimated by the correlation between the observed scores of the same people taking the 

same test twice. The resulting correlation coefficient is referred to also as coefficient of 

stability. The major problem with test-retest reliability estimates is the potential for carry-

over effects between the two test administrations (e.g., due to biological maturation, 

cognitive development, changes in information, experience, and/or moods). Thus, test-

retest reliability estimates are most appropriate for measurements of traits that are stable 

across the time period between the two test administrations (e.g., personality and work 

values). Basically, test-retest reliability and internal consistency are affected by different 

sources of error and, therefore, it may happen that measures with low internal consistency 

have high temporal stability and vice versa. 
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        Alternate form reliability relates to the consistency of scores on alternate test forms 

administered to the same group of individuals. It is estimated by the correlation between 

observed scores on two alternate test forms, referred to also as coefficient of equivalence.  

Estimates of alternate form reliability are also subject to carry-over effects but not as 

much as test-retest reliability coefficients because the persons are not tested twice with 

the same items. A recommended rule-of-thumb is to have a 2-week time period between 

administrations of alternate test forms.  

        Criterion-referenced reliability shows the consistency with which decisions about 

mastery-nonmastery of a specific objective (criterion) are made, using either the same 

test administered on two occasions or alternate test forms. Widely used classical indices 

of classification consistency are the observed proportion of consistent classifications and 

the (more conservative) Cohen’s kappa coefficient which takes into account consistent 

classifications that may occur by chance.   

        Inter-rater reliability refers to the consistency (agreement) in subjective judgments 

of raters (experts, judges) used for classification purposes (e.g., to determine a “minimum 

level of competency” in pass/fail decisions) or scoring rubrics in alternative assessments 

(e.g., portfolios, projects, and products). Depending on the measurement case, frequently 

used estimates of inter-rater reliability are correlation coefficients, observed proportion of 

consistent classifications, and Cohen’s kappa coefficient (or kappa-like coefficients).  

What is reliability of composite scores? 

       The person’s scores from two or more scales of some instruments are combined into 

composite scores to measure and interpret a more general dimension (trait or proficiency) 

related to these scales. Composite scores are often used with test battery for achievement, 

intelligence, aptitude, depression, or eating disorders. Although the composite score may 

be simply the sum of several scale scores, its reliability is usually not just the mean of the 

reliabilities for the scales being combined. In this chapter, the reliability estimation for 
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composite scores is addressed for cases when the composite score is a sum (or difference) 

of two scale scores or a weighted sum of scores.  

How to improve classical reliability of measurements? 

        Researchers and test users can reduce measurement error thus improving reliability 

by (1) writing items clearly, (2) providing complete and understandable test instructions, 

(3) administering the instrument under prescribed conditions, (4) reducing subjectivity in 

scoring, (5) training raters and providing them with clear scoring instructions, (6) using 

heterogeneous respondent samples to increase the variance of observed scores, and (7) 

increasing the length of the test by adding items which are (ideally) parallel to those that 

are already in the test. The general principle behind improving reliability is to maximize 

the variance of relevant individual differences and minimize the error variance.  

What is dependability in generalizability theory? 

        In classical (true-score) test theory, reliability estimation is based on a single source 

of measurement error (facet) – most frequently, items or raters. Also, classical estimates 

of reliability (e.g., test-retest correlation, coefficient alpha, or KR20) provide consistency 

information about the relative (norm-referenced) standing of persons to each other on the 

measurement scale, but not about their absolute (criterion-referenced) performance. As a 

person may have different true scores for different sets of items, the classical true score 

theory does not provide information about how generalizable the person’s score is over a 

“universe” of admissible test items. 

        Generalizability theory (GT) is an extension of classical measurement theory and 

takes into account all available error sources (facets), such as items, raters, test forms, and 

occasions, that influence the reliability for either relative or absolute interpretations. This 

is done by representing the total error variance as a sum of variance components related 

to different sources of measurement error using ANOVA-based statistical designs. In GT, 

the accuracy of generalizing from a person’s observed score in a measurement to his/her 

universe score under all admissible testing conditions (e.g., items, raters, and occasions) 

is referred to as dependability.  



