# RELIABILITY ENGINEERING REPORTSAND SERVICESWE DOIN'T SELL YOU SOFTWARE!! WE DO THE<br/>REPORTS FOR YOU!!

**\*INSTANT MTBF REPORTS!\*** PSI will send you a RELIABILITY PREDICTION REPORT within minutes to your e-mail address. Click on the "Instant MTBF" button to access input data sheets. Just enter quantities of each part type in your equipment. It's that easy!! Fill in the header information as you want it to appear in the report. More than one assembly? Just repeat the above instructions. Predictions are per MIL-HDBK-217F (N1/2) or Commercial/Bellcore. Your Choice!

Probabilistic Software, Inc. (PSI) is a thirty-five year old California corporation specializing in the preparation of the following reliability engineering reports to meet Commercial, DOD, DOT, DOE, FAA, NASA, FDA, etc. qualification requirements:

- RELIABILITY PARTS COUNT OR PARTS STRESS PREDICTION (MTBF)
- MAINTAINABILITY PREDICTION (MTTR)
- DERATING ELECTRICAL STRESS ANALYSIS
- FAILURE MODE, EFFECTS AND CRITICALITY ANALYSIS (FMEA / FMECA)
- SAFETY HAZARD ANALYSIS
- WORST CASE (PARTS/CIRCUITS) TOLERANCE ANALYSIS
- THERMAL ANALYSIS
- FAULT TREE ANALYSIS
- MECHANICAL RELIABILITY PREDICTION
- TESTABILITY / BIT ANALYSIS
- CONFIDENCE LEVEL ANALYSIS

PSI will perform, document and deliver the above listed reliability analysis reports from your design data on a firm, fixed price basis, in final typed form, suitable for reproduction and submittal to your customer. All prices include our guarantee of the acceptance and approval of the reports by you and your customer.

Click on the "Brochure" button to view PSI Clients, Projects, Capabilities.

Click on the "Examples" button to view our typical Mil-Spec engineering data analysis tabulations.

Probabilistic Software, Inc. (PSI), PSI Building Suite 101, 4536 Indianola Way, La Canada Flintridge, CA 91011, Telephone: (818) 790-6412 \* Facsimile: (818) 790-9743 \* e-mail: PSIREL1@aol.com \* URL: <a href="http://www.e-Reliability.com">http://www.e-Reliability.com</a> \* Copyright © 2002 Probabilistic Software, Inc. All rights reserved.

# PERFORMANCE: PAST AND PRESENT

The following is a partial list of Systems/Equipment on which PSI has performed:

AH-64 Apache Helicopter PBTS Proton Beam Treatment System Improved Thermal Sight System, Light Armored Vehicle (LAV-25) Geostationary Operational Environmental Satellite (GOES) N-Q XM-Radio Missile System Prelaunch Safety Data Package (MSPSP) ICO Final Missile System Prelaunch Safety Package ETS-8 Propellant Tank Emergency Escape Sequencing System Tester (EESST) ITAS/IBAS/Missile Control Subsystem (MCS) Power Supply Assembly (PSA) IBAS/TAS Periscope Head Subassembly (PHS) Power Supply Assembly (PSA) IBAS/MCS Line Filter (FL1) CCA IBAS/TAS/LTAS Reticle Projector Assembly Wireless Ground Link Quick Access Recorder Interlock C-17A Drogue Parachute Camera Video System P2 Fuel Control Isolation Valve DOT Scan Terminal and Communication Cradle Space Based Infra Red System (SBIRS)/Central Theater Processing Program (CTPP) Talon Shield Automated Tape Library Systems Attack and Launch Early Reporting to Theater Stabilized Infrared Scanner Passenger Entertainment System High Performance Power Supply ASW Digital Computer Unit, MK38/MOD 0 IDL System Pod Data Terminal and Peculiar Support Equipment (PSE) Torpedo System, MK49/MOD 1 L-1011 (Airbus) Automatic Flight Control System NASA/Houston Recorder-Reproducer (Mag Tape) Airborne Warning and Control System (AWACS) Avionics System Air Traffic Control System DPC Model 4910 Line Printer

ELINT Systems ECM Systems Computer Card-reader System P-3C Aircraft Automatic Flight Control System F-16 Aircraft Automatic Flight Control System A&C Band Jammers Magnetic Tape Transport Single Pole Double Throw (SP2T) IF Switch With Driver Communications Recorder Model No. VR2004A Sea Sparrow Fire Control System Sea Wolf Submarine Power Supply Static Frequency Changer & Direct Current Output Supply (407L) Low Light Level Television Camera Subsystem/Type 18 Periscope AWACS Magnetic Tape Transport AEGIS Shipboard MK84/Mod 1 400 Hz Power Supply System Uninterruptible Power Supply System SEAFIRE Program Space Shuttle Mass Memory System Galileo Space Program Tape Recorder International Solar Polar Mission Magnetic Tape Transport Space Telescope Recorder/Reproducer System FIDS/BISS, Facility Intrusion Detection System RF Data Link Boeing Aircraft 767 Auto-Brake/Anti-Skid Systems TADS, Target Acquisition & Detection System Displays Solar Panel Charger & Controls Infra Red Aiming Light KC-10A Inflight Refueling System Tornado Aircraft Inflight Refueling Commercial Aircraft Audio Entertainment System 400 Hz Frequency Converters Static Inverter Power Supplies Magnetic Card Reader, Mark Sense Video Display Monitors RF Data Link Systems Telephone Switching Systems/Message Centers

Filter Connector for Telephone PBX Equipment High Speed Impact Computer Printer High Performance Aircraft Flap Controls Elint Systems Automated Information Storage & Retrieval Systems Floppy Disk Drives Advanced RF Receivers, Transmitters, and Repeaters Bouy RF Receivers/ASW Instrument Calibration Equipments Aircraft Windshield Defrosters/Deicers Electro-Mechanical Submarine Decoy Systems AN/TPX-42A, Air Traffic Control Systems Dish Radar, Pedestal, and Control System Radio Management System RADOPS RF Scorer Nuclear Power Generating Station Equipment Alphanumeric Graphics Printer Deep Space Network Software Testing C-17A Aircraft Autobrakes/Antiskid System MD-11 Aircraft Autobrakes/Antiskid System Boeing 747-400 Aircraft Autobrakes/Antiskid System USN A-12 Aircraft Autobrakes/Antiskid System RADARSAT Satellite Digital Tape Recorder Catapult Launched Fuel-Air Explosive Land Mine Countermeasures System Space Station Freedom EVA Portable Contamination Detector SPOT, ERS-1 & JERS-1 Satellites Digital Tape Recorders Sounding Rocket Inertial Navigation System

## PERFORMANCE: PAST AND PRESENT

The following is a partial list of customers for which PSI has performed:

Advanced Retail Technology, Inc. Aerojet Electro Systems Company Aeronautical Accessories Airborne CCTV, Division of Puritan-Bennett Aero Systems/Nellcor Ampex Corporation, Computer Products Division American Nucleonics Corporation Anadex **APS Systems** Arco Solar Inc., Division of Atlantic Richfield Company Arral Industries Audio-In-Motion AVICOM International Avtel Corporation, Division of Aertronics, Inc. B/E Aerospace, Avionics Division Beckman Instruments, Inc. Bell & Howell, Video Division/AVICOM Bell & Howell, Instrumentation Division Bermite, Division of Tasker Industries BHK Inc. Boeing Satellite Systems, Inc. Canavco, Inc. Cartwright Engineering Incorporated Chatsworth Data Systems Clary Instruments Company Conrac Corporation, Systems-West Division Continental Telecommunications Corporation, Division of Continental Telephone Company Cubic Corporation Data Products Corporation Dowty Corporation, Resdel Engineering Division **DRS Sensor Systems** 

DRS Optronics, Inc. EECO Incorporated EEMCO Division of Datron Systems, Inc. Electronics Resources, Inc. **Electronics Specialty Company** Electro Optics Systems, Division of Xerox Corporation Elgar Corporation, Division of Onan, Inc./McGraw Edison Honeywell, Inc., Defense & Electronics Division Honeywell, Inc., Marine Systems Center Hydro-Aire Division of The Crane Company Incosym, Inc., Division of Textron Corporation Industrial Electronic Engineers, Inc. Infodetics, Inc. International Telephone & Telegraph, Cannon Electric Division Kinelogic Corporation Lear Siegler, Inc., Astronics Division Librascope Division of Singer Aerospace & Marine Systems Litton Data Systems Division Lockheed Electronics Company, Division of Lockheed Aircraft Company Magnavox Electronics Systems Company, West Coast Division MagneTek Defense Systems Corporation McDonnell Douglas Corporation Naval Ship Missile Systems Engineering, Systems Effectiveness Division Ocean Technology, Inc. Odetics, Inc., Spaceborne, Kode and Omutec Divisions Odetics, Inc., Advanced Intelligent Machines Division Optivus Technologies, Inc. Perkin-Elmer Corporation, Applied Science Division Pertec Computer Corporation Pressure Systems, inc. Phaostron Instrument and Electronics Company, Division of Sterling Electronics, Inc. Radtec, Inc./Division of Guide Scientific Company Sargent-Fletcher Company Sargent Industries

Science Applications, Inc. Sierracin Corporation/Sylmar Division Signal Design, inc. Static Power, Inc., Division of Gates Rubber Company Tasker Industries/Whittaker Corporation Teledyne Control Electronic Safety Products Teledyne Control Teledyne Electronic Technologies Transco Products, Inc. US Naval Metrology Engineering Center Vari-L Company, Inc. Volt Technical Xerox Electro-Optical System Corporation

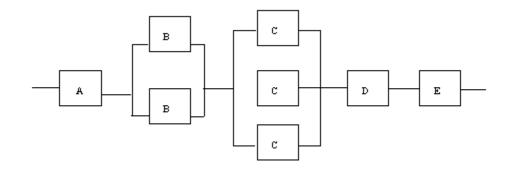
# **EXAMPLES OF RELIABILITY ANALYSIS TABLES**

# TABLE OF CONTENTS

| Section | Title                                          |
|---------|------------------------------------------------|
| 1.0     | RELIABILITY PARTS STRESS PREDICTION            |
|         | 1.1 Mathematical Modeling                      |
|         | 1.2 Parts Stress and Failure Rate Data         |
| 2.0     | MAINTAINABILITY PREDICTION                     |
| 3.0     | DERATING ELECTRICAL STRESS ANALYSIS            |
| 4.0     | FMECA-MI                                       |
|         | 4.1 Failure Mode and Effects Analysis          |
|         | 4.2 Criticality Analysis                       |
|         | 4.3 Maintainability Information                |
| 5.0     | SAFETY HAZARD ANALYSIS                         |
| 6.0     | WORST CASE (PARTS/CIRCUITS) TOLERANCE ANALYSIS |
| 7.0     | THERMAL ANALYSIS                               |
| 8.0     | FAULT TREE ANALYSIS                            |
| 9.0     | MECHANICAL RELIABILITY                         |
| 10.0    | EXAMPLE FAILURE RATE ANALYSIS FOR POPPET VALVE |
|         | ASSEMBLY                                       |
| 11.0    | TESTABILITY / BIT ANALYSIS                     |
| 12.0    | CONFIDENCE LEVEL ANALYSIS                      |
|         |                                                |

Copyright © 2002 by Probabilistic Software, Inc., All Rights Reserved.

