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Abstract—In many communication situations, the transmitter
and the receiver must be designed without a complete knowl-
edge of the probability law governing the channel over which
transmission takes place. Various models for such channels and
their corresponding capacities are surveyed. Special emphasis
is placed on the encoders and decoders which enable reliable
communication over these channels.

Index Terms—Arbitrarily varying channel, compound chan-
nel, deterministic code, finite-state channel, Gaussian arbitrarily
varying channel, jamming, MMI decoder, multiple-access chan-
nel, randomized code, robustness, typicality decoder, universal
decoder, wireless.

I. INTRODUCTION

SHANNON’S classic paper [111] treats the problem of
communicating reliably over a channel when both the

transmitter and the receiver are assumed to have full knowl-
edge of the channel law so that selection of the codebook
and the decoder structure can be optimized accordingly. We
shall often refer to such channels, in loose terms, as known
channels. However, there are a variety of situations in which
either the codebook or the decoder must be selected without
a complete knowledge of the law governing the channel over
which transmission occurs. In subsequent work, Shannon and
others have proposed several different channel models for such
situations (e.g., the compound channel, the arbitrarily varying
channel, etc.). Such channels will hereafter be referred to
broadly as unknown channels.
Ultimate limits of communication over these channels in

terms of capacities, reliability functions, and error exponents,
as also the means of attaining them, have been extensively
studied over the past 50 years. In this paper, we shall review
some of these results, including recent unpublished work, in
a unified framework, and also present directions for future
research. Our emphasis is primarily on single-user channels.
The important class of multiple-access channels is not treated
in detail; instead, we provide a brief survey with pointers for
further study.
There are, of course, a variety of situations, dual in nature to

those examined in this paper, in which an information source
must be compressed—losslessly or with some acceptable dis-
tortion—without a complete knowledge of the characteristics
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of the source. The body of literature on this subject is vast,
and we refer the reader to [23], [25], [61], [71], and [128] in
this issue.
In selecting a model for a communication situation, several

factors must be considered. These include the physical and
statistical nature of the channel disturbances, the information
available to the transmitter, the information available to the
receiver, the presence of any feedback link from the receiver
to the transmitter, and the availability at the transmitter and
receiver of a shared source of randomness (independent of
the channel disturbances). The resulting capacity, reliability
function, and error exponent will also rely crucially on the
performance criteria adopted (e.g., average or worst case
measures).
Consider, for example, a situation controlled by an ad-

versarial jammer. Based on the physics of the channel, the
received signal can often be modeled as the sum of the
transmitted signal, ambient or receiver noise, and the jammer’s
signal. The transmitter and jammer are typically constrained
in their average or peak power. The jammer’s strategy can be
described in terms of the probability law governing its signal.
If the jammer’s strategy is known to the system designer,
then the resulting channel falls in the category studied by
Shannon [111] and its extensions to channels with memory.
The problem becomes more realistic if the jammer can select
from a family of strategies, and the selected strategy, and
hence the channel law, is not fully known to the system
designer. Different statistical assumptions on the family of
allowable jammer strategies will result in different channel
models and, hence, in different capacities. Clearly, it is easier
to guarantee reliable communication when the jammer’s signal
is independent and identically distributed (i.i.d.), albeit with
unknown law, than when it is independently distributed but
with arbitrarily varying and unknown distributions. The former
situation leads to a “compound channel” model, and the latter
to an “arbitrarily varying channel” model.
Next, various degrees of information about the jammer’s

strategy may be available to the transmitter or receiver, leading
to yet more variations of such models. For example, if the
jammer employs an i.i.d. strategy, the receiver may learn
it from the signal received when the transmitter is silent,
and yet be unable to convey its inference to the transmitter
if the channel is one-way. The availability of a feedback
link, on the other hand, may allow for suitable adaptation
of the codebook, leading to an enhanced capacity value. Of
course, in the extreme situation where the receiver has access
to the pathwise realization of the jammer’s signal and can

0018–9448/98$10.00 © 1998 IEEE



LAPIDOTH AND NARAYAN: RELIABLE COMMUNICATION UNDER CHANNEL UNCERTAINTY 2149

subtract it from the received signal, the transmitter can ignore
the jammer’s presence. Another modeling issue concerns the
availability of a source of common randomness which enables
coordinated randomization at the encoder and decoder. For
instance, such a resource allows the use of spread-spectrum
techniques in combating jammer interference [117]. In fact,
access to such a source of common randomness can sometimes
enable reliable communication at rates that are strictly larger
than those achievable without it [6], [48].
The capacity, reliability function, and error exponent for a

given model will also depend on the precise notion of reliable
communication adopted by the system designer with regard to
the decoding error probability. For a given system the error
probability will, in general, depend on the transmitted message
and the jammer’s strategy. The system designer may require
that the error probability be small for all jammer strategies and
for all messages; a less stringent requirement is that the error
probability be small only as an (arithmetic) average over the
message set. While these two different performance criteria
yield the same capacity for a known channel, in the presence
of a jammer the capacities may be different [20]. Rather than
requiring the error probability to be small for every jammer
strategy, we may average it over the set of all strategies with
respect to a given prior. This Bayesian approach gives another
notion of reliable communication, with yet another definition
of capacity.
The notions of reliable communication mentioned above

do not preclude the possibility that the system performance
be governed by the worst (or average) jamming strategy
even when a more benign strategy is employed. In some
situations, such as when the jamming strategies are i.i.d., it
is possible to design a decoder with error probability decaying
asymptotically at a rate no worse than if the jammer strategy
were known in advance. The performance of this “universal”
decoder is thus governed not by the worst strategy but by the
strategy that the jammer chooses to use.
Situations involving channel uncertainty are by no means

limited to military applications, and arise naturally in several
commercial applications as well. In mobile wireless commu-
nications, the varying locations of the mobile transmitter and
receiver with respect to scatterers leads to an uncertainty in
channel law. This application is discussed in the conclud-
ing section. Other situations arise in underwater acoustics,
computer memories with defects, etc.
The remainder of the paper is organized as follows. Fo-

cusing on unknown channels with finite input and output
alphabets, models for such channels without and with memory,
as well as different performance criteria, are described in
Section II. Key results on channel capacity for these models
and performance criteria are presented in Section III. In
Section IV, we survey some of the encoders and decoders
which have been proposed for achieving reliable communi-
cation over such channels. While our primary focus is on
channels with finite input and output alphabets, we shall
consider in Section V the class of unknown channels whose
output equals the sum of the transmitted signal, an unknown
interference .and white Gaussian noise. Section VI consists
of a brief review of unknown multiple-access channels. In

the concluding Section VII, we examine the potential role in
mobile wireless communications of the work surveyed in this
paper.

II. CHANNEL MODELS AND PRELIMINARIES
We now present a variety of mathematical models for

communication under channel uncertainty. We shall assume
throughout a discrete-time framework. For waveform channels
with uncertainty, care must be exercised in formulating a
suitable discrete-time model as it can sometimes lead to
conservative designs. Throughout this paper, all logarithms
and exponentiations are with respect to the base .
Let and be finite sets denoting the channel input

and output alphabets, respectively. The probability law of a
(known) channel is specified by a sequence of conditional
probability mass functions (pmf’s)

(1)

where denotes the conditional pmf governing channel
use through units of time, i.e., “ uses of the channel.” If
the known channel is a discrete memoryless channel (DMC),
then its law is characterized in terms of a stochastic matrix

according to

(2)

where and .
For notational convenience, we shall hereafter suppress the
subscript and use instead of .

Example 1: The binary-symmetric channel (BSC) is a
DMC with , and a stochastic matrix

if
if

for a “crossover probability” . The BSC can also be
described by writing

where is a Bernoulli( ) process, and addition is
.

A family of channels indexed by can be denoted by

(3)

for some parameter space . For example, this family would
correspond to a family of DMC’s if

(4)

where is a suitable
subset of the set of all stochastic matrices . Such a
family of channels, referred to as a compound DMC, is often
used to model communication over a DMC whose law belongs
to the family and remains unchanged during the course of a
transmission, but is otherwise unknown.
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Example 2: Consider a compound BSC with
and with

if
if

The case , for instance, represents a compound
BSC of unknown polarity.
A more severe situation arises when the channel parameters

vary arbitrarily from symbol to symbol during the course of
a transmission. This situation can sometimes be modeled by
choosing where is a finite set, often referred to as
the state space, and by setting

(5)

where and is a given
stochastic matrix. This model is called a discrete memoryless
arbitrarily varying channel and will hereafter be referred to
simply as an AVC.

Example 3: Consider an AVC (5) with ,
, and

if
otherwise.

This AVC can also be described by writing

All additions above are arithmetic. Since the stochastic matrix
has entries which are all -valued,

such an AVC is sometimes called a deterministic AVC. This
example is due to Blackwell et al. [31].

In some hybrid situations, certain channel parameters may
be unknown but fixed during the course of a transmission,
while other parameters may vary arbitrarily from symbol to
symbol. Such a situation can often be modeled by setting

, where is as above, connotes a subset
of the stochastic matrices , and for

(6)

We shall refer to this model as a hybrid DMC.
In some situations in which the channel law is fully known,

memoryless channel models are inadequate and more elaborate
models are needed. In wireless applications, a finite-state
channel (FSC) model [64], [123] is often used. The memory
in the transmission channel is captured by the introduction of
a set of states , and the probability law of the channel is
given by

(7)

where is a pmf on , and is a
stochastic matrix. Operationally, if at time the state of
the channel is and the input to the channel at time is

Fig. 1. Gilbert–Elliott channel model. and are the channel crossover
probabilities in the “good” and “bad” states, and and are transition
probabilities between states.

, then the output of the channel at time and the state
of the channel at time are determined according to the

conditional probability
In wireless applications, the states often correspond to

different fading levels which the channel may experience (cf.
Section VII). It should be noted that the model (7) corresponds
to a known channel, and the set of states should not be
confused with the state space introduced in (5) in the
definition of an AVC.