 42

        The section on GT dependability in this chapter illustrates the estimation of (relative 

and absolute) error variance, G-coefficient for relative (norm-referenced) interpretations, 

and index Φ(λ) for dependability of absolute (criterion-referenced) interpretations based 

on a (proportion correct) cutting score, λ. The lowest value of Φ(λ) is reached when the 

cutting score equals the mean of proportion correct scores over all persons and items. In 

this case (lowest possible dependability for absolute decisions with the test data), Φ(λ) is 

referred to simply as dependability index Φ. The logic with the GT designs illustrated in 

this chapter, “person-by-item” (p x i) and “person-by-item-by-occasion” (p x r x o), is 

efficiently applied in GT with various (crossed and/or nested) designs for estimation of 

dependability of relative and absolute interpretations of measurements (e.g., Brennan, 

2001; Shavelson & Webb, 1991).  

Why is reliability important? 

        The most important characteristic of (objective or subjective) of any measurement is 

its validity, that it, the degree to which measurement data lead to correct, meaningful, and 

appropriate interpretations. To allow for such interpretations, however, the scores should 

be accurate and consistent (i.e., reliable). Criterion-related validity of an entrance exam 

test, for example, is assessed by the correlation between the persons’ scores on this test 

and their scores on a criterion (e.g., GPA at the end of the first academic year). However, 

the observed test scores on a test cannot correlate higher with any other (criterion) scores 

than they correlate with the true scores on the test. On the other side, the squared value of 

the correlation between the observed and true scores on a test represents the reliability of 

the test scores. Thus, a criterion-related validity coefficient of test scores cannot exceed 

the square root of their reliability. In other words, the reliability of scores predetermines 

a “ceiling” for their criterion-related validity. However, how closely this ceiling will be 

approached depends on other factors as well. Therefore, the reliability is a necessary 

(albeit not sufficient) condition for validity.   

        Reliability of measurement data is also an important assumption in hypothesis 

testing with statistical methods. For example, many research cases involve comparisons  
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of two or more groups on a posttest while controlling for pre-test differences among the 

groups. The extent to which the pretest scores (i.e., covariate) are unreliable, the groups 

being compared will not be truly equated on the pretest and the results will be misleading. 

Using analysis of covariance assumes highly reliable scores on the control variables. Cliff 

(1987) compared the effects of lacking reliability and validity in measures to “effects that 

resemble tuberculosis as it occurred a generation or two ago: hey are widespread, the 

consequences are serious, the symptoms are easily overlooked, and most people are 

unaware of their etiology or treatment.” (p. 129).  

        Yet, reliability estimates and/or measurement errors for the data at hand are still 

seldom reported in behavioral research. As Thompson (1992) pointed out, “one reason 

why researchers give too little attention to measurement considerations is that researchers 

often incorrectly presume that the characteristics of reliability inures to tests, when in fact 

reliability is a characteristic of a given set of data collected at a given time form a given 

set of subjects using a given protocol.” (p. xii). The quality, accuracy, consistency, and 

meaningfulness of measurements should be in the focus of researchers and practitioners 

in counseling, education, and related fields. An important factor in this process is gaining 

a thorough understanding of the concept of reliability and skills in its estimation and 

proper interpretations.   

 
.                 STUDY QUESTIONS AND PROBLEMS 
   

1. Provide examples of incidental person’s conditions that may affect the observed 

score of the person on a test. 

2. Provide examples of incidental external conditions that may affect the observed 

score of the person on a test. 

3. What do X, T, and E stand for in classical test theory? How do they relate? 

4. Would the person’s true score be the same on any two tests that measure the 

same trait (e.g., verbal proficiency or anxiety)? Explain.  

5. How are reliability and error of measurement related? 
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6. Provide (up to three) equivalent definitions of reliability in classical test theory. 

7. Which method of estimating internal consistency reliability, split-half method or 

Cronbach's alpha, works under stronger (more difficult to satisfy) assumptions?  

8. If a person has 53 points on a test and the standard error of measurement is two 

points, what is (approximately) the 95% confidence interval for the person’s 

true score on this test?  

9.  If the variance of the observed scores on a test is 36 and the Cronbach’s alpha 

coefficient is .85, what is (a) the standard error of measurement, (b) the standard 

error of estimation, and (c) the predicted true score for a person with an 

observed score of 24 if the population mean is reported to be 30.       

10. Which classical assumption requires the test components to measure the same 

trait and have equal true score variances? What is the effect of violating this 

assumption on estimates of internal consistency (Cronbach’s alpha or KR20)?  

11. Which coefficient, alpha or KR20, is appropriate for estimating the internal 

consistency of scores obtained on a 5-point survey scale? 