Section 1.0


**RELIABILITY PARTS STRESS PREDICTION** 

# Section 1.1

## **RELIABILITY MATHEMATICAL MODELLING**

MIL-STD-785B, Task 201 MIL-STD-756B, Task 102 Reliability Logic Block Diagram Reliability Mission Mathematical Model

| Block | Assembly Name<br>Schematic No. | Failure<br>Rate, λ<br>ΡΡΜ   |
|-------|--------------------------------|-----------------------------|
| A     | Converter/30684941             | λ <sub>A</sub> = 12.1937    |
| В     | Encoder/30684944               | λ <sub>B</sub> = 6.1375     |
| С     | Inverter A/30684942            | $\lambda_{\rm C}$ = 15.2983 |
| D     | Inverter B/30684943            | $\lambda_{\rm D}$ = 16.3430 |
| E     | Splitter/30684945              | $\lambda_{\rm E}$ = 4.1355  |
| Total | Sam Power Supply               | λ <sub>SPS</sub> = 54.1080  |



$$R_{SPS} = R_A (2R_B - R_B^2) (3R_C - 3R_C^2 + R_C^3) R_D R_E$$
  
=  $6R_A R_B R_C R_D R_E - 6R_A R_B R_C^2 R_D R_E + 2R_A R_B R_C^3 R_D R_E$   
 $- 3R_A R_B^2 R_C R_D R_E + 3R_A R_B^2 R_C^2 R_D R_E - R_A R_B^2 R_C^3 R_D R_E$   
 $R_{SPS} (t) = 6e^{-\lambda_{SPS}t} - 6e^{-(\lambda_C + \lambda_{SPS})t} + 2e^{-(2\lambda_C + \lambda_{SPS})t}$   
 $- 3e^{-(\lambda_B + \lambda_{SPS})t} + 3e^{-(\lambda_B + \lambda_C + \lambda_{SPS})t} - e^{-(\lambda_B + 2\lambda_C + \lambda_{SPS})t}$ 

$$MTBF_{SPS} = \int_{0}^{0} R_{SPS}(t) dt = \frac{6}{\lambda_{SPS}} - \frac{6}{\lambda_{C} + \lambda_{SPS}} + \frac{2}{2\lambda_{C} + \lambda_{SPS}}$$
$$- \frac{3}{\lambda_{B} + \lambda_{SPS}} + \frac{3}{\lambda_{B} + \lambda_{C} + \lambda_{SPS}} - \frac{1}{\lambda_{B} + 2\lambda_{C} + \lambda_{SPS}}$$
$$MTBF_{SPS} = 27,020 \text{ Hours}$$

## Figure 1, Reliability Logic Block Diagram and Mean Time Between Failure (MTBF) Mathematical Model for Redundancy Equation

Copyright © 2002 by Probabilistic Software, Inc.

## Section 1.2

### **RELIABILITY STRESS AND FAILURE RATE DATA**

MIL-STD-785B, Task 203 MIL-HDBK-217F, Section 5.1 MIL-STD-756B, Type III, Method 2005, Task 202

> System: SAM Power Supply Assembly: Converter Schematic No.: 30684941 Part Ambient Temperature, Worst Case: 55 Degrees Celsius Environment: Space, Flight (SF)

#### RELIABILITY STRESS AND FAILURE RATE DATA

System: SAM Power Supply

#### Assembly: Converter

Schematic No.: 30684941

Part Ambient Temperature, Worst Case: 55.00 Degrees Celsius Environment: SF Prepared By: J. Smith

| Ref.   | Description/                              | Type/                         | Specification                                        | Sti                    | ress                              | Stress                                   | Pi           | Pi                   | Pi                          | Pi                    | Pi           | Failure Rate<br>Parts Per Mi               |                                  |
|--------|-------------------------------------------|-------------------------------|------------------------------------------------------|------------------------|-----------------------------------|------------------------------------------|--------------|----------------------|-----------------------------|-----------------------|--------------|--------------------------------------------|----------------------------------|
| Desig. | Part Number                               | Value                         |                                                      | Rated                  | Applied                           | Ratio                                    | E            | Q                    |                             |                       |              | Base                                       | Total                            |
| U1     | Intgrtd Ckt.<br>54LSOO<br>Quadruple 2-In  | H FP                          | Mil-Std-883/<br>Class B-1<br>itive-NAND Gates        | Tj<br>175.00<br>Deg. C | Tj<br>55.519<br>Deg. C            | 14 Pins,<br>Θjc,°C/W<br>= 22.00          | 0.5<br>Type= |                      | 0.6<br>1=0.00               | 1.00<br>25,C2=0       |              | <=100 Gates<br>5.00 Suppl<br>0.024 Watts   | 0.00671<br>Voltage<br>Dissipated |
| U2     | Intgrtd Ckt.<br>LM139AJ<br>Linear, Voltag | H DIP                         | Mil-Std-883/<br>Class B-1<br>rators                  | Tj<br>150.00<br>Deg. C | Tj<br>56.602<br>Deg. C            | 14 Pins,<br>Øjc,°C/W<br>= 28.00          | 0.5<br>Type= |                      | 1.1<br>1=0.01               | 1.00<br>00,C2=0       | 0.0048       | <=100 Trans.<br>12.00 Suppl<br>0.057 Watts |                                  |
| CR1    | Diode<br>1N4148-1<br>Switching            | General<br>Purpose            | Mil-S-19500/<br>116 JANTX                            | Tj<br>175.00<br>Deg. C | Tj<br>55.240<br>Deg. C            | Pd, W =<br>0.002<br>@jc,°C/W<br>= 120.00 | 0.5          | 1.00                 | 2.6                         |                       | Pi C<br>1.00 | 0.00100<br>40.00 Appl<br>100.00 Rates      |                                  |
| VR1    | Diode<br>1N4474<br>Voltage Regula         | Zener/<br>Avalnch<br>ator and | Mil-S-19500/<br>406 JANTX<br>Voltage Reference       |                        | Tj<br>58.000<br>Deg. C<br>/Zener) | Pd, W =<br>0.024<br>Øjc,°C/W<br>= 125.00 | 0.5          |                      |                             | Pi S<br>1.000         | Pi C<br>1.00 | 0.00200                                    | 0.00190                          |
| Q1     | Transistor<br>2N2222A<br>NPN and PNP L    | NPN/PNP                       | 225 JANTX                                            | Tj<br>150.00<br>Deg. C | Tj<br>55.210<br>Deg. C            | Pd, W =<br>0.003<br>0jc,°C/W<br>= 70.00  | 0.5          | 1.00<br>Pi S⊓<br>Pr= | ub R =<br>0.501             | 1.50<br>0.77<br>Matts |              | 0.00074<br>25.00 Appl<br>50.00 Rate        |                                  |
| Q2     | Transistor<br>2N2907A<br>NPN and PNP Su   | NPN/PNP                       | Mil-S-19500/<br>291 JANTX                            | Tj<br>150.00<br>Deg. C | Tj<br>56.411<br>Deg. C            | Pd, W =<br>0.014<br>0jc,°C/W<br>= 98.00  | 0.5          | 1.00<br>Pi S<br>Pr=  | PiT<br>2.0<br>ubR =<br>0.40 | 0.70                  | Pi S<br>0.30 | 0.00074<br>37.00 Appl<br>60.00 Rates       |                                  |
| R1     | Resistor<br>RCR07G102JS                   | 1.00K<br>Ohms                 | Mil-R-39008, S<br>Insitd Fxd Comp                    | 0.250<br>Watts         | 0.001<br>Watts                    | < 0.1                                    | Pi E<br>0.5  | Pi Q<br>0.03         | Pi R<br>1.00                |                       |              | 0.00053                                    | 0.00001                          |
| R2     | Resistor<br>RWR74S1210FP                  | 121.00<br>Ohms                | Mil-R-39007, P<br>Power Fixed WW                     | 5.000<br>Watts         | 0.065<br>Watts                    | < 0.1                                    | Pi E<br>0.3  | Pi Q<br>0.30         | Pi R<br>1.00                |                       |              | 0.00632                                    | 0.00057                          |
| R3     | Resistor<br>RJR24FW501P                   | 500.00<br>Ohms                | Mil-R-39035, P<br>Trimmer NonWW                      | 0.500<br>Watts         | 0.004<br>Watts                    | < 0.1                                    | Pi E<br>0.5  |                      | Pi R<br>1.00                |                       | Taps<br>1.00 | 0.02548<br>3 Tap Connec                    | 0.00255<br>t'ns on Pots          |
| R4     | Resistor<br>M83401/01                     | 50.00<br>Ohms                 | Mil-R-83401,Mil<br>Netwrk Fxd Film                   | 1.750<br>Watts         | 0.800<br>Watts                    | 0.5                                      | Pi E<br>0.5  | Pi Q<br>1.00         |                             | Pi T<br>8.37          | NR<br>8      | 0.00006<br>8 Film Resi                     | 0.00201<br>stors in use          |
| C1     | Capacitor<br>CKR06BX104KP                 | 100.00<br>nF                  | Mil-C-39014, P<br>Ceramc,Gen.Pur.                    | 100.0<br>Volts         | 25.00<br>Volts                    | 0.3                                      | Pi E<br>0.4  |                      | Pi CV<br>1.45               |                       |              | 0.00118                                    | 0.00021                          |
| C2     | Capacitor<br>CMR06F471JPDP                | 470.00<br>pF                  | Mil-C-39001, P<br>Mica, Dipped                       | 500.0<br>Volts         | 24.00<br>Volts                    | < 0.1                                    | Pi E<br>0.5  | Pi Q<br>0.30         | Pi CV<br>1.06               |                       |              | 0.00046                                    | 0.00007                          |
| C3     | Capacitor<br>CLR73BH330KGP                |                               | Mil-C-39006, P<br>Tntlm Elctrlytc                    | 30.0<br>Volts          | 12.00<br>Volts                    | 0.4                                      | Pi E<br>0.5  | Pi Q<br>0.30         | Pi CV<br>1.03               |                       |              | 0.00521<br>Slug,Hermetic                   | 0.00161<br>Construct'n           |
| C4     | Capacitor<br>CSR13F476KP                  | 47.00<br>uF                   | Mîl-C-39003, P<br>Tntim Elctrlytc                    | 35.0<br>Volts          | 12.00<br>Volts                    | 0.3                                      | Pi E<br>0.4  | Pi Q<br>0.30         | Pi CV<br>1.59               |                       |              | 0.00964<br>Cir. Res. = 1                   | 0.00012<br>.0 Ohms/Volt          |
| T1     | Transformer<br>TF4R03GA203                | Power                         | Mil-T-27 ,Mil<br>Audio,Pwr,HiPwr<br>Power Transforma | Deg. C                 | Deg. C                            |                                          | Pi E<br>0.5  | Pi Q<br>8.00         |                             |                       |              | 0.00354                                    | 0.01416                          |

Copyright (C) 2002 by Probabilistic Software, Inc.