Example 4: The Gilbert–Elliott channel [57], [68], [69],
[101] is a finite-state channel with two states ,
the state corresponding to the “good” state and state
corresponding to the “bad” state (see Fig. 1). The channel has
input and output alphabets , and law

where

and

and where is often taken as the stationary pmf of the state
process, i.e.,

The channel can also be described as

where addition is , and where is a stationary binary
hidden Markov process with two internal states.
We can, of course, consider a situation which involves an

unknown channel with memory. If the matrix
is unknown but remains fixed during a transmission, the
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channel can be modeled as a compound FSC [91] by setting
to be a set of pairs of pmf’s of the initial state and

stochastic matrices with

(8)

where, with an abuse of notation,
denotes a generic element of .

Example 5: A compound Gilbert–Elliott channel [91] is
a family of Gilbert–Elliott channels indexed by some set
where each channel in the family has a different set of

parameters .

More severe yet is a situation where the channel parameters
may vary in an arbitrary manner from symbol to symbol during
a transmission. This situation can be modeled in terms of an
arbitrarily varying FSC, which is described by introducing a
state space as above, setting where is a set
of pmfs on , and letting

(9)

where , and

is a family of stochastic matrices . To our
knowledge, this channel model has not appeared heretofore in
the literature, and is a subject of current investigation by the
authors of the present paper.
The models described above for communication under chan-

nel uncertainty do not form an exhaustive list. They do,
however, constitute a rich and varied class of channel de-
scriptions.
We next provide precise descriptions of an encoder (trans-

mitter) and a decoder (receiver). Let the set of messages
be . A length- block code is a pair of
mappings , where

(10)

is the encoder, and

(11)

is the decoder. The rate of such a code is

(12)

Note that the encoder, as defined by (10), produces an output
which is solely a function of the message. If the encoder
is provided additional side information, this definition must
be modified accordingly. A similar statement of appropriate
nature applies to the decoder as well. Also, while is allowed
as a decoder output for the sake of convenience, it will signify

a decoding failure and will always be taken to constitute an
error.
The probability of error for the message , when the

code is used on a channel is given by

(13)

The corresponding maximum probability of error is

(14)

and the average probability of error is

(15)

Obviously, the maximum probability of error will lead to a
more stringent performance criterion than the average prob-
ability of error. In the case of known channels, both criteria
result in the same capacity values. For certain unknown chan-
nels, however, these two criteria can yield different capacity
results, as will be seen below [20].
For certain unknown channels, an improvement in per-

formance can be obtained by using a randomized code. A
randomized code constitutes a communication technique, the
implementation of which requires the availability of a common
source of randomness at the transmitter and receiver; the
encoder and decoder outputs can now additionally depend
on the outcome of a random experiment. Thus the set of al-
lowed encoding–decoding strategies is enriched by permitting
recourse to mixed strategies, in the parlance of game theory.
The definition of a code in (10) and (11) must be suitably
modified, and the potential enhancement in performance (e.g.,
in terms of the maximum or average probability of error in
(14) and (15)) is assessed as an average with respect to the
common source of randomness.
The notion of a randomized code should not be confused

with the standard method of proof of coding theorems based
on a random-coding argument. Whereas a randomized code
constitutes a communication technique, a random-coding ar-
gument is a proof technique which is often used to establish the
existence of a (single) deterministic code as in (10) and (11)
which yields good performance on a known channel, without
actually constructing the code. This is done by introducing a
pmf on an ensemble of codes, computing the corresponding av-
erage performance over such an ensemble, and then invoking
the argument to show that if this average performance is good,
then there must exist at least one code in the ensemble with
good performance. The random-coding argument is sometimes
tricky to invoke when proving achievability results for families
of channels. If for each channel in the family the average
performance over the ensemble of codes is good, the argument
cannot be used to guarantee the existence of a single code
which is simultaneously good for all the channels in the
family; for each channel, there may be a different code with
performance as good as the ensemble average.
Precisely, a randomized code is a random variable

(rv) with values in the family of all length- block codes
defined by (10) and (11) with the same message set
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. While the pmf of the rv may
depend on a knowledge of the family of channels indexed
by , it is not allowed to depend on the actual value
of governing a particular transmission or on the
transmitted message .
The maximum and average probabilities of error will be

denoted, with an abuse of notation, by and
, respectively. These error probabilities are defined

in a manner analogous to that of a deterministic code in (14)
and (15), replacing with given by

(16)

where denotes expectation with respect to the pmf of the rv
. When randomized codes are allowed, the maximum

and average error probability criteria lead to the same capacity
value for any channel (known or unknown). This is easily seen
since given a randomized code, a random permutation of the
message set can be used to obtain a new randomized code of
the same rate, whose maximum error probability equals the
average error probability of the former (cf. e.g., [44, p. 223,
Problem 5]).
While a randomized code is preferable for certain unknown

channels owing to its ability to outperform deterministic codes
by yielding larger capacity values, it may not be always
possible to provide both the transmitter and the receiver with
the needed access to a common source of randomness. In such
situations, we can consider using a code in which the encoder
alone can observe the outcome of a random experiment,
whereas the decoder is deterministic. Such a code, referred
to as a code with stochastic encoder, is defined as a pair

where the encoder can be interpreted as a stochastic
matrix , and the (deterministic) decoder is
given by (11). In proving the achievability parts of coding
theorems, the codewords are usually chosen
independently, which completes the probabilistic description
of the code . The various error probabilities for such a
code are defined in a manner analogous to that in (13)–(15).
In comparison with deterministic codes, a code with stochastic
encoder clearly cannot lead to larger capacity values for
known channels (since even randomized codes cannot do so).
However, for certain unknown channels, while deterministic
codes may lead to a smaller capacity value for the maximum
probability of error criterion than for the average probability
of error criterion, codes with stochastic encoders may afford
an improvement by yielding identical capacity values under
both criteria.
Hereafter, a deterministic code will be termed as such in

those sections in which the AVC is treated; elsewhere, it will
be referred to simply as a code. On the other hand, a code with
stochastic encoder or a randomized code will be explicitly
termed as such.
We now define the notion of the capacity of an unknown

channel which, as the foregoing discussion might suggest, is
more elaborate than the capacity of a known channel. For

, a number is an -achievable rate on (an
unknown) channel for maximum (resp., average) probability

of error, if for every and every sufficiently large, there
exists a length- block code with rate

(17)

and maximum (resp., average) probability of error satisfying

(18)

resp., (19)

A number is an achievable rate for the maximum
(resp., average) probability of error if it is -achievable for
every .
The -capacity of a channel for maximum (resp., average)

probability of error is the largest -achievable rate as given by
(17) and (18) (resp., (19)). It will be denoted (resp., )
for those channels for which the two error probability criteria
lead, in general, to different values of -capacity, in which
cases, of course, ; otherwise, it will be denoted
simply by .
The capacity of a channel for maximum or average prob-

ability of error is the largest achievable rate for that error
criterion. It will be denoted by or for those channels
for which the two error probability criteria lead, in general, to
different capacity values, when, obviously, ; else, it
will be denoted by . Observe that the capacities and
can be equivalently defined as the infima of the corresponding
-capacities for , i.e.,

and

Remark: If an -capacity of a channel ( or ) does not
depend on , , its value is called a strong capacity;
such a result is often referred to as a strong converse. See
[122] for conditions under which a strong converse holds for
known channels.
When codes with stochastic encoders are allowed, analogous

notions of -capacity ( or ) and capacity ( or ) of
a channel are defined by modifying the previous definitions of
these terms in an obvious way. In particular, the probabilities
of error are understood in terms of expectations with respect to
the probability law of the stochastic encoder. For randomized
codes, too, analogous notions of -capacity and capacity are
defined; note, however, that in this case the maximum and
average probabilities of error will lead to the same results, as
observed earlier.
While the fundamental notion of channel capacity provides

the system designer with an indication of the ultimate coding
rates at which reliable communication can be achieved over
a channel, it is additionally very useful to assess coding
performance in terms of the reductions attained in the various
error probabilities by increasing the complexity and delay
of a code as measured by its blocklength. This is done by
determining the exponents with which the error probabilities
can be made to vanish by increasing the blocklength of the
code, leading to the notions of reliability function, randomized
code reliability function, and random-coding error exponent of
a channel. Our survey does not address these important notions
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for which we direct the reader to [43], [44], [46], [64], [65],
[95], [115], [116], and references therein.
In the situations considered above, quite often the selection

of codes is restricted in that the transmitted codewords must
satisfy appropriate input constraints. Let be a nonnegative-
valued function on , and let

(20)

where, for convenience, we assume that .
Given , a length- block code given by (10)
and (11), is said to satisfy input constraint if the codewords

satisfy

(21)

Similarly, a randomized code or a code with stochastic
encoder satisfies input constraint if

almost surely (a.s.), (22)

Of course, if , then the input constraint is
inoperative.
Restrictions are often imposed also on the variations in

the unknown channel parameters during the course of a
transmission. For instance, in the AVC model (5), constraints
can be imposed on the sequence of channel states as
follows. Let be a nonnegative-valued function on , and let

(23)

where we assume that . Given , we
shall say that satisfies state constraint if

(24)

If , the state constraint is rendered inoper-
ative.
If coding performance is to be assessed under input con-

straint , then only such codes will be allowed as satisfy (21)
or (22), as applicable. A similar consideration holds if the
unknown channel parameters are subject to constraints. For
instance, for the AVC model of (5) under state constraint ,
the probabilities of error in (18) and (19) are computed with
the maximization with respect to being now taken over
all state sequences which satisfy (24). Accordingly,
the notion of capacity is defined.
The various notions of capacity for unknown channels

described above are based on criteria involving error prob-
abilities defined in terms of (18) and (19). The fact that
these error probabilities are evaluated as being the largest
with respect to the (unknown) parameter means that
the resulting values of capacity can be attained when the
channel uncertainty is at its severest during the course of a
transmission, and, hence, in less severe instances as well. In the
latter case, of course, these values may lead to a conservative
assessment of coding performance.
In some situations, the system designer may have additional

information concerning the vagaries of the unknown channel.