12. Are the alpha coefficient of reliability and the correlation coefficient for test-

retest reliability interchangeable?  

13. What may cause the correlation between the scores on alternate test forms to be 

much lower (say, 0.20 or more) than the internal consistency of these scores?   

14. What is important to take into account when adding new items to a test to 

increase its reliability as predicted by the Spearman-Brown formula? 

15. Is a large variability of observed scores more important for internal consistency 

or classification consistency (e.g., in “mastery/nonmastery” decisions)? 

16. How would you check for subjectivity in scoring when two alternate forms of a 

measurement instrument are used by (two or more) raters?    

17. Is the reliability of a composite score obtained by summing the person’s scores 

on two scales equal to the average reliability for the two scales?  
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18. Is the reliability of the pretest to posttest difference (gain score) usually smaller 

or larger than each of the reliabilities of the pretest and posttest scores? 

19. What is the conceptual difference between the classical true score of a person 

and the person’s universe score in generalizability theory (GT)? 

20. In which measurement scenario (design) the classical coefficient alpha and the 

generalizability coefficient (G-coefficient) are comparable? 

21. What type of error variance (relative, absolute, or both) is affected by the 

variance of the interaction between students and raters in a measurement where 

each student is evaluated by each rater ( “student -by-rater” design)? 

22. Why is the relative error variance always smaller than the absolute error 

variance in GT? (Hint: see Figure 2.) 

23. What are, in general, the advantages of dependability coefficients in GT over 

reliability coefficients in classical test theory?  

24. Determine the degree of agreement between two teachers (inter-rater reliability) 

given the frequencies of their mastery-nonmastery classifications of 100 essays.  

   (Hint: see Example 3.)  

                                                                 Teacher B 
                                                          Mastery      Nonmastery 
                                                      ______________________ 
                                   Mastery              40                 10     
              Teacher A 
                                Nonmastery          15                 35 
                                 _________________________________       
 
        
       25. A study investigates the effect of a counseling treatment for reducing road rage as  

             measured on a driving anger scale. The alpha reliability coefficient for the  

             participants’ scores on this scale was found to be .88 before the treatment and .79   

             after the treatment. The treatment effect was measured by a gain score obtained  

             by subtracting the standard (z-) scores on the pre-treatment from the standard (z-)  

             scores on the post-treatment measurements. Estimate the reliability of the gain  

             score given that its variance is 1.42. (Hint: see Example 5.) 
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26. What is the reliability for the sum of the person’s scores on two different scales 
 

of cognitive processing ability, given that (a) the score variances for the two 

scales are 8.5 and 10.2, respectively, (b) the reliability estimates for the two 

scales are .77 and .82, respectively, and (c) the variance of the sum (composite 

score) is 14.5. (Hint:  use Formula 14).  

        27. What is the reliability of a composite score, Y, obtained as a sum of the person’s  

              scores on three subscales of mental health disorders (e.g., anxiety, depression,  

              and sleep disturbances), denoted X1, X2, and X3, respectively. Given below are  

              the variances and the alpha coefficients of reliability for the three scales and the  

              variance of the composite score. (Hint: Extend Formula 14 for X1, X2, and X3.) 

              __________________________________________ 
 
                                             Subscale                 
                                    _________________      Composite   
 
                                        X1          X2        X3                 score, Y 
             ________________________________________ 
 
              Variance           35        28       42                90 
      
              Reliability        .80       .77      .85  
            __________________________________________ 
                                   

       28. In a study on aggressive behavior among middle school students, 40 students  

             were evaluated by four raters (teachers and school counselors) on a 4-point scale.  

             As each rater evaluated each student, the data were analyzed with the “student- 

             by-rater” (s x r) design in GT. The analysis of variance (ANOVA) results for the 

             sample variances (“mean square”) for students (s), raters (r), and their interaction  

             confounded with other possible sources of error, e) were: MSs = 2.76, MSr = 5.71,  

             and MSsr,e = 1.85. Using these results for the sample of 40 students (ns = 40) and  

             four raters (nr = 4), calculate the estimates for (a) relative error variance, σRe ,l
2   

             (b) absolute error variance, σ Abs
2 ,  (c) G-coefficient for relative (norm-referenced)  

             interpretations, and (d) dependability index, Φ, for absolute (criterion-referenced)  

             interpretations. (Hint: see Example 7.)    
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