#### RELIABILITY STRESS AND FAILURE RATE DATA

System: SAM Power Supply

#### Assembly: Converter

#### Sche

Schematic No.: 30684941

Part Ambient Temperature, Worst Case: 55.00 Degrees Celsius Environment: SF Prepared By: J. Smith

| Ref.   | Description/                 | Type/           | Specification                                          | Sti    | ress            | Stress | Pi          | Pi           | Pi           | Pi                  |    | Failure Rate<br>Parts Per Mi           |                                         |
|--------|------------------------------|-----------------|--------------------------------------------------------|--------|-----------------|--------|-------------|--------------|--------------|---------------------|----|----------------------------------------|-----------------------------------------|
| Desig. | Part Number                  | Value           | spectrication                                          | Rated  | Applied         | Ratio  | E           | Q            | PI           | P1                  | Pi | Base                                   | Total                                   |
| L1     | Coil<br>CL3500GA203          | Variabl         | Mil-C-15305,Mil<br>Fxd and Var, RF<br>Variable Constru | Deg. C | 75.00<br>Deg. C | 1      | Pi E<br>0.5 |              | Pi C<br>2.00 |                     |    | 0.00063                                | 0.00251                                 |
| к1     | Relay, SPST<br>RL 53441      | Resistv<br>Load | Mil-R-39016, R<br>General Purpose<br>Balanced Armatur  |        | 0.100<br>Amps.  | 0.1    | Pi E<br>0.5 | 0.10         |              | Pi F<br>5.0<br>1.02 |    |                                        |                                         |
| J1     | Connector<br>GO6 Series      |                 | Mil-C-24308,Mil<br>Rack and Panel<br>22 Actv Cntcts    |        |                 |        | Pi E<br>0.5 |              | Pi P<br>4.31 |                     |    | 0.00105<br>1.00 Mating<br>B Insert Mat | 0.00454<br>Cycls/1K Hrs                 |
| J2     | PCB Connector<br>TP 32PSTR   |                 | Mil-C-55302,Mil<br>PCB Two-Piece<br>32 Active Pins     |        |                 |        | Pi E<br>0.5 |              | Pi P<br>5.94 | Pi K<br>2.00        |    | 0.00053<br>1.00 Mating                 | 0.00314<br>Cycls/1K Hrs                 |
| 13     | IC Socket<br>ICS 16PSTR      |                 | Mil-S-83734,Mil<br>Plug-in Socket<br>16 Acty Cntcts    |        |                 |        | Pi E<br>0.5 |              | Pi P<br>3.42 |                     |    | 0.00042                                | 0.00072                                 |
| P1     | Intercon Assy<br>3068491 PWB |                 | ,Mil<br>Printed Wiring                                 |        |                 |        | Pi E<br>0.5 | Pi Q<br>1.00 | Pi C<br>1.00 |                     | :  | 0.000041<br>N1= 40 Wave<br>N2= 6 Hand  | 0.00254<br>solder PTHs.<br>solder PTHs. |
|        | Connections                  | Manual<br>Tools | Standard ,Mil<br>Solderless wrap                       |        |                 |        | Pi E<br>0.5 | Pi Q<br>1.00 |              |                     |    | 0.0000035<br>N = 10 Conne              | 0.00002                                 |

Copyright (C) 2002 by Probabilistic Software, Inc.

0.03082

## Section 2.0

## MAINTAINABILITY PREDICTION

Mean Time To Repair (MTTR) MIL-HDBK-472, Procedure IIA MIL-STD-470A, Task 203

#### Table 1, Maintainability Analysis Worksheet

Γ

#### Environment: SF

|                                |                               | Avera             | ge Corre       | ctive Ma          | intenanc         | e Task T        | imesM          | inutes        |                            |                |
|--------------------------------|-------------------------------|-------------------|----------------|-------------------|------------------|-----------------|----------------|---------------|----------------------------|----------------|
| Assembly Name<br>Schematic No. | Failure<br>Rate:<br>LambdaPPM | Locali-<br>zation | Isola-<br>tion | Dissas-<br>sembly | Inter-<br>change | Reas-<br>sembly | Align-<br>ment | Check-<br>out | Repair<br>Time:Rp<br>Mins. | Lambda<br>x Rp |
| Converter<br>30684941          | 0.1937                        | 4.00              | 4.00           | 3.00              | 3.00             | 3.00            | 4.00           | 4.00          | 25.00                      | 4.842          |
| Inverter A<br>30684942         | 0.2983                        | 4.00              | 4.00           | 2.50              | 2.00             | 2.50            | 4.00           | 4.00          | 23.00                      | 6.860          |
| Inverter B<br>30684943         | 0.3430                        | 4.00              | 4.00           | 2.00              | 2.00             | 2.00            | 4.00           | 4.00          | 22.00                      | 7.54           |
| Encoder<br>30684944            | 0.1375                        | 4.00              | 4.00           | 4.00              | 4.00             | 4.00            | 4.00           | 4.00          | 28.00                      | 3.850          |
| Splitter<br>30684945           | 0.1355                        | 4.00              | 4.00           | 3.00              | 3.00             | 3.00            | 4.00           | 4.00          | 25.00                      | 3.387          |
| age Totals:<br>rand Totals:    | 1.1080                        | L,                | I              | L                 |                  | I               | <u> </u>       | <u>l</u>      | 123.00<br>123.00           | 26.48          |

Copyright (C) 2002 by Probabilistic Software, Inc.

Total Failure Rate,  $\lambda = 1.1080 \, / \, 10^6 \, \, Hours$ 

For normal distribution of R:

$$MTTR = \begin{bmatrix} \sum_{i=1}^{n} \lambda_i R_i \\ \sum_{i=1}^{n} \lambda_i \end{bmatrix} = \frac{26.4869}{1.1080}$$

$$= 23.9051$$
 Minutes  $= 0.3984$  Hours

For  $R=M_{ct}\,,\ M_{maxct}\,$  at 95% Confidence Level is

 $M_{maxct} = \mu + 1.645\sigma = 28.3871$  Minutes = 0.4731 Hours

Where,

$$\sigma = \left[\frac{\sum_{i=1}^{n} (\mu - R_i)^2}{n-1}\right]^{0.5} = 2.3022 \text{ Minutes}$$
$$\mu = \frac{\sum_{i=1}^{n} R_i}{n} = 24.6000 \text{ Minutes}$$

n = Quantity of repairables, 5 LRUs

Figure 1, MTTR and M<sub>maxct</sub> Calculation for Normal Distribution

Copyright © 2002 Probabilistic Software, Inc.

#### Table 1, Maintainability Analysis Worksheet

Γ

#### Environment: SF

|                                |                               | Avera             | ge Corre       | ctive Ma          | intenanc         | e Task T        | imesM          | inutes        |                            |                    |
|--------------------------------|-------------------------------|-------------------|----------------|-------------------|------------------|-----------------|----------------|---------------|----------------------------|--------------------|
| Assembly Name<br>Schematic No. | Failure<br>Rate:<br>LambdaPPM | Locali-<br>zation | Isola-<br>tion | Dissas-<br>sembly | Inter-<br>change | Reas-<br>sembly | Align-<br>ment | Check-<br>out | Repair<br>Time:Rp<br>Mins. | Lambda<br>x Log Rp |
| Converter<br>30684941          | 0.1937                        | 4.00              | 4.00           | 3.00              | 3.00             | 3.00            | 4.00           | 4.00          | 25.00                      | 0.623              |
| Inverter A<br>30684942         | 0.2983                        | 4.00              | 4.00           | 2.50              | 2.00             | 2.50            | 4.00           | 4.00          | 23.00                      | 0.935              |
| Inverter B<br>30684943         | 0.3430                        | 4.00              | 4.00           | 2.00              | 2.00             | 2.00            | 4.00           | 4.00          | 22.00                      | 1.060              |
| Encoder<br>30684944            | 0.1375                        | 4.00              | 4.00           | 4.00              | 4.00             | 4.00            | 4.00           | 4.00          | 28.00                      | 0.458              |
| Splitter<br>30684945           | 0.1355                        | 4.00              | 4.00           | 3.00              | 3.00             | 3.00            | 4.00           | 4.00          | 25.00                      | 0.436              |

Copyright (C) 2002 by Probabilistic Software, Inc.

Total Failure Rate,  $\lambda = 1.1080 / 10^6$  Hours

For log-normal distribution of R:

MTTR = Antilog 
$$\begin{bmatrix} \sum_{i=1}^{n} \lambda_i \log R_i \\ \sum_{i=1}^{n} \lambda_i \end{bmatrix}$$
 = Antilog  $\begin{bmatrix} 3.5134 \\ 1.1080 \end{bmatrix}$ 

= 23.8294 Minutes = 0.3972 Hours

For  $R = M_{ct}$ ,  $M_{maxct}$  at 95% Confidence Level is

 $M_{maxet} = Antilog \left[\mu + 1.645\sigma\right] = 28.5441 Minutes = 0.4757 Hours$ 

Where,

$$\sigma = \left[\frac{\sum_{i=1}^{n} (\mu - \log M_{ct_i})^2}{n-1}\right]^{2} = \text{Log } 0.0925 \text{ Minutes}$$
$$\mu = \frac{\sum_{i=1}^{n} \log M_{ct_i}}{n} = \text{Log } 3.1993 \text{ Minutes}$$

n = Quantity of repairables, 5 LRUs

Figure 2, MTTR and M<sub>maxct</sub> Calculation for Log-Normal Distribution

Copyright © 2002 Probabilistic Software, Inc.