For example, in a communication situation controlled by
a jammer employing i.i.d. strategies, the system designer
may have prior knowledge, based on past experience, of
the jammer’s relative predilections for the laws (indexed by
) governing the i.i.d. strategies. In such cases, a Bayesian
approach can be adopted where the previous model of the
unknown channel comprising the family of channels (3) is
augmented by considering to be a -valued rv with a
known (prior) probability distribution function (pdf) on .
Thus the transmitter and receiver, while unaware of the actual
channel law (indexed by ) governing a transmission, know the
pdf of the rv . The corresponding maximum and average
probabilities of error are now defined by suitably modifying
(18) and (19); the maximization with respect to in (18)
and (19) is replaced by expectation with respect to the law
of the rv . When dealing with randomized codes or codes

with stochastic encoders, we shall assume that all the rv’s in
the specification of such codes are independent of the rv .
The associated notions of capacity are defined analogously as
above, with appropriate modifications. For a given channel
model, their values will obviously be no smaller than their
counterparts for the more stringent criteria corresponding to
(18) and (19), thereby providing a more optimistic assessment
of coding performance. It should be noted, however, that
this approach does not assure arbitrarily small probabilities of
error for every channel in the family of channels (3); rather,
probabilities of error are guaranteed to be small only when
they are evaluated as averages over all the channels in the
family (3) with respect to the (prior) law of . For this
reason, in situations where there is a prior on , the notion of
“capacity versus outage” is sometimes preferred to the notion
of capacity (see [102]).
Other kinds of situations can arise when the transmitter

or receiver are provided with side information consisting
of partial or complete knowledge of the exact parameter
dictating a transmission, i.e., the channel law governing a
transmission. We consider only a few such situations below;
the reader is referred to [44, pp. 220–222 and 227–230] for a
wider description. Consider first the case where the receiver
alone knows the exact value of during a transmission. This
situation can sometimes be reduced to that of an unknown
channel without side information at the receiver, which has
been described above, and hence does not lead to a new
mathematical problem. This is seen by considering a new
unknown channel with input alphabet , and with output
alphabet which is an expanded version of the original output
alphabet , viz.

(25)

and specified by the family of channels

(26)

where

if
otherwise. (27)
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Of course, some structure may be lost in this construction (e.g.,
the finite cardinality of the output alphabet or the memory of
the channel). A length- block code for this channel is defined
as a pair of mappings , where the encoder is defined
in the usual manner by (10), while the decoder is a mapping

(28)

We turn next to a case where the transmitter has partial or
complete knowledge of prevalent during a transmission.
For instance, consider communication over an AVC (5) with

when the transmitter alone is provided, at each time
instant a knowledge of all the past and present
states of the channel during a transmission. Then,
a length- block code is a pair of mappings , where the
decoder is defined as usual by (11), whereas the encoder
comprises a sequence of mappings with

(29)

This sequence of mappings determines the th symbol of a
codeword as a function of the transmitted message and the
known past and present states of the channel. Significant
benefits can be gained if the transmitter is provided state
information in a noncausal manner (e.g., if the entire sequence
of channel states is known to the transmitter
when transmission begins). The encoder is then defined
accordingly as a sequence of mappings with

(30)

Various combinations of the two cases just mentioned are, of
course, possible with the transmitter and receiver possessing
various degrees of knowledge about the exact value of during
a transmission. In all these cases, the maximum and average
probabilities of error are defined analogously as in (14) and
(15), and the notion of capacity defined accordingly.
Yet another communication situation involves unknown

channels with noiseless feedback from the receiver to the
transmitter. At each time instant the transmitter
knows the previous channel output symbols
through a noiseless feedback link. Now, in the formal defini-
tion of a length- block code , the decoder is given by
(11) while the encoder consists of a sequence of mappings

, where

(31)

Once again, the notion of capacity is defined accordingly.
We shall also consider the communication situation which

obtains when list codes are used. Loosely speaking, in a list
code, the decoder produces a list of messages, and the absence
from the list of the message transmitted constitutes an error.
When the size of the list is , the list coding problem reduces
to the usual coding problem using codes as in (10) and (11).
Formally, a length- (block) list code of list size is a pair
of mappings , where the encoder is defined by (10),
while the (list) decoder is a mapping

(32)

where is the set of all subsets of with cardinality not
exceeding . The rate of this list code with size is

(33)

The probability of error for the message when a list
code with list size is used on a channel is
defined analogously as in (13), with the modification that the
sum in (13) is over those for which . The
corresponding maximum and average probabilities of error are
then defined accordingly, as is the notion of capacity.

III. CAPACITIES
We now present some key results on channel capacity for

the various channel models and performance criteria described
in the previous section. Our presentation of results is not
exhaustive, and seldom will the presented results be discussed
in detail; instead, we shall often refer the reader to the
bibliography for relevant treatments.
The literature on communication under channel uncertainty

is vast, and our bibliography is by no means complete. Rather
than directly citing all the literature relevant to a topic, we
shall when possible, refer the reader to a textbook or a recent
paper which contains a survey. The citations are thus intended
to serve as pointers for further study of a topic, and not as
indicators of where a result was first derived or where the
most significant contribution to a subject was made.
In what follows, all channels will be assumed to have finite

input and output alphabets, unless stated otherwise.

A. Discrete Memoryless Channels
We begin with the model originally treated by Shannon

[111] of a known memoryless channel with finite input and
output alphabets and , respectively. The channel law is
given by (2) where is known and fixed. For this model,
the capacity is given by [111]

(34)

where denotes the set of all (input) pmf’s on ,

(35)

is the mutual information between the channel input and
output, and

(36)

is the output pmf on which is induced when the channel
input pmf is . This is the channel capacity regardless of
whether the maximum or average probability of error criterion
is used, and regardless of whether or not the transmitter and
receiver have access to a common source of randomness.
Moreover, a strong converse holds [124] so that
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Upper and lower bounds on error exponents for the discrete
memoryless channel can be found in [32], [44], [64], and in
references therein.

Example 1 (Continued): The capacity of a BSC with
crossover probability is given by [39], [44], [64]

where

is the binary entropy function.

In [114], Shannon considered a different model in which
the channel law at time depends on a state rv , with values
in a finite set , evolving in a memoryless (i.i.d.) fashion in
accordance with a (known) pmf on . When in state ,
the channel obeys a transition law given by the stochastic
matrix . The channel states are
assumed to be known to the transmitter in a causal way, but
unknown to the receiver. The symbol transmitted at time
may thus depend, not only on the message , but also on
present and past states of the channel. A
length- block code consists of an encoder which
can be described as a sequence of mappings as in
(29), while the decoder is defined as in (11). When such an
encoding scheme is used, the probability that the
channel output is given that message was transmitted, is

(37)

Shannon computed the capacity of this channel by observing
that there is no loss in capacity if the output of the encoder is
allowed to depend only on the message and the current state
, and not on previous states . As a consequence of this

observation, we can compute channel capacity by considering
a new memoryless channel whose inputs are
mappings from to and whose output is distributed for
any input according to

(38)

Note that if neither transmitter nor receiver has access to
state information, the channel becomes a simple memoryless
one, and the results of [111] are directly applicable. Also note
that in defining channel capacity, the probabilities of errors
are averaged over the possible state sequences; performance
is not guaranteed for every individual sequence of states. This
problem is thus significantly different from the problem of
computing the capacity of an AVC (5).
Regardless of whether or not the transmitter has state

information, accounting for state information at the receiver
poses no additional difficulty. The output alphabet can be
augmented to account for this state information, e.g., by setting
the new output alphabet to be

(39)

For the corresponding new channel, with appropriate law,
we can then use the results for the case where the receiver
has no additional information. This technique also applies to
situations where the receiver may have noisy observations of
the channel states.
A variation of this problem was considered in [37], [67],

[78], and in references therein, where state information is
available to the transmitter in a noncausal way in that the
entire realization of the i.i.d. state sequence is known when
transmission begins. Such noncausal state information at the
transmitter can be most beneficial (albeit rarely available) and
can substantially increase capacity.
The inefficacy of feedback in increasing capacity was

demonstrated by Shannon in [112]. For some of the results
on list decoding, see [44], [55], [56], [62], [115], [120], and
references therein.
1) The Compound Discrete Memoryless Channel: We now

turn to the compound discrete memoryless channel, which
models communication over a memoryless channel whose law
is unknown but remains fixed throughout a transmission (see
(4)). Both transmitter and receiver are assumed ignorant of the
channel law governing the transmission; they only know the
family to which the law belongs. It should be emphasized
that in this model no prior distribution on is assumed, and in
demonstrating the achievability of a rate , we must therefore
exhibit a code as in (10) and (11) which yields a small
probability of error for every channel in the family.
Clearly, the highest achievable rate cannot exceed the capac-

ity of any channel in the family, but this bound is not tight, as
different channels in the family may have different capacity-
achieving input pmf’s. It is, however, true that the capacity
of the compound channel is positive if and only if (iff) the
infimum of the capacities of the channels in the family is
positive (see [126]).
The capacity of a compound DMC is given by the following

theorem [30], [44], [52], [125], [126]:

Theorem 1: The capacity of the compound DMC (4), for
both the average probability of error and the maximum prob-
ability of error, is given by

(40)

For the maximum probability of error, a strong converse holds
so that

(41)

Note that the capacity value is not increased if the decoder
knows the channel , but not the encoder. On the other hand,
if the encoder knows the channel, then even if the decoder
does not, the capacity is in general increased and is equal to
the infimum of the capacities of the channels in the family
[52], [125], [126].