# Section 3.0

# DERATING ELECTRICAL STRESS ANALYSIS

MIL-STD-785B, Task 207 MIL-STD-975G System: SAM Power Supply

Assembly: Converter

Schematic No.: 30684941

Part Ambient Temperature, Worst Case: 55.00 Degrees Celsius Γ

Environment: SF

Prepared By: J. Smith

| Ref.   | Description/                                                                                                                 | Type/                                     | Specification               |                                                                       | rical and                                                    | Thermal S                                                             | Stress                                                               | Stress<br>Ratio                                               | Demosice                                                               |
|--------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|
| Desig. |                                                                                                                              | Value                                     | spectrication               | Maximum<br>Rated                                                      | Derating<br>Factor                                           | Derated                                                               | Actual                                                               | Actual<br>Derated                                             | Remarks                                                                |
| U1     | Intgrtd Ckt.<br>54LSOO                                                                                                       | LSTTL<br>H FP                             | Mil-Std-883/<br>Class B-1   |                                                                       |                                                              |                                                                       |                                                                      |                                                               | Quadruple 2-Input Positive-NAND<br>Gates.                              |
|        | Parameter:<br>Supply Volt<br>Power Dissi<br>Input Volta<br>Junction Tee<br>Output Curr<br>Pin 1<br>Pin 2<br>Pin 3<br>Pin 4   | pation ()<br>ge<br>mperature              | Watts)<br>e (°C.)<br>eres): | 5.50<br>0.031<br>5.50<br>175.00<br>0.004<br>0.004<br>0.004<br>0.004   | 1.00<br>1.00<br>0.57<br>0.80<br>0.80<br>0.80<br>0.80         | 5.50<br>0.031<br>5.50<br>100.00<br>0.003<br>0.003<br>0.003<br>0.003   | 5.00<br>0.024<br>5.00<br>55.52<br>0.001<br>0.001<br>0.001<br>0.001   | 0.9<br>0.8<br>0.9<br>0.6<br>0.3<br>0.3<br>0.3<br>0.3          | Тс = 55 °С.; Өјс = 22 °С./Watt.                                        |
| U2     | Intgrtd Ckt.<br>LM139AJ                                                                                                      | LIN BIP<br>H DIP                          | Mil-Std-883/<br>Class B-1   |                                                                       |                                                              |                                                                       |                                                                      |                                                               | Linear, Voltage Comparators.                                           |
|        | Parameter:<br>Supply Volta<br>Power Dissi<br>Input Volta<br>Junction Ter<br>Output Curro<br>Pin 1<br>Pin 2<br>Pin 3<br>Pin 4 | pation ()<br>ge<br>mperature<br>ent (Ampe | e (°C.)                     | 30.00<br>0.800<br>36.00<br>150.00<br>0.010<br>0.010<br>0.010<br>0.010 | 0.90<br>0.75<br>1.00<br>0.67<br>0.80<br>0.80<br>0.80<br>0.80 | 27.00<br>0.600<br>36.00<br>100.00<br>0.008<br>0.008<br>0.008<br>0.008 | 12.00<br>0.057<br>12.00<br>56.60<br>0.006<br>0.006<br>0.006<br>0.001 | 0.4<br>< 0.1<br>0.3<br>0.6<br>0.8<br>0.8<br>0.8<br>0.8<br>0.1 | Tc = 55 °C.; Øjc = 28 °C./Watt.                                        |
| CR1    | Diode<br>1N4148-1                                                                                                            |                                           | Mil-S-19500/<br>116 JANTX   |                                                                       |                                                              |                                                                       |                                                                      |                                                               |                                                                        |
|        | Parameter:<br>Junction Ter<br>PIV<br>Surge Currer<br>Forward Curr                                                            | nt (Amper                                 |                             | 175.000<br>100.000<br>0.399<br>0.160                                  | 0.71<br>0.70<br>0.50<br>0.50                                 | 125.000<br>70.000<br>0.200<br>0.080                                   | 55.240<br>40.000<br>0.150<br>0.002                                   | 0.4<br>0.6<br>0.8<br>< 0.1                                    | Tc = 55 °C.; 0jc = 120 °C./Watt.<br>Power Dissipation = .002 Watts.    |
| VR1    | Diode<br>1N4461                                                                                                              | Zener/<br>Avalnch                         | Mil-S-19500/<br>406 JANTX   |                                                                       |                                                              |                                                                       |                                                                      |                                                               | Iz Derated (Amps.) =<br>Iz Nom. + 0.5(Iz Max Iz Nom.)                  |
|        | Parameter:<br>Junction Ter<br>Power (Watts<br>Zener Currer                                                                   | 5)                                        |                             | 175.000<br>1.192<br>0.524                                             | 0.71<br>0.50<br>0.66                                         | 125.000<br>0.596<br>0.346                                             |                                                                      | 0.4<br>< 0.1<br>< 0.1                                         | Iz Nom. = 0.1668, Iz Max. = 0.5243<br>Tc = 55 °C.; ⊖jc = 125 °C./Watt. |
| Q1     | Transistor<br>2N2222A                                                                                                        | NPN/PNP                                   | Mil-S-19500/<br>225 JANTX   |                                                                       |                                                              |                                                                       | 4                                                                    |                                                               |                                                                        |
|        | Parameter:<br>Junction Ter<br>Power (Watts<br>Voltage<br>Current (Amp                                                        | s)                                        | e (°C.)                     | 150.000<br>0.379<br>50.000<br>0.607                                   | 0.83<br>0.50<br>0.75<br>0.75                                 | 125.000<br>0.190<br>37.500<br>0.455                                   | 0.003                                                                | 0.4<br>< 0.1<br>0.7<br>< 0.1                                  | Тс = 55 °С.; Өјс = 70 °С./Watt.                                        |
| Q2     | Transistor<br>2N2907A                                                                                                        | NPN/PNP                                   | Mil-S-19500/<br>291 JANTX   |                                                                       |                                                              |                                                                       |                                                                      |                                                               |                                                                        |
|        | Parameter:<br>Junction Ter<br>Power (Watte                                                                                   | s)                                        | e (°C.)                     | 150.000<br>0.299                                                      | 0.83<br>0.50                                                 | 125.000<br>0.150                                                      | 56.411<br>0.014                                                      | 0.5<br>< 0.1                                                  | Tc = 55 °C.; Θjc = 98 °C./Watt.                                        |

Copyright (C) 2002 by Probabilistic Software, Inc.

System: SAM Power Supply

Assembly: Converter

Schematic No.: 30684941

Part Ambient Temperature, Worst Case: 55.00 Degrees Celsius · · · · · ·

Environment: SF

Prepared By: J. Smith

| Ref.   | Description/                                          | Type/           | Specification                             | Elect                      | rical and            | Thermal S                  | Stress                   | Stress<br>Ratio       |                             |
|--------|-------------------------------------------------------|-----------------|-------------------------------------------|----------------------------|----------------------|----------------------------|--------------------------|-----------------------|-----------------------------|
| Desig. | Part Number                                           | Value           | spectrication                             | Maximum<br>Rated           | Derating<br>Factor   | Derated                    | Actual                   | Actual<br>Derated     | Remarks                     |
|        | Voltage<br>Current (Am                                | peres)          |                                           | 60.000<br>0.449            | 0.75<br>0.75         | 45.000<br>0.337            | 37.000<br>0.009          | 0.8<br>< 0.1          |                             |
| R1     | Resistor<br>RCR07G102JS                               | 1.00K<br>Ohms   | Mil-R-39008, S<br>Insltd Fxd Comp         |                            |                      |                            |                          |                       |                             |
|        | Parameter:<br>Maximum Open<br>Power (Watte<br>Voltage | rating To<br>s) | emp. (°C.)                                | 130.000<br>0.250<br>15.811 | 1.00<br>0.60<br>0.80 | 130.000<br>0.150<br>12.649 |                          | 0.4<br>< 0.1<br>< 0.1 |                             |
| R2     | Resistor<br>RWR74S1210FP                              | 121.00<br>Ohms  | Mil-R-39007, P<br>Power Fixed WW          |                            |                      |                            |                          |                       |                             |
|        | Parameter:<br>Maximum Oper<br>Power (Watts<br>Voltage | rating To<br>s) | emp. (°C.)                                | 275.000<br>5.000<br>23.074 | 1.00<br>0.50<br>0.80 | 275.000<br>2.486<br>18.459 | 55.000<br>0.065<br>2.804 | 0.2<br>< 0.1<br>0.2   |                             |
| R3     | Resistor<br>RJR24FW501P                               | 500.00<br>Ohms  | Mil-R-39035, P<br>Trimmer NonWW           |                            |                      |                            |                          |                       |                             |
|        | Parameter:<br>Maximum Oper<br>Power (Watts<br>Voltage | rating Te<br>s) | emp. (°C.)                                | 150.000<br>0.500<br>2.230  | 1.00<br>0.60<br>0.80 | 150.000<br>0.300<br>1.784  | 55.000<br>0.004<br>1.414 | 0.4<br>< 0.1<br>0.8   |                             |
| R4     | Resistor<br>M83401/01                                 | 50.00<br>Ohms   | Mil-R-83401,Mil<br>Netwrk Fxd Film        |                            |                      |                            |                          |                       |                             |
|        | Parameter:<br>Maximum Oper<br>Power (Watts<br>Voltage |                 | emp. (°C.)                                | 125.000<br>1.750<br>9.354  | 1.00<br>0.60<br>0.80 | 125.000<br>1.050<br>7.483  | 55.000<br>0.800<br>6.325 | 0.4<br>0.8<br>0.8     |                             |
| C1     | Capacitor<br>CKR06BX104KP                             |                 | Mil-C-39014, P<br>Ceramc,Gen.Pur.         |                            |                      |                            |                          |                       |                             |
|        | Parameter:<br>Maximum Oper<br>Voltage                 | rating Te       | emp. (°C.)                                | 85.000<br>100.00           | 1.00<br>0.60         | 85.000<br>60.00            | 55.000<br>25.00          | 0.6<br>0.4            |                             |
| C2     | Capacitor<br>CMR06F471JPDP                            |                 | Mil-C-39001, P<br>Mica, Dipped            |                            |                      |                            |                          |                       |                             |
|        | Parameter:<br>Maximum Oper<br>Voltage                 | rating Te       | emp. (°C.)                                | 125.000<br>500.00          | 1.00<br>0.50         | 125.000<br>250.00          | 55.000<br>24.00          | 0.4<br>< 0.1          |                             |
| C3     | Capacitor<br>CLR73BH330KGP                            |                 | Mil-C- <b>39006,</b> P<br>Tntlm Elctrlytc |                            |                      |                            |                          |                       | Slug,Hermetic Construction. |
|        | Parameter:<br>Maximum Oper<br>Voltage                 | ating Te        | emp. (°C.)                                | 125.000<br>30.00           | 0.88<br>0.60         | 110.000<br>18.00           | 55.000<br>12.00          | 0.5<br>0.7            |                             |
| С4     | Capacitor<br>CSR13F476KP                              | 47.00<br>uF     | Mil-C-39003, P<br>Tntlm Elctrlytc         |                            |                      |                            |                          |                       |                             |
|        | Parameter:                                            | ·               | <b>-</b>                                  |                            |                      |                            |                          |                       |                             |

Copyright (C) 2002 by Probabilistic Software, Inc.

Section 4.0

# FAILURE MODE, EFFECTS AND CRITICALITY ANALYSIS - MAINTAINABILITY INFORMATION (FMECA-MI)

MIL-STD-785B, Task 204 MIL-STD-1629A, Tasks 101, 102 and 103 MIL-STD-470A, Task 205 Section 4.1

# FAILURE MODE AND EFFECTS ANALYSIS

Task 101 of MIL-STD-1629A

FAILURE MODE AND EFFECTS ANALYSIS

System: SAM Power Supply Indenture Level: 3 Reference Drawing: Converter, 30684941

Date: Sheet: 1 Compiled By: J. Smith Approved By: S. L. Fri

| Referen<br>Mission: | Reference Drawing: Converter, 30684941<br>Mission: Space, Flight (SF) | ter, 30684941<br>:)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                |                                                                          |                                                                                                                           |                                    | Compiled By: J. Smith<br>Approved By: S. L. Fr | J. Smíth<br>S. L. Friedman |                   |         |
|---------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------|----------------------------|-------------------|---------|
| 1 dent              | [ton/Eunctional                                                       | Euroction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Esilura Modec | Miccian Dhaca/ |                                                                          | Failure Effects                                                                                                           |                                    | Eailina                                        | Common ti no               | Contractor        | Domonto |
| No.                 |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and Causes    |                | Local<br>Effects                                                         | Next<br>Higher<br>Level                                                                                                   | End<br>Effects                     | Petection<br>Method                            | Provisions                 | Class             | Vering  |
| a1-1                | Transistor<br>2N2907A<br>Low Frequency<br>Bipolar (NPN/PNP)           | Switch<br>Transistor<br>Driver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Open          | Power On       | 5V Regulator<br>Inoperative                                              | Loss of 5<br>Volts                                                                                                        | Converter<br>Inoperative           | No 1553<br>Response                            | Redundant<br>Circuits      | 111               |         |
| a1-2                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Short         | Power On       | 5V Regulator<br>Full On                                                  | 26 V on 5V<br>Line. Parts<br>Damaged                                                                                      | Open Primary<br>Circuit<br>Breaker | No 1553<br>Response                            | Redundant<br>Circuits      | 71                |         |
| CR1-1               | Diode<br>1N4148-1<br>General Purpose                                  | Overvol tage<br>Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Open          | Power On       | Loss of<br>Overvoltage<br>Protection                                     | Possible Possible<br>Damage to U19 Converter<br>Malfuncti                                                                 | Ę                                  | Periodic<br>Test                               | Redundant<br>Circuits      | ٨I                |         |
| CR1-2               |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Short         | Power On       | 5V Applied to U19 Analog<br>U19 Analog Channel 7<br>Channel 7 Inoperativ | U19 Analog<br>Channel 7<br>Inoperative                                                                                    | Converter<br>Inoperative           | Periodic<br>Test                               | Redundant<br>Circuits      | 111               |         |
| R1-1                | Resistor<br>RCR07G102JS<br>Insulated Fixed<br>Composition, ER         | Current Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Open          | Power On       | a1,a2,a3,u2<br>Inoperative                                               | Current Test<br>Inoperative                                                                                               | Converter<br>Malfunctions          | Periodic<br>Test                               | Redundant<br>Circuits      | 111               |         |
| R1-2                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Short         | Power On       | Possible<br>damage to Q2                                                 | Current Test<br>Inoperative                                                                                               | Converter<br>Malfunctions          | Periodic<br>Test                               | Redundant<br>Circuits      | 111               |         |
| c1-1                | Capacitor<br>CKR06BX104KP<br>General Purpose<br>Ceramic, ER           | Feedback<br>Capacitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Open          | Power On       | Malfunction<br>of Active Low<br>Power Filter                             | Malfunction Degraded Possible<br>of Active Low Filtering for Converter<br>Power Filter U19, Analog Malfuncti<br>Channel 7 | Ę                                  | Periodic<br>Test                               | Redundant<br>Circuits      | 5-4<br>5-4<br>5-4 |         |
| c1-2                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Short         | Power On       | Active Low<br>Power Filter<br>Inoperative                                | Loss of<br>Signal to<br>U19, Analog<br>Channel 7                                                                          | Converter<br>Inoperative           | Periodic<br>Test                               | Redundant<br>Circuits      | 2                 |         |
|                     |                                                                       | <pre>/// 2003 bit bit bit bit i to bit</pre> |               |                |                                                                          |                                                                                                                           |                                    |                                                |                            |                   |         |

Copyright (C) 2002 by Probabilistic Software, Inc.

# Section 4.2

# **CRITICALITY ANALYSIS**

Task 102 of MIL-STD-1629A

CRITICALITY ANALYSIS

| System:<br>Indentu<br>Referen<br>Mission | System: SAM Power Supply<br>Indenture Level: 3<br>Reference Drawing: Converter, 30684941<br>Mission: Space, Flight (SF) | ter, 30684941<br>F)            |                             |                               |                   |                             |                              |              | Date:<br>Sheet: 1<br>Compiled<br>Approved | Date:<br>Sheet: 1<br>Compiled By: J. Smith<br>Approved By: S. L. Fr <sup>i</sup> | Smith<br>L. Friedman       |                   |         |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|-------------------------------|-------------------|-----------------------------|------------------------------|--------------|-------------------------------------------|----------------------------------------------------------------------------------|----------------------------|-------------------|---------|
| I dent.                                  | Item/functional<br>Identification                                                                                       | Function                       | Failure Modes<br>and Caneee | Mission Phase/<br>Operational | Severity<br>Class | Failure<br>Probability      | Failure<br>54204             | Failure      | Failure                                   | Operating                                                                        | Failure                    | I tem             | Remarks |
|                                          |                                                                                                                         |                                | 2000                        |                               | C1055             | Failure Rate<br>Data Source | Errect<br>Probability<br>(8) | Ratio<br>(a) | кате<br>(др)<br>РРМН                      | time<br>(t)<br>Hours                                                             | mode<br>Crit #<br>Cm=8αλpt | Crit#<br>Cr=Z(Cm) |         |
| Q1-1                                     | Transistor<br>2N2907A<br>Low Frequency<br>Bipolar (NPN/PNP)                                                             | Switch<br>Transistor<br>Driver | Open                        | Power On                      | 111               | MIL-HDBK-<br>217f, N1       | 0.50                         | 0.40         | 1.106-10                                  | 1.00E-01                                                                         | 2.20E-12                   | 2.20E-12          |         |
| a1-2                                     |                                                                                                                         |                                | Short                       | Power On                      | 2                 | MIL-HDBK-<br>217F, N1       | 0.10                         | 0.60         | 1.10E-10                                  | 1.00E-01                                                                         | 6.60E-13                   | 6.60E-13          |         |
| CR1-1                                    | Diode<br>114148-1<br>General Purpose                                                                                    | Overvol tage<br>Protection     | Open                        | Power On                      | 1                 | MIL-HDBK-<br>217F, N1       | 0.10                         | 0.40         | 1.40E-10                                  | 1.00E-01 5.60E-13                                                                | 5.60E-13                   | 1.22E-12          |         |
| CR1-2                                    |                                                                                                                         |                                | Short                       | Power On                      | 11                | MIL-HDBK-<br>217F, N1       | 0.50                         | 0.60         | 1.40E-10                                  | 1.00E-01                                                                         | 4.20E-12                   | 6.40E-12          |         |
| R1-1                                     | Resistor<br>RCR07G102JS<br>Insulated Fixed<br>Composition, ER                                                           | Current Limit                  | Open                        | Power On                      | II                | MIL-HDBK-<br>217F, N1       | 0.50                         | 0.85         | 1.00E-11                                  | 1.00E-01                                                                         | 4.25E-13                   | 6.83E-12          |         |
| R1-2                                     |                                                                                                                         |                                | Short                       | Power On                      | I                 | MIL-HDBK-<br>217F, N1       | 0.50                         | 0.15         | 1.00E-11                                  | 1.00E-01                                                                         | 7.50E-14                   | 6.90E-12          |         |
| c1-1                                     | Capacitor<br>CKR06BX104KP<br>General Purpose<br>Ceramic, ER                                                             | Feedback<br>Capacitor          | Open                        | Power On                      | II                | MIL-HDBK-<br>217F, N1       | 0.50                         | 0.85         | 2.10E-10                                  | 1.00E-01                                                                         | 8.93E-12                   | 1.58E-11          |         |
| c1-2                                     |                                                                                                                         |                                | Short                       | Power On                      | N                 | MIL-HDBK-<br>217F, N1       | 0.10                         | 0.15         | 2.10E-10                                  | 1.006-01                                                                         | 3.15E-13                   | 1.53E-12          |         |
| Copyrigh                                 | Copyright (C) 2002 by Probabilistic Software, Inc.                                                                      | abilistic Softwe               | Ire, Inc.                   |                               |                   |                             |                              |              |                                           |                                                                                  |                            |                   |         |

Section 4.3

# MAINTAINABILITY INFORMATION

Task 103 of MIL-STD-1629A

FAILURE MODE EFFECTS AND CRITICALITY ANALYSIS - MAINTAINABILITY INFORMATION

System/Subsystem Nomenclature: SAM Power Supply

Indenture Level: 3 Reference Drawing: Converter, 30684941

System Identification No.: 100-113 Mission: Space, Flight (SF)

Date: Sheet: 1 Prepared By: J. Smith Approved By: S. L. Friedm

| System/: | System/Subsystem Description: Converter                       | ion: Converter                 |            |          |                             | Compensating | Compensating Provisions: Redundant Convert   | edundant Convei                                       | ÷                                    |                     | Approved     | Approved By: S. L. Friedman | Friedman                             |
|----------|---------------------------------------------------------------|--------------------------------|------------|----------|-----------------------------|--------------|----------------------------------------------|-------------------------------------------------------|--------------------------------------|---------------------|--------------|-----------------------------|--------------------------------------|
| Ident -  | [tem/Functional                                               | Function                       | Functional |          | Engineering<br>Failure Mode | Mission      |                                              | Failure Effects                                       |                                      | E cilino            | Course i tru |                             |                                      |
| No.      |                                                               | No.                            | Ltr        |          | No.                         | Phase        | Local<br>Effects                             | Next<br>Hīgher<br>Level                               | End<br>Effects                       | ç                   | Class        | ¥                           | Mode<br>MTBF and<br>Remarks          |
| a1-1     | Transistor<br>2N2907A<br>Low Frequency<br>Bipolar (NPN/PNP)   | Switch<br>Transistor<br>Driver | Open       | 0        | Open                        | Power On     | 5V Regulator<br>Inoperative                  | Loss of 5<br>Volts                                    | Converter<br>Inoperative             | No 1553<br>Response | H            | Ŷ                           | MTBF~Hrs.:<br>9.091E+15              |
| a1-2     |                                                               |                                | Short      | 0        | Short                       | Power On     | 5V Regulator<br>Full On                      | 26 V on 5V<br>Line. Parts<br>Damaged                  | Open Primary<br>Circuit<br>Breaker   | No 1553<br>Response | N            | 0<br>Z                      | MTBF~Hrs.:<br>9.091E+15              |
| CR1-1    | Diode<br>1N4148-1<br>General Purpose                          | Overvoltage<br>Protection      | Open       | Ö        | Open                        | Power On     | Loss of<br>Overvoltage<br>Protection         | Possible<br>Damage to U19                             | Possible<br>Converter<br>Malfunction | Periodic<br>Test    | N            | Ŷ                           | MTBF"Hrs.:<br>7.143E+15              |
| CR1-2    |                                                               |                                | Short      | <u></u>  | Short                       | Power On     | 5V Applied to<br>U19 Analog<br>Channel 7     | to U19 Analog<br>Channel 7<br>Inoperative             | Converter<br>Inoperative             | Periodic<br>Test    | 111          | N.                          | MTBF~Hrs.:<br>7.143E+15              |
| R1-1     | Resistor<br>RCR07G102JS<br>Insulated Fixed<br>Composition, ER | Current Limit                  | Open       | ō        | Open                        | Power On     | a1,a2,a3,u2<br>Inoperative                   | Current Test<br>Inoperative                           | Converter<br>Malfunctions            | Periodic<br>Test    | 111          | Ŷ                           | MTBF~Hrs.:<br>1.000E+17              |
| R1-2     |                                                               |                                | Short      | <u></u>  | Short                       | Power On     | Possible<br>damage to Q2                     | Current Test<br>Inoperative                           | Converter<br>Malfunctions            | Periodic<br>Test    | 111          | ° Z                         | MTBF~Hrs.:<br>1.000E+17              |
| c1-1     | Capacitor<br>CKRO6bX104kP<br>General Purpose<br>Ceramic, ER   | Feedback<br>Capacitor          | Open       | ō        | Open                        | Power On     | Malfunction<br>of Active Low<br>Power Filter | Degraded<br>Filtering for<br>U19, Analog<br>Channel 7 | Possible<br>Converter<br>Malfunction | Periodic<br>Test    | 111          | °.                          | MTBF~Hrs.:<br>4.762E+15              |
| C1-2     |                                                               |                                | Short      | <u>ō</u> | Short                       | Power On     | Active Low<br>Power Filter<br>Inoperative    | Loss of<br>Signal to<br>U19, Analog<br>Channel 7      | Converter<br>Inoperative             | Per iodic<br>Test   | N            | Ŷ                           | MTBF <sup>-</sup> Hrs.:<br>4.762E+15 |
| Copyrigh | Copyright (C) 2002 by Probabilistic Software, Inc.            | oabilistic Soft                | ware, Inc. |          |                             |              |                                              |                                                       |                                      |                     |              |                             |                                      |