Example 2 (Continued): The capacity of the compound
DMC corresponding to a class of binary-symmetric channels
is given by
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It is interesting to note that in this example the capacity of
the family is the infimum of the capacities of the individual
channels in the family. This always holds for memoryless
families when the capacity-achieving input pmf is the same
for all the channels in the family. In contrast, for families of
channels with memory (Example 5), the capacity-achieving
input pmf may be the same for all the channels in the
family, and yet the capacity of the family can be strictly
smaller than the infimum of the capacities of the individual
channels.
Neither the direct part nor the converse of Theorem 1

follows immediately from the classical theorem on the capacity
of a known DMC. The converse does not follow from (34)
since the capacity in (40) may be strictly smaller than the
capacity of any channel in the family. Nevertheless, an appli-
cation of Fano’s inequality and some convexity arguments [30]
establishes the converse. A strong converse for the maximum
probability of error criterion can be found in [44] and [126].
For the average probability of error, a strong converse need
not hold [1], [44].
Proving the direct part requires showing that for any input

pmf , any rate , and any , there exists a sequence
of encoders parametrized by the blocklength that can be
reliably decoded on any channel that satisfies

. Moreover, the decoding rule must not depend on the
channel. The receiver in [30] is a maximum-likelihood decoder
with respect to a uniform mixture on a finite (but polynomial in
the blocklength) set of DMC’s which is in a sense dense in the
class of all DMC’s. The existence of a code is demonstrated
using a random-coding argument. It is interesting to note [51],
[119], that if the set of stochastic matrices
is compact and convex, then the decoder can be chosen as
the maximum-likelihood decoder for the DMC with stochastic
matrix , where is a saddle point for (40).
The receiver can thus be a maximum-likelihood receiver with
respect to the worst channel in the family.
Yet another decoder for the compound DMC is the maxi-

mum empirical mutual information (MMI) decoder [44]. This
decoder will be discussed later in Section IV-B, when we
discuss universal codes and the compound channel. The use
of universal decoders for the compound channel is studied in
[60] and [91], where a universal decoder for the class of finite-
state channels is used to derive the capacity of a compound
FSC. Another result on the compound channel capacity of a
class of channels with memory can be found in [107] where
the capacity of a class of Gaussian intersymbol interference
channels is derived.
It should be noted that if the family of channels is

finite, then the problem is somewhat simplified and a Bayesian
decoder [64, pp. 176–177] as well as a merged decoder,
obtained by merging the maximum-likelihood decoders of
each of the channels in the family [60], can be used to
demonstrate achievability.
Cover [38] has shown interesting connections between

communication over a compound channel and over a broadcast
channel. An application of these ideas to communication over
slowly varying flat-fading channels under the “capacity versus
outage” criterion can be found in [109].

2) The Arbitrarily Varying Channel: The arbitrarily vary-
ing channel (AVC) was introduced by Blackwell, Breiman,
and Thomasian [31] to model a memoryless channel whose
law may vary with time in an arbitrary and unknown manner
during the transmission of a codeword [cf. (5)]. The transmitter
and receiver strive to construct codes for ensuring reliable
communication, no matter which sequence of laws govern the
channel during a transmission.
Formally, a discrete memoryless AVC with (finite) input

alphabet and (finite) output alphabet is determined by a
family of channel laws , each individual
law in this family being identified by an index
called the state. The state space , which is known to both
transmitter and receiver, will be assumed to be also finite
unless otherwise stated. The probability of receiving ,
when is transmitted and is the channel state
sequence, is given by (5). The standard AVC model introduced
in [31], and subsequently studied by several authors (e.g.,
[2], [6], [10], [20], [45]), assumes that the transmitter and
receiver are unaware of the actual state sequence
which governs a transmission. In the same vein, the “selector”
of the state sequence , is ignorant of the actual message
transmitted. However, the state “selector” is assumed to know
the code when a deterministic code is used, and know the pmf
generating the code when a randomized code is used (but not
the actual codes chosen).1
There are a wide variety of challenging problems for the

AVC. These depend on the nature of the performance cri-
teria used (maximum or average probabilities of error), the
permissible coding strategies (randomized codes, codes with
stochastic encoders, or deterministic codes), and the degrees
of knowledge of each other with which the codeword and state
sequences are selected. For a summary of the work on AVC’s
through the late 1980’s, and for basic results, we refer the
reader to [6], [44], [47]–[49], and [126].
Before we turn to a presentation of key AVC results, it is

useful to revisit the probability of error criteria in (18) and
(19). Observe that in the definition of an -achievable rate
(cf. Section II) on an AVC, the maximum (resp., average)
probability of error criterion in (18) (resp., (19)) can be restated
as

(42)

resp., (43)

with in (13) now being replaced by

(44)

In (42)–(44), recall that is a (deterministic) code of
blocklength . When a randomized code is used,

, , and will play the
roles of , , and , respec-
tively, in (42)–(44). Here, , , and

are defined analogously as in (14)–(16), re-
spectively.
1For the situation where a deterministic code is used and the state “selector”

knows this code as well as the transmitted message, see [44, p. 233].
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Given an AVC (5), let us denote by , for any pmf on
, the “averaged” stochastic matrix defined by

(45)

Further, let denote the set of all pmfs on .
The capacity of the AVC (5) for randomized codes is, of

course, the same for the maximum and average probabilities
of error, and is given by the following theorem [19], [31],
[119].

Theorem 2: The randomized code capacity of the AVC (5)
is given by

(46)

Further, a strong converse holds so that

(47)

The direct part of Theorem 2 can be proved [19] us-
ing a random-coding argument to show the existence of a
suitable encoder. The receiver in [19] uses a (normalized)
maximum-likelihood decoder for the DMC with stochastic
matrix , where is a saddle point for
(46). When input or state constraints are additionally imposed,
the randomized code capacity of the AVC (5), given
below (cf. (48)), is achieved by a similar code with suitable
modifications to accommodate the constraints [47].
The randomized code capacity of the AVC (5) under input

constraint and state constraint (cf. (22), (24)), denoted
, is determined in [47], and is given by

(48)

where

(49)

and

(50)

Also, a strong converse exists. In the absence of input or state
constraints, the corresponding value of the randomized code
capacity of the AVC (5) is obtained from (48) by setting

or

It is further demonstrated in [47] that under weaker input
and state constraints—in terms of expected values, rather than
on individual codewords and state sequences as in (22) and
(24)—a strong converse does not exist. (Similar results had
been established earlier in [80] for a Gaussian AVC; see
Section V below.)

Turning next to AVC performance using deterministic codes,
recall that the capacity of a DMC (cf. (34)) or a compound
channel (cf. (40)) is the same for randomized codes as well as
for deterministic codes. An AVC, in sharp contrast, exhibits the
characteristic that its deterministic code capacity is generally
smaller than its randomized code capacity. In this context,
it is useful to note that unlike in the case of a DMC (2),
the existence of a randomized code for an AVC (5)
satisfying

or

does not imply the existence of a deterministic code
(as a realization of the rv ) satisfying (42) and (43),
respectively. Furthermore, in contrast to a DMC (2) or a
compound channel (4), the deterministic code capacities
and of the AVC (5) for the maximum and average
probabilities of error, can be different;2 specifically, can
be strictly smaller than . An example [6] when but

is the “deterministic” AVC with
and modulo .

A computable characterization of for an AVC (5) using
deterministic codes, is a notoriously difficult problem which
remains unsolved to date. Indeed, as observed by Ahlswede
[2], it yields as a special case Shannon’s famous graph-
theoretic problem of determining the zero-error capacity of any
DMC [96], [112], which remains a “holy grail” in information
theory.
While is unknown in general, a computable character-

ization is available in some special situations, which we next
address. To this end, given an AVC (5), for any stochastic
matrix , we denote by the “row-averaged”
stochastic matrix , defined by

(51)

Further, let denote the set of stochastic matrices
.

The capacity of an AVC with a binary output alphabet
was determined in [20] and is given by the following.

Theorem 3: The deterministic code capacity of the
AVC (5) for the maximum probability of error, under the
condition , is given by

(52)

Further, a strong converse holds so that

(53)

2As a qualification, recall from Section III-A1) that for a compound channel
(4), a strong converse holds for the maximum probability of error but not for
the average probability of error.
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The proof in [20] of Theorem 3 considers first the AVC (5)
with binary input and output alphabets. A suitable code is iden-
tified for the DMC corresponding to the “worst row-averaged”
stochastic matrix from among the family of stochastic matrices

(cf. 51) formed by varying ;
this code is seen to perform no worse on any other DMC
corresponding to a “row-averaged” stochastic matrix in said
family. Finally, the case of a nonbinary input alphabet is
reduced to that of a binary alphabet by using a notion of two
“extremal” input symbols.
Ahlswede [10] showed that the formula for in Theorem

3 is valid for a larger class of AVC’s than in [20]. The direct
part of the assertion in [10] entails a random selection of
codewords combined with an expurgation, used in conjunction
with a clever decoding rule.
The sharpest results on the problem of determining

for the AVC (5) are due to Csiszár and Körner [45], and are
obtained by a combinatorial approach developed in [44] and
[46]. The characterization of in [45] requires additional
terminology. Specifically, we shall say that the -valued rv’s

, with the same pmf , are connected a.s. by the
stochastic matrix appearing in (5), denoted

, iff there exist pmf’s on such that

for every (54)

Also, define

(55)

where denotes the pmf of the rv . The following
characterization of in [45] is more general than previous
characterizations in [10] and [20].