## Section 5.0

## SAFETY HAZARD ANALYSIS

MIL-STD-882B, Tasks 203 and 204

SUBSYSTEM HAZARD ANALYSIS

System: SAM Power Supply Indenture Level: 3 Reference Drawing: Converter, 30684941

Date: Sheet: 1 Compiled By: J. Smith Approved By: S. L. Fri

| Mission     | Mission: Space, Flight (SF)                                 | (                              |                     |                         |                                                                       |                                       |                                                                                    | Approved By:                         |                                  | J. Smith<br>S. L. Friedman     |                            |   |
|-------------|-------------------------------------------------------------|--------------------------------|---------------------|-------------------------|-----------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------|--------------------------------------|----------------------------------|--------------------------------|----------------------------|---|
| Ident       | Item/Functional                                             | Function                       | Dart failure        | Part<br>Mode            | Svetem Event                                                          | Primar                                | Primary Part Failure Mode                                                          | e Mode                               | Pactor                           | Recomment                      | Recommended Action         |   |
| No.         | Identification<br>(Nomenclature)                            |                                | Modes and<br>Causes | failure<br>Rate<br>(Ap) | Phase                                                                 | Local<br>Effects                      | Next<br>Higher<br>Level                                                            | End<br>Effects                       | nazard<br>Risk<br>Index<br>(HRI) | Failure<br>Detection<br>Method | Compensating<br>Provisions | · |
| e1-1        | Transistor<br>2N2907A<br>Low Frequency<br>Bioclar (NDW/DND) | Switch<br>Transistor<br>Driver | Open                | 1.10E-10                | All Operational 5V Regulator<br>Modes Inoperative                     | 5V Regulator<br>Inoperative           | Loss of<br>5 Volts                                                                 | Converter<br>Inoperative             | III E                            | No 1553<br>Response            | Redundant<br>Circuits      | , |
| <b>01-2</b> |                                                             |                                | Short               | 1.10E-10                | All Operational 5V Regulator<br>Modes Full On                         | 5V Regulator<br>Full On               | 26V on 5V<br>Line. Parts<br>Damaged                                                | Open Primary<br>Circuit<br>Breaker   | IV E                             | No 1553<br>Response            | Redundant<br>Circuits      |   |
| CR1-1       | Diode<br>1N4148-1<br>General Purpose                        | Overvol tage<br>Protection     | Open                | 1.40E-10                | All Operational Loss of<br>Modes<br>Protect<br>U19 Anal<br>Channel    | tage<br>ion to<br>log<br>7            | Possible Possible Damage to U19 Converter Analog Malfuncti Channel 7               | Possible<br>Converter<br>Malfunction | 111 E                            | Periodic<br>Test               | Redundant<br>Circuits      |   |
| CR1-2       |                                                             |                                | Short               | 1.40E-10                | 1.40E-10 All Operational 5V Applied<br>Modes Channel 7                | 5V Applied<br>U19 Analog<br>Channel 7 | U19 Analog<br>Channel 7<br>Inoperative                                             | Converter<br>Inoperative             | 111 E                            | Periodic<br>Test               | Redundant<br>Circuits      |   |
| R1-1        | Resistor<br>RLR07C1501FR<br>Insulated Fixed                 | Current Limit                  | 0pen                | 3.97E-09                | All Operational 01,02,03,U2<br>Modes                                  | 01,02,03,U2<br>Inoperative            | Current Test<br>Inoperative                                                        | Converter<br>Malfunction             | 111 E                            | Periodic<br>Test               | Redundant<br>Circuits      |   |
|             |                                                             |                                | Short               | 3.97E-09                | All Operational Damage to                                             | 0 02                                  | Current Test<br>Inoperative                                                        | Converter<br>Malfunction             | 111 E                            | Periodic<br>Test               | Redundant<br>Circuíts      |   |
| c1-1        | Capacitor<br>CKR06BX104KP<br>General Purpose<br>Ceramic, ER | Feedback<br>Capacitor          | Open                | 6.89E-09                | All Operational Malfunction<br>Modes of Active<br>Low Power<br>Filter | · · · · ·                             | Degraded Possible<br>Filtering for Converter<br>U19, Analog Malfuncti<br>Channel 7 | Possible<br>Converter<br>Malfunction | III E                            | Periodic<br>Test               | Redundant<br>Circuits      |   |
| c1-2        |                                                             |                                | Open                | 6.89E-09                | All Operational Active Low<br>Modes Inoperative                       | 6.0                                   | Loss of Converter<br>Signal to U19 Inoperative<br>Analog Ch. 7                     | Converter<br>Inoperative             | IVE                              | Periodic<br>Test               | Redundant<br>Circuits      |   |
| L1-1        | Filter<br>Mil-T-27/356-39<br>Inductor                       | Input Filter<br>Inductor       | Open                | 2.51E-09                | All Operational Loss of<br>Modes Power                                | 26V                                   | Regulator<br>Inoperative                                                           | Converter<br>Inoperative             | 111 E                            | No 1553<br>Response            | Redundant<br>Circuits      |   |
| ۲۱-2        |                                                             |                                | Short               | 2.51E-09                | All Operational Degraded 2V<br>Modes                                  |                                       | Possible EMI<br>on 26V Line                                                        | Possible<br>Converter<br>Malfunction | 111 E                            | Periodic<br>Test               | Redundant<br>Circuits      |   |
| Copyrigh    | Copyright (C) 2002 by Probabilistic Software, Inc.          | abilistic Softwar              | re, Inc.            |                         |                                                                       |                                       |                                                                                    |                                      |                                  |                                |                            | - |

Copyright (C) 2002 by Probabilistic Software, Inc.

Section 6.0

# WORST CASE ELECTRONIC PARTS/CIRCUITS TOLERANCE ANALYSIS

MIL-STD-785B, Task 206

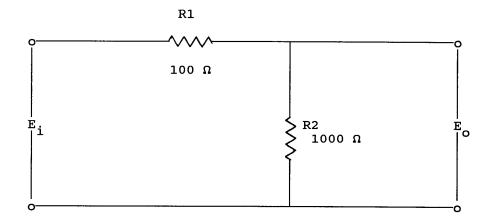



Figure 1, Voltage Divider Circuit

Note: This simple circuit is used to illustrate the procedure.

Copyright (C) 1989 by Probabilistic Software, Inc.

#### WORST CASE CIRCUIT TOLERANCE ANALYSIS

System: SAM Power Supply

#### Assembly: Converter

#### Schematic No.: 30684941

Prepared By: J. Smith

Circuit: Voltage Divider

Part Ambient Temperature, Worst Case: 55.00 Degrees Celsius

| Ref.<br>Desig. | Description/<br>Part Number | Type/<br>Value | Specification                     | Part<br>Nominal<br>Value, X | Nominal<br>Circuit<br>Function<br>Value, f | Initial<br>Tolerance,<br><sup>ΔT</sup> Ι<br>(%) | Temp.<br>Tolerance,<br><sup>ΔT</sup> T<br>(%) | End of<br>Life<br>Tolerance,<br><sup>ΔT</sup> EOL<br>(%) | Part<br>Variance,<br><sup>Ø</sup> X | Partial<br>Derivative<br>Squared,<br>(δf/δX) <sup>2</sup> | (δf/δX)²<br>•(σ <sub>X</sub> 2) |
|----------------|-----------------------------|----------------|-----------------------------------|-----------------------------|--------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|-------------------------------------|-----------------------------------------------------------|---------------------------------|
| Ei             | Input<br>Voltage            | DC<br>Volts    | Mil-Std-704                       | 10.00000<br>Volts           | 9.090909<br>Volts                          | 2.000000                                        | 0.200000                                      | 2.000000                                                 | 0.019600                            | 0.826532                                                  | 0.016200                        |
| R1             | Resistor<br>RLR07C1000FR    | 100.00<br>Ohms | Mil-R-39017, R<br>Insltd Fxd Film | 100.0000<br>Ohms            | 9.090909<br>Volts                          | 2.000000                                        | 0.550000                                      | 2.000000                                                 | 2.300278                            | 0.000068                                                  | 0.000157                        |
| R2             | Resistor<br>RLR07C1001FR    | 1.00K<br>Ohms  | Mil-R-39017, R<br>Insltd Fxd Film | 1000.000<br>Ohms            | 9.090909<br>Volts                          | 2.000000                                        | 0.550000                                      | 2.000000                                                 | 230.0278                            | 6.8E-07                                                   | 0.000157                        |

0.01651

Copyright (C) 1989 by Probabilistic Software, Inc.

#### WORST CASE CIRCUIT TOLERANCE ANALYSIS SUMMARY

System: SAM Power Supply Assembly: Converter Schematic No.: 30684941 Circuit: Voltage Divider Part Ambient Temperature, Worst Case: 55.00 Degrees Celsius Prepared By: J. Smith

 $V_{O} = f(E_{i}, R_{1}, R_{2})$ 

 $V_0 = E_i \cdot R_2 / (R_1 + R_2)$ 

 $V_{O} = 9.090909$  Volts

$$\sigma_{V_O}^2 = \left(\delta V_O / \delta E_i\right)^2 \cdot \sigma_{E_i}^2 + \left(\delta V_O / \delta R_1\right)^2 \cdot \sigma_{R_1}^2 + \left(\delta V_O / \delta R_2\right)^2 \cdot \sigma_{R_2}^2$$

$$\sigma_{V_O}^2 = 0.016200 + 0.00015 + 0.000157$$

$$\sigma_{V_O}^2 = 0.0165143$$

 $\sigma_{V_O} = 3\sqrt{0.016514} = \pm 0.385522$ 

 $\mu \pm 3\sigma_{V_{O}} = 9.090909 \ Volts \pm 0.385522 \ Volts$ 

 $\mu \pm 3\sigma_{V_{O}} = 8.705386$  Volts to 9.476432 Volts

Copyright © 2002 by Probabilistic Software, Inc.

# Section 7.0

## THERMAL ANALYSIS

MIL-HDBK-251 MIL-D-18300 MIL-T-23103

#### THERMAL ANALYSIS DATA TABLES

System: SAM Power Supply

Assembly: Converter

Schematic No.: 30684941 Prepared By: J. Smith

Part Ambient Temperature, Worst Case: 55.000 Degrees Celsius Environment: SF

|                |                                          |                             |                                               |                                     |                                     |                     | Temperature         | (°C.): T Max | к. / Тј Мах. |                             |
|----------------|------------------------------------------|-----------------------------|-----------------------------------------------|-------------------------------------|-------------------------------------|---------------------|---------------------|--------------|--------------|-----------------------------|
| Ref.<br>Desig. | Description/<br>Part Number              | Type/<br>Value              | Specification                                 | Power<br>Dissipation<br>(Watts,RMS) | Thermal<br>Resistance<br>Øjh (°C/W) | Mfr. Max.<br>Rating | Maximum<br>Derating | Rise         | Actual       | Thermal<br>Safety<br>Margin |
| U1             | Intgrtd Ckt.<br>54LS00<br>Quadruple 2-II | LSTTL<br>H FP<br>nput Pos   | Mil-Std-883/<br>Class B-1<br>itive-NAND Gates | 0.0167                              | 22.600                              | 175.000             | 100.000             | 0.377        | 55.377       | 44.623                      |
| U2             | Intgrtd Ckt.<br>LM139AJ<br>Linear, Volta | LINEAR<br>H DIP<br>ge Compa | Mil-Std-883/<br>Class B-1<br>rators           | 0.0404                              | 28.600                              | 150.000             | 100.000             | 1.157        | 56.157       | 43.843                      |
| CR1            | Diode<br>1N4148-1                        | General<br>Purpose          | Mil-S-19500/<br>116 JANTX                     | 0.0014                              | 120.600                             | 175.000             | 125.000             | 0.171        | 55.171       | 69.829                      |
| VR1            | Diode<br>1N4461                          | Zener/<br>Avalnch           | Mil-S-19500/<br>406 JANTX                     | 0.0048                              | 125.600                             | 175.000             | 125.000             | 0.604        | 55.604       | 69.396                      |
| Q1             | Transistor<br>2N2222A                    | NPN/PNP                     | Mil-S-19500/<br>225 JANTX                     | 0.0021                              | 70.600                              | 150.000             | 125.000             | 0.150        | 55.150       | 69.850                      |
| Q2             | Transistor<br>2N2907A                    | NPN/PNP                     | Mil-S-19500/<br>291 JANTX                     | 0.0102                              | 98.600                              | 150.000             | 125.000             | 1.004        | 56.004       | 68.996                      |
| R1             | Resistor<br>RCR07G102JS                  | 1.00K<br>Ohms               | Mil-R-39008, S<br>Insltd Fxd Comp             | 0.0007                              | 240.600                             | 130.000             | 130.000             | 0.170        | 55.170       | 74.830                      |
| R2             | Resistor<br>RWR74S1210FP                 | 121.00<br>Ohms              | Mil-R-39007, P<br>Power Fixed WW              | 0.0460                              | 50.600                              | 275.000             | 275.000             | 2.325        | 57.325       | 217.675                     |
| R3             | Resistor<br>RJR24FW501P                  | 500.00<br>Ohms              | Mil-R-39035, P<br>Trimmer NonWW               | 0.0028                              | 130.600                             | 150.000             | 150.000             | 0.369        | 55.369       | 94.631                      |
| R4             | Resistor<br>M83401/01                    | 50.00<br>Ohms               | Mil-R-83401,Mil<br>Netwrk Fxd Film            | 0.5656                              | 32.029                              | 125.000             | 125.000             | 18.115       | 73.115       | 51.885                      |
| C1             | Capacitor<br>CKR06BX104KP                | 100.00<br>nF                | Mil-C-39014, P<br>Ceramc,Gen.Pur.             |                                     |                                     | 85.000              | 110.000             |              | 55.000       | 55.000                      |
| C2             | Capacitor<br>CMR06F471JPDP               |                             | Mil-C-39001, P<br>Mica, Dipped                |                                     |                                     | 125.000             | 110.000             |              | 55.000       | 55.000                      |
| с3             | Capacitor<br>CLR73BH330KGP               | 33.00<br>uF                 | Mil-C-39006, P<br>Tntlm Elctrlytc             |                                     |                                     | 125.000             | 110.000             |              | 55.000       | 55.000                      |
| C4             | Capacitor<br>CSR13F476KP                 | 47.00<br>uF                 | Mil-C-39003, P<br>Tntlm Elctrlytc             |                                     |                                     | 125.000             | 110.000             |              | 55.000       | 55.000                      |
| т1             | Transformer<br>TF4R03GA203               | Power                       | Mil-T-27 ,Mil<br>Audio,Pwr,HiPwr              |                                     |                                     | 130.000             | 105.000             | 20.000       | 75.000       | 30.000                      |

Note: Blank entries indicate parameters which are not applicable.

Copyright (C) 2002 by Probabilistic Software, Inc.

## Section 8.0

### FAULT TREE ANALYSIS

MIL-HKBK-338

### **Mathematical Model**

Since all the events in the fault tree of Figure 1 are independent, the event probabilities are as follows:

$$P(C) = P(D) + P(E) - [P(D) \times P(E)]$$
$$P(Top) = P(A) \times P(B) \times P(C)$$

Where

P(A) = Probability of Event A, Servo Valve Driver Failure,  $1 - e^{\lambda_A t}$ ,  $4.29576 / 10^{12}$ 

- $\lambda_A$  = Failure rate of Servo Valve Driver, U1, Hybrid Current Driver, 0.61368 / 10<sup>6</sup> Hours.
  - t = Risk Exposure Time, 0.025 seconds or 7 / 10<sup>6</sup> hours, for all events.
- P(B) = Probability of Event B, Shutoff Valve Watchdog Failure,  $1 - e^{-\lambda_B t}$ ,  $1.13323 / 10^{12}$ 
  - $\lambda_B$  = Failure rate of Shutoff Valve Watchdog Circuit, U2, Errasable Programmable Logic Device (EPLD), 0.16189 / 10<sup>6</sup> hours.
    - $t = 7 / 10^6$  hours.
- P(C) = Probability of Event C, Display Electronics Unit (DEU) fails to display ABS fault status,

$$P(D) + P(E) - [P(D) \times P(E)], \ (1 - e^{-\lambda_D t}) + (1 - e^{-\lambda_E t}) - [(1 - e^{-\lambda_D t}) \times (1 - e^{-\lambda_E t})], \ 2.26646 / 10^{12}.$$

P(D) = Probability of Event D, ABS Arm Watchdog Failure,  $1 - e^{-\lambda_D t}$ ,  $1.13323 / 10^{12}$ 

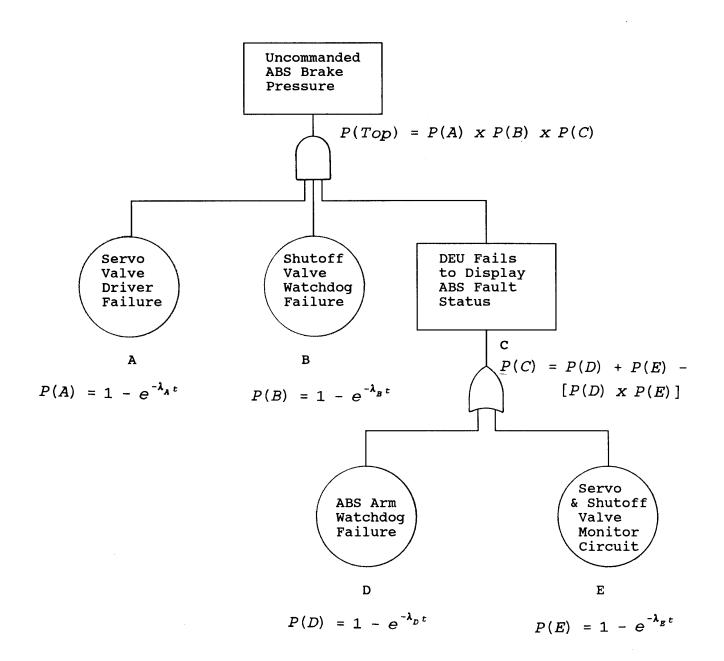



Figure 1, Automatic Brake Systems (ABS) Fault Tree Diagram

 $\lambda_{\it D} = \mbox{ Failure rate of the ABS Arm Watchdog Circuit, U3, EPLD, } \\ 0.16189 \, / \, 10^6 \mbox{ hours.}$ 

 $t = 7/10^6$  hours.

P(E) = Probability of Event E, Servo and Shutoff Valve Monitor Failure,  $1 - e^{-\lambda_E t}$ ,  $1.13323 / 10^{12}$ 

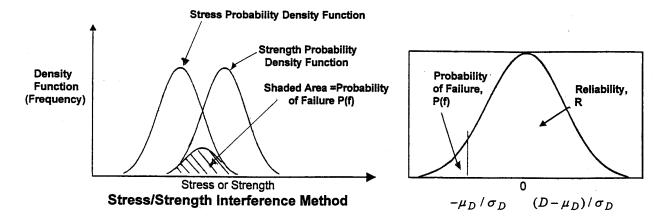
- $\lambda_E$  = Failure rate of the Servo and Shutoff Valve Monitor Circuit, U4, EPLD,  $0.16189 / 10^6$  hours.
  - $t = 7/10^6$  hours.

Therefore,

$$P(Top) = P(A) \times P(B) \times P(C)$$

 $= (4.29576/10^{12}) (1.13323/10^{12}) (2.26646/10^{12})$ 

 $= 11.033317 / 10^{36}$  or zero.


Copyright © 2002 by Probabilistic Software, Inc.

Section 9.0

### **MECHANICAL RELIABILITY**

(RADC-TR-85-194) October 1985

Stress/Strength Interference Method



#### Normalized Density Function of Excess Strength Over Load

Establish a new random variable D, where the difference of strength minus stress (load) is

D = Strength (S) - Stress (L) = S - L, 
$$\mu_D = \mu_S - \mu_L$$
,  $\sigma_D = \sqrt{\sigma_S^2 + \sigma_L^2}$  and where

 $\mu_D$ ,  $\mu_S$ ,  $\mu_L$  = Mean of the difference, strength and stress, respectively, and

 $\sigma_D, \sigma_S, \sigma_L$  = Standard Deviation of the difference, strength and stress, respectively.

Then the probability of failure, P(f), is

$$P(f) = P(S - L < 0) = P(D < 0) = P\left\{\frac{D - \mu_D}{\sigma_D} < \frac{-\mu_D}{\sigma_D}\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-\mu_D/\sigma_D} exp(-t^2/2) dt$$

for the P(f) =  $\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} dx$  where the standard normal random variable at t =  $\frac{x-\mu}{\omega} & -\frac{\mu}{D} / \sigma D = -9.0766753347$  at t =  $\frac{\mu}{D} = -\frac{\mu}{D}$ , the difference probability defined by the difference probabilit

$$t = \frac{x - \mu}{\sigma} & -\mu_D / \sigma_D = -9.0766753347 \text{ at } t = \frac{\mu_S - \mu_L}{\sqrt{\sigma_S^2 + \sigma_L^2}}, \text{ the difference probability density}$$

function is normalized to a zero mean and a standard deviation of one.

The reliability prediction, 1-P(f), for the MTA Propellant Tank, which has a ultimate strength normal distribution mean of  $\mu_S = 160,000$  psi and a standard deviation of  $\sigma_S = 17,660$  psi and an in - orbit stress load (MEOP) normal distribution mean of  $\mu_L = 250$  psi and a standard deviation of  $\sigma_L = 50$  psi, is 0.9999999999.