Theorem 4: For the AVC (5), for every pmf

is an achievable rate for the maximum probability of error. In
particular, for , a saddle point for (52), if is such
that , then

(56)

The direct part of Theorem 4 uses a code in which the
codewords are identified by random selection from sequences
of a fixed “type” (cf. e.g., [44, Sec. 1.2]), using suitable large
deviation bounds. The decoder combines a “joint typicality”
rule with a threshold decision rule based on empirical mutual
information quantities (cf. Section IV-B6) below).
Upon easing the performance criterion to be now the aver-

age probability of error, the deterministic code capacity of
the AVC (5) is known. In a key paper, Ahlswede [6] observed
that the AVC capacity displays a dichotomy: it either equals

the AVC randomized code capacity or else is zero. Ahlswede’s
alternatives [6] can be stated as

or else (57)

The proof of (57) in [6] used an “elimination” technique
consisting of two key steps. The first step was the discovery
of “random code reduction,” namely, that the randomized
code capacity of the AVC can be achieved by a randomized
code restricted to random selections from “exponentially few”
deterministic codes, e.g., from no more than deterministic
codes, where is the blocklength. Then, if , the
second step entailing an “elimination of randomness,” i.e., the
conversion of this randomized code into a deterministic code,
is performed by adding short prefixes to the original codewords
so as to inform the decoder which of the deterministic codes
is actually used; the overall rate of the deterministic code is, of
course, only negligibly affected by the addition of the prefixes.
A necessary and sufficient computable characterization of

AVC’s for deciding between the alternatives in (57) was not
provided in [6]. This lacuna was partially filled by Ericson
[59] who gave a necessary condition for the deterministic code
capacity to be positive. By enlarging on an idea in [31], it
was shown [59] that if the AVC state “selector” could emulate
the channel input by means of a fictitious auxiliary channel
(defined in terms of a suitable stochastic matrix ),
then the decoder fails to discern between the channel input
and state, resulting in .
Formally, we say that an AVC (5) is symmetrizable if for

some stochastic matrix

(58)

Let denote the set of all “symmetrizing” stochastic
matrices which satisfy (58). An AVC (5) for
which is termed nonsymmetrizable. Thus it is
shown in [59] that if an AVC (5) is such that its deterministic
code capacity is positive, then the AVC (5) must be
nonsymmetrizable.
A computable characterization of AVC’s with positive deter-

ministic code capacity was finally completed by Csiszár
and Narayan [48], who showed that nonsymmetrizability is
also a sufficient condition for . The proof technique
in [48] does not rely on the existence of the dichotomy as
asserted by (57); nor does it rely on the fact, used materially
in [6] to establish (57), that

is the randomized code capacity of the AVC (5). The direct
part in [48] uses a code with the codewords chosen at random
from sequences of a fixed type, and selectively identified by
a generalized Chernoff bounding technique due to Dobrushin
and Stambler [53]. The linchpin is a subtle decoding rule which
decides on the basis of a joint typicality test together with a
threshold test using empirical mutual information quantities,
similarly as in [45]. A key step of the proof is to show
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that the decoding rule is unambiguous as a consequence of
the nonsymmetrizability condition. An adequate bound on the
average probability of error is then obtained in a standard
manner using the method of types (cf. e.g., [44]).
The results in [6], [48], and [59] collectively provide the

following characterization of in [48].

Theorem 5: The deterministic code capacity of the AVC
(5) for the average probability of error is positive iff the AVC
(5) is nonsymmetrizable. If , it equals the randomized
code capacity of the AVC (5) given by (46), i.e.,

(59)

Furthermore, if the AVC (5) is nonsymmetrizable, a strong
converse holds so that

(60)

It should be noted that sufficient conditions for the AVC
(5) to have a positive deterministic code capacity had
been given earlier in [6] and [53]; these conditions, however,
are not necessary in general. Also, a necessary and sufficient
condition for , albeit in terms of noncomputable
“product space characterization” (cf. [44, p. 259]) appeared
in [6]. The nonsymmetrizability condition above can be re-
garded as “single-letterization” of the condition in [6]. For a
comparison of conditions for , we refer the reader to
[49, Appendix I].
Yet another means of determining the deterministic code ca-

pacity of the AVC (5) is derived as a special case of recent
work by Ahlswede and Cai [15] which completely resolves
the deterministic code capacity problem for a multiple-access
AVC for the average probability of error. For the AVC (5),
the approach in [15], in effect, consists of elements drawn
from both [6] and [48]. In short, by [15], if the AVC (5)
is nonsymmetrizable, then a code with the decoding rule
proposed in [48] can be used to achieve “small” positive rates.
Thus , whereupon the “elimination technique” of [6] is
applied to yield that equals the randomized code capacity
given by (46).
We consider next the deterministic code capacity of the

AVC (5) for the average probability of error, under input
and state constraints (cf. (21) and (24)). To begin with,
assume the imposition of only a state constraint but no input
constraint. Let denote the capacity of the AVC (5) under
state constraint (cf. (24)). If the AVC is nonsymmetrizable
then, by Theorem 5, its capacity without state constraint
is positive and, obviously, so too is its capacity
under state constraint for every . The
elimination technique in [6] can be applied to show that

equals the corresponding randomized code capacity
under state constraint (and no input constraint) given by

(48) as . On the other hand, if the AVC (5)
is symmetrizable, by Theorem 5, its capacity without
state constraint is zero. However, the capacity under
state constraint may yet be positive. In order to determine

, the elimination technique in [6] can no longer be
applied; while the first step of “random code reduction” is
valid, the second step of “elimination of randomness” cannot
be performed unless the capacity without state constraint

is itself positive. The reason, loosely speaking, is that
if were zero, the state “selector” could prevent reliable
communication by foiling reliable transmission of the prefix
which identifies the codebook actually selected in the first
step; to this end, the state “selector” could operate in an
unconstrained manner during the (relatively) brief transmission
of the prefix thereby denying it positive capacity, while still
satisfying state constraint over the entire duration of the
transmission of the prefix and the codeword.
The capacity of the AVC (5), in general, is de-

termined in [48] by extending the approach used therein
for characterizing . A significant role is played by the
functional , defined by

(61)

with if , i.e., if the AVC (5) is non-
symmetrizable. The capacity under state constraint
is shown in [48] to be zero if is smaller
than ; on the other hand, is positive and equals

if (62)

In particular, it is possible that lies strictly between
zero and the randomized code capacity under state constraint
which, by (48), equals ; this represents a departure
from the dichotomous behavior observed in the absence of
any state constraint (cf. (57)). A comparison of (48) and (62)
shows that if the maximum in (48) is not achieved by an input
pmf which satisfies , then is
strictly smaller than , while still being positive if
the hypothesis in (62) holds, i.e.,

Next, if an input constraint (cf. (21)) is also imposed, the
capacity is given in [48] by the following.

Theorem 6: The deterministic code capacity of
the AVC (5) under input constraint and state constraint ,
for the average probability of error, is given by (63) at the
bottom of this page. Further, in the cases considered in (63),
a strong converse holds so that

(64)

if

if
(63)
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The case

remains unresolved in general; for certain AVC’s,
equals zero in this case too (cf. [48, remark following the
proof of Theorem 3]). Again, it is possible that
lies strictly between zero and the randomized code capacity

under input constraint and state constraint given
by (48).
The results of Theorem 6 lead to some interesting combina-

torial interpretations (cf. [48, Example 1] and [49, Sec. III]).

Example 3 (Continued): We refer the reader to [48, Ex-
ample 2] for a full treatment of this example. For a pmf

on the input alphabet , and a pmf
on the state space , we obtain from

(35) and (45) that

where denotes entropy. The randomized code capacity of
the AVC in Example 3 is then given by Theorem 2 as (cf. (46))

(65)

where is a saddle point for . Turning to the
deterministic code capacity for the average probability of
error, note that the symmetrizability condition (58) is satisfied
iff the stochastic matrix is the identity matrix.
By Theorem 5, we have ; obviously, the deterministic
code capacity for the maximum probability of error is then

. Thus in the absence of input or state constraints, the
randomized code capacity is positive while the deterministic
code capacities and are zero.
We now consider AVC performance under input and state

constraints. Let the functions , , and
, , be used in the input and state

constraints (cf. (20)–(24)). Thus in (20) and in
(23) are the normalized Hamming weights of the -length
binary sequences and . Then the randomized code capacity

under the input constraint and state constraint ,
, is given by (48) as

(66)

In particular

if (67)

Next, we turn to the deterministic code capacity for
the average probability of error. It is readily seen from (49),
(50), and (61) that and
respectively. It then follows from Theorem 6 that (cf. [47,
Example 2])

if
if (68)

We can conclude from (66)–(68) (cf. [48, Example 2]) that
for , it holds that while

. Next, if , we have that
is positive but smaller that . On the other

hand, if , , then . Thus
under state constraint , several situations exist depending on
the value of , . The deterministic code capacity
for the average probability of error can be zero while the
corresponding randomized code capacity is positive. Further,
the former can be positive and yet smaller than the latter; or
it could equal the latter.

Several of the results described above from [47]–[49] on
the randomized as well as the deterministic code capacities
of the AVC (5) with input constraint and state constraint
have been extended by Csiszár to AVC’s with general input
and output alphabets and state space; see [41].
It remains to characterize AVC performance using codes

with stochastic encoders. For the AVC (5) without input or
state constraints, the following result is due to Ahlswede [6].

Theorem 7: For codes with stochastic encoders, the capac-
ities of the AVC (5) for the maximum as well as the average
probabilities of error equal its deterministic code capacity for
the average probability of error.

Thus by Theorem 7, when the average probability of error
criterion is used, codes with stochastic encoders offer no
advantage over deterministic codes in terms of yielding a
larger capacity value. However, for the maximum probability
of error criterion, the former can afford an improvement
over the latter, since the AVC capacity is now raised to its
value under the (less stringent) average probability of error
criterion. The previous assertion is proved in [6] using the
“elimination technique.” If state constraints (cf. (24)) are
additionally imposed on the AVC (5), the previous assertion
still remains true even though the “elimination technique” does
not apply in the presence of state constraints (cf. [48, Sec. V]).
We next address AVC performance when the transmitter

or receiver are provided with side information. Consider
first the situation where this side information consists of
partial or complete knowledge of the sequence of states

prevalent during a transmission. The reader is
referred to [44, pp. 220–222 and 227–230] for a compendium
of several relevant problems and results. We cite here a paper
of Ahlswede [11] in which, using previous results of Geĺfand
and Pinsker [67], the deterministic code capacity problem is
fully solved in the case when the state sequence is known
to the transmitter in a noncausal manner. Specifically, the
deterministic code capacity of the AVC (5) for the maximum
probability of error, when the transmitter alone is aware of
the entire sequence of channel states when trans-
mission begins (cf. (30)), is characterized in terms of mutual
information quantities obtained in [67]. Further, this capacity
is shown to coincide with the corresponding deterministic code
capacity for the average probability of error. The proof entails
a combination of the aforementioned “elimination technique”
with the “robustification technique” developed in [8] and [9].
The situation considered above in [11] is to be contrasted
with that in [13], [67], and [78] where the channel states

which are known to the transmitter alone at the
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commencement of transmission, constitute a realization of an
i.i.d. sequence with (known) pmf on . The corresponding
maximum probability of error is now defined by replacing the
maximization with respect to in (42) by expectation
with respect to the pmf on induced by .
If the state sequence is known to the receiver

alone, the resulting AVC performance can be readily char-
acterized in terms of that of a new AVC with an expanded
output alphabet but without any side information, and hence
does not lead to a new mathematical problem as observed
earlier in Section II (cf. (25)–(28)). Note that the decoder
of a length- block code is now of the form

(69)

while the encoder is as usually defined by (10). The
deterministic code capacities of the AVC (5), with the channel
states known to the receiver, for the maximum and
average probabilities of error, can then be seen to be the same
as the corresponding capacities—without any side information
at the receiver—of a new AVC with input alphabet , output
alphabet , and stochastic matrix
defined by

(70)

Using this technique, it was shown by Stambler [118] that
this deterministic code capacity for the average probability of
error equals

which is the capacity of the compound DMC (cf. (3) and (4))
corresponding to the family of DMC’s with stochastic matrices

(cf. Theorem 1).
Other forms of side information provided to the transmitter

or receiver can significantly improve AVC performance. For
instance, if noiseless feedback is available from the receiver
to the transmitter (cf. (31)), it can be used to establish
“common randomness” between them (whereby they have
access to a common source of randomness with probability
close to ), so that the deterministic code capacity of
the AVC (5) for the average probability of error equals its
randomized code capacity given by Theorem 2. For more on
this result due to Ahlswede and Csiszár, as also implications of
“common randomness” for AVC capacity, see [18]. Ahlswede
and Cai [17] have examined another situation in which the
transmitter and receiver observe the components
and , respectively, of a memoryless correlated
source (i.e., an i.i.d. process with generic rv’s

which satisfy ), and have shown that
equals the randomized code capacity given by Theorem 2.
The performance of an AVC (5) using deterministic list

codes (cf. (32) and (33)) is examined in [5], [12], [14],
[33]–[35], [82], and [83]. The value of this capacity for the
maximum probability of error and vanishingly small list rate
was determined by Ahlswede [5]. Lower bounds on the sizes
of constant lists for a given average probability of error and an
arbitrarily small maximum probability of error, respectively,

were obtained by Ahlswede [5] and Ahlswede and Cai [14].
The fact that the deterministic list code capacity of an AVC
(5) for the average probability of error displays a dichotomy
similar to that described by (57) was observed by Blinovsky
and Pinsker [34] who also determined a threshold for the list
size above which said capacity equals the randomized code
capacity given by Theorem 2. A complete characterization of
the deterministic list code capacity for the average probability
of error, based on an extended notion of symmetrizability (cf.
(58)), was obtained by Blinovsky, Narayan, and Pinsker [33]
and, independently, by Hughes [82], [83].
We conclude this section by noting the role of compound

DMC’s and AVC’s in the study of communication situations
partially controlled by an adversarial jammer. For dealing with
such situations, several authors (cf. e.g., [36], [79], and [97])
have proposed a game-theoretic approach which involves a
two-person zero-sum game between the “communicator” and
the “jammer” with mutual information as the payoff function.
An analysis of the merits and limitations of this approach from
the viewpoint of AVC theory is provided in [49, Sec. VI]. See
also [44, pp. 219–222 and 226–233].

B. Finite-State Channels
The capacity of a finite-state channel (7) has been studied

under various conditions in [29], [64], [113], and [126]. Of
particular importance is [64], where error exponents for a
general finite-state channel are also computed. Before stating
the capacity theorem for this channel, we introduce some
notation [64], [91]. A (known) finite-state channel is specified
by a pmf on the initial state3 in and a conditional
pmf as in (7).
For such a channel, the probability that the
channel output is and the final channel
state is , conditioned on the initial state and the
channel input , is given by

(71)

We can sum this probability over to obtain the probability
that the channel output is conditioned
on the initial state and the channel input

(72)

Averaging (72) with respect to the pmf of the initial state
yields (7).
Given an initial state and a pmf on , the

joint pmf of the channel input and output is well-defined, and
the mutual information between the input and the output is

3 In [64], no prior pmf on the initial state is assumed and the finite-state
channel is treated as a family of channels, corresponding to different initial
states which may or may not be known to the transmitter or receiver.
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given by

Similarly, a family of finite-state channels, as in (8), can
be specified in terms of a family of conditional pmf’s

, and in
analogy with (71) and (72), we denote by
the probability that the output of channel is and the
final state is conditioned on the input and
initial state , and by the probability
that the output of channel is under the same
conditioning. Given a channel , an initial state , and
a pmf on , the mutual information between the input
and output of the channel is given by

The following is proved in [64].

Theorem 8: If a finite-state channel (7) is indecomposable
[64] or if for every , then its capacity
is given by

It should be noted that the capacity of the finite-state channel
[64] can be estimated arbitrarily well, since there exist a
sequence of lower bounds and a sequence of upper bounds
which converge to it [64].

Example 4 (Continued): Assuming that neither nor
takes the extreme values or , the capacity of the Gilbert–
Elliott channel [101] is given by

where is the entropy rate of the hidden Markov process
.

Theorem 8 can also be used when the sequence of states
of the channel during a transmission is known

to the receiver (but not to the transmitter). We can consider
a new output alphabet , with corresponding transi-
tions probabilities. The resulting channel is still a finite-state
channel.
The capacity of the channel when the sequence of states

is unknown to the receiver but known to the transmitter in a

causal manner, was found in [86], thus extending the results
of [114] to finite-state channels. Once again, knowledge at the
receiver can be treated by augmenting the output alphabet. A
special case of the transmitter and receiver both knowing the
state sequence in a causal manner, obtains when the state is
“computable at both terminals,” which was studied by Shannon
[113]. In this situation, given the initial state (assumed known
to both transmitter and receiver), the transmitter can compute
the subsequent states based on the channel input, and the
receiver can compute the subsequent states based on the
received signal.
1) The Compound Finite-State Channel: In computing the

capacity of a class of finite-state channels (8), we shall assume
that for every pair of pmf of the initial state
and conditional pmf , we have

implies (73)

where is the uniform distribution on . We are, thus,
assuming that reliable communication must be guaranteed for
every initial state and any transition law, and that neither is
known to the transmitter and receiver. Under this assumption
we have the following [91].

Theorem 9: Under the assumption (73), the capacity of
a family of finite-state channels (8) with common (finite)
input, output, and state alphabets , is given by

(74)

Example 5 (Continued): If the transition probabilities of
the underlying Markov chains of the different channels are
uniformly bounded away from zero, i.e.,

(75)

then the capacity of the family is the infimum of the capacities
of the individual channels in the family [91].
The following example demonstrates that if (75) is vio-

lated, the capacity of the family may be smaller than the
infimum of the capacities of its members [91]. Consider a class
of Gilbert–Elliott channels indexed by the positive integers.
Specifically, let , ,
for . For any given , we can achieve rates exceeding

over the channel by using a deep enough
interleaver to make the channel look like a memoryless BSC
with crossover probability . Thus

However, for any given blocklength , the channel that
corresponds to , when started in the bad state, will
remain in the bad state for the duration of the transmission
with probability exceeding . Since in the
bad state the channel output is independent of the input, we
conclude that reliable communication is not possible at any
rate. The capacity of the family is thus zero.
The proof of Theorem 9 relies on the existence of a universal

decoder for the class of finite-state channels [60], and on the
fact that for rates below the random-coding error probability
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(for the natural choice of codebook distribution) is bounded
above uniformly for all the channels in by an exponentially
decreasing function of the blocklength.
The similarity of the expressions in (40) and (74) should

not lead to a mistaken belief that the capacity of any family of
channels is given by a expression. A counterexample
is given in [31], and [52], and is repeated in [91].

IV. ENCODERS AND DECODERS
A variety of encoders and decoders have been proposed for

achieving reliable communication over the different channel
models described in Section II, and, in particular, for estab-
lishing the direct parts of the results on capacities described
in Section III. The choices run the gamut from standard
codes with randomly selected codewords together with a
“joint typicality” decoder or a maximum-likelihood decoder
for known channels, to codes consisting of fairly complex
decoders for certain models of unknown channels. We shall
survey below some of the proposed encoders and decoders,
with special emphasis on the latter. While it is customary to
study the combined performance of an encoder–decoder pair
in a given communication situation, we shall—for the sake
of expository convenience—describe encoders and decoders
separately.

A. Encoders
The encoders chosen for establishing the capacity results

stated in Section III, for various models of known and un-
known channels described in Section II, often use randomly
selected codewords in one form or another [111]. The notion
of random selection of codewords affords several uses. The
classical application, of course, involves randomly selected
codewords as a mathematical artifice in proving, by means
of the random-coding argument technique, the existence of
deterministic codes for the direct parts of capacity results
for known channels and certain types of unknown channels.
Second, codewords chosen by random selection afford an
obvious means of constructing randomized codes or codes with
stochastic encoders for enhancing reliable communication over
some unknown channels (cf. Section IV-A2)), thereby serving
as models of practical engineering devices. Furthermore, the
notion of random selection can lead to the selective identifica-
tion of deterministic codewords with refined properties which
are useful for determining the deterministic code capacities of
certain unknown channels (cf. Section IV-A3)).
We first present a brief description of some standard meth-

ods of picking codewords by random selection.
1) Encoding by Random Selection of Codewords: One

standard method of random selection of codewords entails
picking them in an i.i.d. manner according to a fixed pmf

on . Specifically, let be i.i.d. -valued
rv’s, each with (common) pmf . The encoder of a (length-
block) randomized code or a code with stochastic encoder

is obtained by setting

(76)

In some situations, a random selection of codewords involves
choosing them with a uniform distribution from a fixed subset
of . Precisely, for a given subset , the encoder
of a randomized code or code with stochastic encoder is

obtained as

(77)

where , are i.i.d. -valued rv’s, each distributed
uniformly on . This corresponds to being the uniform
pmf on . For memoryless channels (known or unknown),
the random codewords in (76) are usually chosen to have a
simple structure, namely, to consist of i.i.d. components, i.e.,
for a fixed pmf on , we set

(78)

where are i.i.d. -valued rv’s with (common)
pmf on . This corresponds to choosing to be the -fold
product pmf on with marginal pmf on .
In order to describe the next standard method of random

selection of codewords, we now define the notions of types
and typical sequences (cf. e.g., [44, Sec. 1.2]). The type of a
sequence is a pmf on where

is the relative frequency of in , i.e.,

(79)

where denotes the indicator function:

if statement is true
if statement is false.