#### Monopropellant Tank Reliability Mathematical Model and Prediction

Section 10.0

# EXAMPLE FAILURE RATE ANALYSIS FOR POPPET VALVE ASSEMBLY

Carderock Div, NSWC-92/L01, "Handbook of Reliability Prediction Procedures for Mechanical Equipment", May 1992 Poppet Valve Assembly

$$\lambda_{PO} = \lambda_{PO,B} \frac{Q_a}{Q_f}$$

Where:

$$\lambda_{PO}$$
 = Failure rate of the poppet assembly, failures/million operations

 $\lambda_{PO,B} =$  Base failure rate for poppet assembly, failures/million operations

$$Q_a$$
 = Leakage rate, in<sup>3</sup>/min

 $Q_f$  = Leakage rate considered to be valve failure, in<sup>3</sup>/min

$$Q_a = \frac{2x10^4 D_{MS} f^3 (P_1^2 - P_2^2)}{V_a L_W (S_S)^{3/2}}$$

Where:

 $Q_a =$  Actual fluid leakage, in<sup>3</sup>/min

 $D_{MS}$  = Mean seat diameter, in

f = Mean surface finish of opposing surfaces, min

$$P_1 =$$
 Upstream pressure, lb/in<sup>2</sup>

 $P_2 = Downstream pressure, Ib/in_2$ 

$$V_a$$
 = Absolute fluid viscosity, lb-min/in<sup>2</sup>

 $L_W$  = Radial seat land width, in.

 $S_S = Apparent seat stress, Ib/in_2$ 

$$\lambda_{PO} = \lambda_{PO,B} \cdot C_P \cdot C_Q \cdot C_F \cdot C_V \cdot C_N \cdot C_S \cdot C_{DT} \cdot C_{SW} \cdot C_W$$

Where:

 $\lambda_{PO}$  = Failure rate of poppet assembly in failures/million operations; 1.26

 $\lambda_{PO,B}$  = Base failure rate of poppet assembly, 1.40 failures/million operations

- $C_P$  = Multiplying factor which considers the effect of fluid pressure on the base failure rate, 1.0
- $C_Q$  = Multiplying factor which considers the effect of allowable leakage on the base failure rate, 1.0
- $C_F$  = Multiplying factor which considers the effect of surface finish on the base failure rate, 1.0
- $C_V$  = Multiplying factor which considers the effect of fluid fiscosity/temperature on the base failure rate, 1.0
- $C_N$  = Multiplying factor which considers the effect of contaminants on the base

failure rate, 1.0625

- $C_{S}$  = Multiplying factor which considers the effect of the apparent seat stress on the base failure rate, 0.621119
- $C_{DT}$  = Multiplying factor which considers the effect of the seat diameter on the base failure rate, 1.09
- $C_{SW}$  = Multiplying factor which considers the effect of the seat land width on the base failure rate, 1.001182
- $C_W$  = Multiplying factor which considers the effect of flow rate on the base failure rate, 1.25

Where:

$$C_{P} = \left(\frac{P_{1} - P_{2}}{3000}\right)^{2}$$

$$C_{Q} = 0.055 / Q_{f} \text{ For leakage (Per GPM_{R})} > 0.03,$$

$$C_{Q} = 4.1 - (79Q_{f}) \text{ For leakage (Per GPM_{R})} < 0.03,$$

$$C_{F} = \left(\frac{V_{O}}{V}\right)$$

Where:  $V_o = 2 \ x \ 10^{-8} \ \text{lb min} \ / \ \text{in}^2$ 

$$C_N \left(\frac{C_0}{C_{10}}\right)^3 N_{10} \ GPM_R$$

Where:

 $GPM_R$  = Rated Flow in gallons/min, 5.0

$$C_{10} =$$
 Standard System Filter Size = 10 micron

$$C_0 =$$
 System Filter Size in microns = 5 micron

 $N_{10} = 1.7$  Particles under 10 microns/Hour/GPM

$$C_S = \frac{1}{S_R^{3/2}} = 0.621119$$

Where:

$$S_R = \frac{12\pi D_M L_W}{D_S^2} = 0.758$$

$$S_S = \frac{P_S D_S^2}{4D_M L_W} = 1.2$$

$$S_S = \frac{\text{Force on Seat}}{\text{Seat Land Area}} = \frac{F_S}{A_{SL}}$$

$$F_S = \frac{\pi P_S D_S^2}{4}$$

Stress Ratio =  $S_C / S_S = S_R$ 

Therefore, leakage varies with the seat stress as:

$$\left(\frac{1}{S}\right)^{3/2}$$

Minimum Contact Pressure =  $S_C = 3P_S$  approximately three times the fluid pressure.

$$A_{SL} = \pi D_M \cdot L_W$$

Where:

 $A_{SL}$  = Seat land area, in<sup>2</sup>  $L_W$  = Land area width, in  $D_M$  = Mean land width diameter, in

$$A_{ST} = \frac{\pi (D_s)^2}{4}$$

Where:

$$A_{ST}$$
 = Seat Area, in<sub>2</sub>  
 $D_{S}$  = Diameter of seat exposed to fluid pressure, P<sub>S</sub>, 0.70 in

$$C_{DT} = 1.1 D_{S} + 0.32$$
  

$$C_{SW} = 3.55 - 24.52 L_{W} + 72.99 L_{W}^{2} - 85.75 L_{W}^{3} \text{ for } L_{W} < 6$$
  

$$C_{W} = 1 + \left[\frac{F_{L}}{100}\right]^{2}$$

Where:

$$F_L$$
 = Ratio of actual flow rate to manufacturer's rating

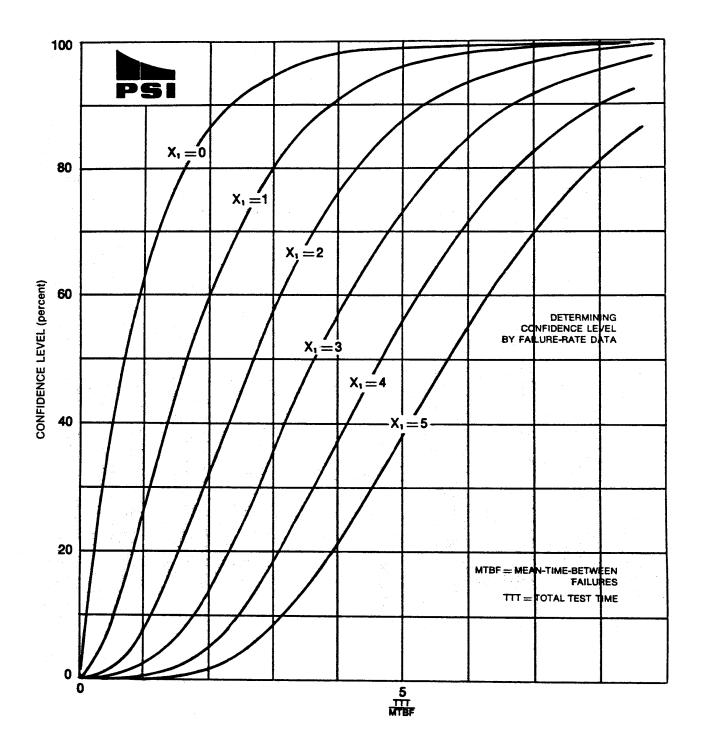
# Section 11.0

# **TESTABILITY / BIT ANALYSIS**

MIL-STD-2165

TESTABILITY ANALYSIS

System: SAM Power Supply Indenture Level: 3


Date: Sheet: 1

| Referen       | Reference Drawing: Converter, 30684941<br>Mission: Space, Flight (SF) | ter, 30684941<br>F)            |                       |                                       |                     |                                            |                                 | Approve                                      | Approved By: J. Smith<br>Approved By: S. L. Friedman                      |                                           |
|---------------|-----------------------------------------------------------------------|--------------------------------|-----------------------|---------------------------------------|---------------------|--------------------------------------------|---------------------------------|----------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------|
| ldent.<br>No. | Item/Functional<br>Identification<br>(Nomenclature)                   | Function                       | Failure Mode<br>Fault | Mission Phase/<br>Operational<br>Mode | Severity<br>Class ( | Probability<br>Of Occurence,<br>1-Exp(-Cm) | Failure<br>Rate<br>(kp)<br>PPMH | Undetectable<br>Failure<br>Rate (kp)<br>PPMH | Undetectable<br>Failure<br>Acceptance<br>Basis                            | Fault<br>Isolation<br>Functional<br>Group |
| <b>u</b> 2-1  | Transistor<br>2N2907A<br>Low Frequency<br>Bipolar (NPN/PNP)           | Switch<br>Transistor<br>Driver | Open                  | Power On                              | 111                 | 2.20E-12                                   | 1.10E-10                        |                                              |                                                                           | Continuity<br>Pin Drivers                 |
| Q2-2          |                                                                       |                                | Short                 | Power On                              | 1                   | 6.60E-13                                   | 1.10E-10                        |                                              |                                                                           | Continuity<br>Pin Drivers                 |
| cr1-1         | Diode<br>1N4148-1<br>General Purpose                                  | Overvol tage<br>Protection     | Open                  | Power On                              | 2                   | 5.60E-13                                   | 1.40E-10                        | 1.40E-10                                     | No functional loss                                                        | Continuity<br>Pin Drivers                 |
| CR1-2         |                                                                       |                                | Short                 | Power On                              | 111                 | 4.206-12                                   | 1.40E-10                        |                                              |                                                                           | Continuity<br>Pin Drivers                 |
| R1-1          | Resistor<br>RCR076102JS<br>Insulated Fixed<br>Composition, ER         | Current Limit                  | open                  | Power On                              | 111                 | 4.25E-13                                   | 1.00E-11                        |                                              |                                                                           | Continuity<br>Pin Drivers                 |
| R1-2          |                                                                       |                                | Short                 | Power On                              | 111                 | 7.50E-14                                   | 1.00E-11 1.00E-11               | 1.00E-11                                     | No functional loss,<br>increased<br>susceptability to<br>subsequent fault | Continuity<br>Pin Drivers                 |
| c1-1          | Capacitor<br>CKR06BX104KP<br>General Purpose<br>Ceramic, ER           | Feedback<br>Capacitor          | Open                  | Power On                              | 11                  | 8.93E-12                                   | 2.10E-10                        | 2.10E-10                                     | No funtional loss,<br>increased<br>susceptability to<br>subsequent fault  | Power<br>Supply                           |
| c1-2          |                                                                       |                                | Short                 | Power On                              | 2                   | 3.15E-13                                   | 2.10E-10                        |                                              |                                                                           |                                           |
| Copyriah      | Copyright (C) 2002 by Probabilistic Software, Inc.                    | abilistic Softwa               | are, Inc.             |                                       |                     |                                            |                                 |                                              |                                                                           |                                           |

Copyright (C) 2002 by Probabilistic Software, Inc.

Section 12.0

# CONFIDENCE LEVEL



Example: A customer wishes to purchase a system from a vendor, specifying that it be tested to demonstrate a mean-timebetween-failure of at least 200 hours with a confidence level of 95 percent.

In this case, CL=95,  $X_1 = 0$ , and MTBF = 200 for the minimum total test time. Enter chart at 95 percent on the CL axis. Move to the right to intersect curve  $X_1 = 0$ . Drop down to TTT/MTBF and read 3.0. Solving MTBF = 200, TTT = 3.0 x 200, or, the system must be operated at least 600 hours without any failure to meet specifications. Now, should a failure occur during the 600 hour test and we wish to try again, we would read over on the  $X_1 = 1$  curve, then drop down to TTT/MTBF = 4.8, TTT=960 hours. With just one failure at any time during the test, specifications will have been met. Of course, this chart is not one-way. Simple establish any three values and crank out the fourth. A parting shot – note that for systems which are more cycle dependent than time-dependent, feel perfectly free to substitute mean-cycles-between-failure for mean-time-between-failure.

Copyright © 2002 by Probabilistic Software, Inc.