For a given type of sequences in , let denote the set
of all sequences with type , i.e.,

(80)

Next, for a given pmf on , a sequence is -
typical with constant , or simply -typical (suppressing
the explicit dependence on ), if

if (81)

Let denote the set of all sequences which are
-typical, i.e., the union of sets for those types of

sequences in which satisfy

if (82)

Similarly, for later use, joint types are pmf’s on product
spaces. For example, the joint type of three given sequences

is a pmf on where
is the relative frequency of the triple

among the triples i.e.,

(83)

A standard method of random selection of codewords now
entails picking them from the set of sequences of a fixed type
in accordance with a uniform pmf on that set. The resulting
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random selection is a special case of (77) with the set
being . Precisely, for a fixed type of sequences in ,
the encoder of a randomized code or a code with stochastic
encoder is obtained by setting

(84)

where are i.i.d. -valued rv’s, each distributed
uniformly on . The codewords thus obtained are often
referred to as “constant-composition” codewords. This method
is sometimes preferable to that given by (78). For instance, in
the case of a DMC (2), it is shown in [91] that for every
randomized code comprising codewords selected according to
(78) used in conjunction with a maximum-likelihood decoder
(cf. Section IV-A2) below), there exists another randomized
code with codewords as in (84) and maximum-likelihood
decoder which yields a random-coding error exponent which
is at least as good.
A modification of (84) is obtained when, for a fixed pmf
on , the encoder of a randomized code or a code with

stochastic encoder is obtained by setting

(85)

where are i.i.d. -valued rv’s, each dis-
tributed uniformly on .
In the terminology of Section II, each set of randomly

selected codewords chosen as in (76)–(85)
constitutes a stochastic encoder.
Codes with randomly selected codewords as in (76)–(85),

together with suitable decoders, can be used in random-coding
argument techniques for establishing reliable communication
over known channels. For instance, codewords for the DMC
(2) can be selected according to (78) [111] or (85) [124], and
for the finite-state channel (7) according to (76) [64]. In these
cases, the existence of a code with deterministic encoder ,
i.e., deterministic codewords , for establishing
reliable communication, is obtained in terms of a realization
of the random codewords , combined with a
simple expurgation, to ensure a small maximum probability
of error.
For certain types of unknown channels too, codewords

chosen as in (76)–(85), without any additional refinement,
suffice for achieving reliable communication. For instance, in
the case of the AVC (5), random codewords chosen according
to (5) were used [19], [119] to determine the randomized code
capacity without input or state constraints in Theorem 2, and
with such constraints (cf. (48)) [47].

2) Randomized Codes and Random Code Reduction:
Randomly selected codewords as in (76)–
(85), together with a decoder given by (11), obviously
constitute a code with stochastic encoder . They also
enable the following elementary and standard construction of
a (length- block) randomized code . Associate with
every realization of the randomly selected
codewords , a decoder
which depends, in general, on said realization. This results in
a randomized code , where the encoder is as above,

and the decoder is defined by

(86)

Such a randomized code , in addition to serving as
an artifice in random-coding arguments for proving coding
theorems as mentioned earlier, can lead to larger capacity
values for the AVC (5) than those achieved by codes with
stochastic encoders or deterministic codes (cf. Section III-A2)
above). In fact, the randomized code capacity of the AVC
(5) given by Theorem 2 is achieved [19] using a randomized
code as above, where the encoder is chosen as in
(78) with pmf on and the decoder is given by (86)
with being the (normalized) maximum-likelihood decoder
(corresponding to the codewords ) for the
DMC with stochastic matrix , where
is a saddle point for (46). When input or state constraints are
additionally imposed, the randomized code capacity
of the AVC (5) given by (48) is achieved by a similar code with
suitable modifications to accommodate the constraints [47].
Consequently, randomized codes become significant as

models of practical engineering devices; in fact, commonly
used spread-spectrum techniques such as direct sequence
and frequency hopping can be interpreted as practical
implementations of randomized codes [58], employing
synchronized random number generators at the transmitter and
receiver. From a practical standpoint, however, a (length-
block) randomized code of rate bits per channel
use, such as that just described above in the context of
the randomized code capacity of the AVC (5), involves
making a random selection from among a prohibitively
large collection—of size —of sets of
codewords , where denotes cardinality.
In addition, the outcome of this random selection must be
observed by the receiver; else, it must be conveyed to the
receiver requiring an infeasibly large overhead transmission
of bits in order to ensure the reliable
communication of information bits.
The practical feasibility of randomized codes, in particular

for the AVC (5), is supported by Ahlswede’s result on “random
code reduction” [6], which establishes the existence of “good”
randomized codes obtained by random selection from “expo-
nentially few” (in blocklength ) deterministic codes. This
result is stated below in a version which appears in [44, Sec.
2.6], and requires the following setup. For a fixed blocklength
, consider a family of channels indexed by as in
(3), where is now assumed to be a finite set. Let
be a given randomized code which results in a maximum
probability of error (cf. (14) and (16)) when
used on the channel .

Theorem 10: For any and satisfying

(87)

there exists a randomized code which is uni-
formly distributed on a family of deterministic codes
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as in (10) and (11), and such that

(88)

The assertion in (88) concerning the performance of the
randomized code is equivalent to

(89)

Thus for every randomized code , there exists a “re-
duced” randomized code which is uniformly dis-
tributed over deterministic codes and has maximum prob-
ability of error on any channel not exceeding , provided the
hypothesis (87) holds.
Theorem 10 above has two significant implications for AVC

performance. First, for any randomized code which
achieves the randomized code capacity of the AVC (5) given
by Theorem 2, there exists another randomized code
which does likewise; furthermore, is obtained by
random selection from no more than deterministic
codes [6]. Hence, the outcome of the random selection of
codewords at the transmitter can now be conveyed to the
receiver using at most only bits, which represents a
desirably drastic reduction in overhead transmission; the rate
of this transmission, termed the “key rate” in [59], is arbitrarily
small. Second, such a “reduced” randomized code is
amenable to conversion, by an “elimination of randomness”
[6], into a deterministic code (cf. e.g., [44,
Sec. 2.6]) for the AVC (5), provided its deterministic code
capacity for the average probability of error is positive.
Here, is as in (10) and (11), while represents
a code for conveying to the receiver the outcome of the random
selection at the transmitter, i.e.,

(90)

where tends to with increasing . As a consequence,
equals the randomized code capacity of the AVC (5)

given by Theorem 2. This has been discussed earlier in Section
III-A2).
3) Refined Codeword Sets by Random Selection: As stated

earlier, the method of random selection can sometimes be
used to prove the existence of codewords with special prop-
erties which are useful for determining the deterministic code
capacities of certain unknown channels.
For instance, the deterministic code capacity of the AVC (5)

for the maximum or average probability of error is sometimes
established by a technique relying on the method of random
selection as in (78), (84), and (85), used in such a manner as
to assert the existence of codewords with select properties. A
deterministic code comprising such codewords together with a
suitably chosen decoder then leads to acceptable bounds for the
probabilities of decoding errors. This artifice is generally not
needed when using randomized codes or codes with stochastic

encoders. Variants of this technique have been applied, for
instance, in obtaining the deterministic code capacity of the
AVC (5) for the maximum probability of error in [10] and in
Theorem 4 [45], as well as for the average probability of error
in Theorems 5 and 6 [48].
In determining the deterministic code capacity for

the maximum probability of error [10], random selection
as in (78), together with an expurgation argument using
Bernstein’s version of Markov’s inequality for i.i.d. rv’s,
is used to show in effect the existence of a codeword set
with “spread-out” codewords, namely, every two codewords
are separated by at least a certain Hamming distance. A
codeword set with similar properties is also shown to result
from alternative random selection as in (85). Such a codeword
set, in conjunction with a decoder which decides on the basis
of a threshold test using (normalized) likelihood ratios, leads
to a bound for the maximum probability of error. A more
general characterization of in [45] relies on a code with
codewords from the set of sequences in of type
(cf. (80)) which satisfy desirable “balance” properties with
probability arbitrarily close to , together with a suitable
decoding rule (cf. Section IV-B6)). The method of random
selection in (84) combined with a large-deviation argument for
i.i.d. rv’s as in [10], is used in proving the existence of such
codewords. Loosely speaking, the codewords are “balanced”
in that for a transmitted codeword and the (unknown) state
sequence which prevails during its transmission, the
proportion of other codewords which have a specified joint
type (cf. (83)) with and does not greatly exceed their
overall “density” in . This limits, in effect, the number of
spurious codewords which are jointly typical with and a
received sequence , leading to a satisfactory bound for
the maximum probability of error.
The determination in [48] of the deterministic code capacity

of the AVC (5) for the average probability of error, without or
with input or state constraints (cf. Theorems 5 and 6) relies on
codewords resulting from random selection as in (84) and a
decoder described below in Section IV-B6). These codewords
possess special properties in the spirit of [45], which are
established using Chernoff bounding for dependent rv’s as
in [53].

B. Decoders
A variety of decoders have been proposed in order to

achieve reliable communication in the different communica-
tion situations described in Section II. Some of these de-
coders will be surveyed below. We begin with decoders for
known channels and describe the maximum-likelihood decoder
and the various typicality decoders. We then consider the
generalized likelihood-ratio test for unknown channels, the
maximum-empirical mutual information (MMI) decoder, and
more general universal decoders. The section ends with a
discussion of decoders for the compound channel, mismatched
decoders, and decoders for the arbitrarily varying channel.
1) Decoders for Known Channels: The most natural de-

coder for a known channel (1) is the maximum-likelihood
decoder, which is optimal in the sense of minimizing the
average probability of error (15). Given a set of codewords
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in , the maximum-likelihood decoder
is defined by: only if

(91)

If more than one satisfies (91), ties are resolved
arbitrarily. While the maximum-likelihood rule is indeed a
natural choice for decoding over a known channel, its analysis
can be quite intricate [64], and was only conducted years after
Shannon’s original paper [111].
Several simpler decoders have been proposed for the DMC

(2), under the name of “typicality” decoders. These decoders
are usually classified as “weak typicality” decoders [39]
(which are sometimes referred to as “entropy typicality”
decoders [44]), and “joint typicality” decoders [24], [44],
[126] (which are sometimes referred to as “strong” typicality
decoders). We describe below the joint-type typicality decoder
as well as a more stringent version which relies on a notion
of typicality in terms of the Kullback–Leibler divergence (cf.
e.g., [44]).
Given a set of codewords in , where

is a fixed type of sequences in , the joint typicality decoder
for the DMC (2) is defined as follows: only if

(92)

where is the stochastic matrix in the definition of
the DMC (2), , and is
chosen sufficiently small. If more than one satisfies
(92), or no satisfies (92), set . The capacity
of a DMC (2) can be achieved by a joint typicality decoder
([111]; see also [44, Problem 7, p. 113]), but this decoder
is suboptimal and does not generally achieve the channel
reliability function .
Another version of a joint typicality decoder, which we

term the divergence typicality decoder, has appeared in the
literature (cf. e.g., [45] and [48]). It relies on a more stringent
notion of typicality based on the Kullback–Leibler divergence
(cf. e.g., [39] and [44]). Precisely, given a set of codewords

in as above, a divergence typicality
decoder for the DMC (2) is defined as follows:
only if

(93)

where denotes Kullback–Leibler divergence and
is chosen sufficiently small. If more than one , or no

, satisfies (93), we set . The capacity of a
DMC (2) can be achieved by the divergence typicality decoder.
2) The Generalized Likelihood Ratio Test: The maximum-

likelihood decoding rules for channels governed by differ-
ent laws are generally different mappings, and maximum-
likelihood decoding with respect to the prevailing channel
cannot therefore be applied if the channel law is unknown. The
same is true of joint typicality decoding. A natural candidate
for a decoder for a family of channels (3) is the generalized
likelihood ratio test decoder.
The generalized likelihood ratio test (GLRT) decoder

can be defined as follows: given a set of codewords

only if

where ties can be resolved arbitrarily among all which
achieve the maximum.
If the family of channels corresponds to the family of all

DMC’s with finite input alphabet and finite output alphabet
, then

where the first equality follows by defining the condition
empirical distribution to satisfy

the second equality from the nonnegativity of relative entropy;
the third equality by defining as the conditional
entropy , where are dummy rv’s whose joint
pmf on is the joint type ; and the last equality by
defining as the mutual information , with

as above.
Since the term depends only on the output sequence
, it is seen that for the family of all DMC’s with input
alphabet and output alphabet , the GLRT decoding rule
is equivalent to the maximum empirical mutual information
(MMI) decoder [44], which is defined by

(94)

Note that if the family under consideration is a subset of
the class of all DMC’s, then the GLRT will not necessarily
coincide with the MMI decoder.
The MMI decoder is a universal decoder for the family of

memoryless channels, in a sense that will be made precise in
the next section.
3) Universal Decoding: Loosely speaking, a sequence of

codes is universal for a family of channels if it achieves
the same random-coding error exponent as the maximum-
likelihood decoder without requiring knowledge of the specific
channel in the family over which transmission takes place
[44], [60], [92], [95], [98], [103], [129]. We now make this
notion precise. Let denote a sequence of sets, with

. Consider a randomized encoder
whose codewords are drawn independently and uniformly
from as in (77). Let denote a maximum-likelihood
receiver for the encoder and the channel as in
(86) and (91). As in Section II we set to
be the average probability of error corresponding to the code

for the channel . Note that the average is both
with respect to the messages (as in (15)) and the pmf of the
randomized code (as in (16)).
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A sequence of codes , of rate , where
and is said to be universal4

for the input sets and the family (3) if

(95)

Notice that neither encoder nor decoder is allowed to depend
on the channel .
For families of DMC’s the following result was proved by

Csiszár and Körner [44].

Theorem 11: Assume that the input sets correspond to
type classes, i.e., for some fixed type of sequences
in . Under this assumption, there exists a sequence of codes

with MMI decoder which is universal for
any family of discrete memoryless channels.

As we have noted above, if the family of channels (3) is a
subset of the set of all DMC’s, then the GLRT for the family
may be different from the MMI decoder. In fact, in this case the
GLRT may not be universal for the family [90]. It is thus seen
that the GLRT may not be universal for a family even when
a universal decoder for the family exists [92]. The GLRT is
therefore not “canonical.”
Universal codes for families of finite-state channels (8) were

proposed in [129] with subsequent refinements in [60] and
[92]. The decoding rule proposed in [92] and [129] is based on
the joint Lempel–Ziv parsing [130] of the received sequence
with each of the possible codewords .
A different approach to universal decoding can be found

in [60], where a universal decoder based on the idea of
“merging” maximum-likelihood decoders is proposed. This
idea leads to existence results for fairly general families of
channels including some with infinite alphabets (e.g., a family
of Gaussian intersymbol interference channels). To state these
results, we need the notion of a “strongly separable” family.
Loosely speaking, a family is strongly separable if for any
blocklength there exists a subexponential number
of channels such that the law of any channel in the family
can be approximated by one of these latter channels. The
approximation is in the sense that except for rare sequences,
the normalized log likelihood of an output sequence given any
input sequence is similar under the two channels. Precisely:
A family of channels (3) with common finite input and

output alphabets is said to be strongly separable for
the input sets if there exists some (finite)
which serves as an upper bound for all the error exponents in
the family, i.e.,

(96)

such that for any and blocklength , there exists
a subexponential number (depending on and ) of
channels

(97)

4This form of universality is referred to as “strong deterministic coding
universality” in [60]. See [60] for a discussion of other definitions for
universality.

which can approximate any in the following sense: for
any , there exists a channel ,
satisfying

(98)

whenever is such that

and satisfying

(99)

whenever is such that

For example, the family of all DMC’s with finite input and
output alphabets , is strongly separable for any sequence
of input sets . Likewise, the family of all finite-state
channels with finite input, output, and state alphabets
is also strongly separable for any sequence of input sets
[60]. For a definition of strong separability for channels with
infinite alphabets see [60].

Theorem 12: If a family of channels (3) with common finite
input and output alphabets is strongly separable for
the input sets , then there exists a sequence of codes

which is universal for the family.

Not surprisingly, in a nonparametric situation where noth-
ing is known a priori about the channel statistics, universal
decoding is not possible [99].
A slightly different notion of universality, referred to in [60]

as “strong random-coding universality,” requires that (95) hold
for the “average encoder.” More precisely, consider a decoding
rule which, given an encoder , maps each possible received
sequence to some message . We can then
consider the random code where, as before, is
a random encoder whose codewords are drawn independently
and uniformly from the set . The decoding rule is strongly
random coding universal for the input sets if

(100)

It is shown in [60] that the hypothesis of Theorem 12 also
implies strong random-coding universality.
We next demonstrate the role played by universal decoders

in communicating over a compound channel, and also discuss
some alternative decoders for this situation.
4) Decoders for the Compound Channel: Consider the

problem of communicating reliably over a compound channel
(3). Let be a sequence of input sets and let be
a randomized rate- encoder which chooses the codewords
independently and uniformly from the set as in (77). Let

denote the maximum-likelihood decoder corresponding
to the encoder for the channel . Suppose now that
the code rate is sufficiently low so that
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is uniformly bounded in by a function which decreases
exponentially to zero with the blocklength , i.e.,

(101)

It then follows from (95) that if is a sequence of
universal codes for the family and input sets , then
is an achievable rate and can be achieved with the decoders

.
It is, thus, seen that if a family of channels admits universal

decoding, then the problem of demonstrating that a rate
is achievable only requires the study of random-coding error
probabilities with maximum-likelihood decoding (101).
Indeed, the capacity of the compound DMC can be attained

using an MMI decoder (Theorem 11) [44], and the capacity
of a compound FSC can be attained using a universal decoder
for that family [91].
The original decoder proposed for the compound DMC

[30] is not universal; it is based on maximum-likelihood
decoding with respect to a Bayesian mixture of a finite number
of “representative” channels (polynomial in the blocklength)
in the family [30], [64, pp. 176–178]. Nevertheless, if the
“representatives” are chosen carefully, the resulting decoder
is, indeed, universal.
A completely different approach to the design of a decoder

for a family of DMC’s can be adopted if the family (3)
and (4) is compact and convex in the sense that for every

with corresponding stochastic matrices
and , and for every , there exists
with corresponding stochastic matrix given by

Under these assumptions of compactness and convexity, the
capacity of the family is given by

(102)

Let achieve the saddle point in (102). Then the
capacity of this family of DMC’s can be achieved by using
a maximum-likelihood decoder for the DMC with stochastic
matrix [44], [51], [119].
The maximum-likelihood decoder with respect to

is generally much simpler to implement than a universal (e.g.,
MMI) decoder, particularly if the codes being used have a
strong algebraic structure. A universal decoder, however, has
some advantages. In particular, its performance on a channel

, for , is generally better than the performance
on the channel of the maximum-likelihood decoder
for .
For example, on an average power-limited additive-noise

channel with a prespecified noise variance, a Gaussian code-
book and a Gaussian noise distribution form a saddle point for
the mutual information functional. The maximum-likelihood
decoder for the saddle-point channel is a minimum Eulidean
distance decoder, which is suboptimal if the noise is not
Gaussian. Indeed, if the noise is discrete rather than being

Gaussian (which is worse), then a Gaussian codebook with
universal decoding can achieve a positive random-coding
error exponent at all positive rates; with minimum Euclidean
distance decoding, however, the random-coding error exponent
is positive only for rates below the saddle-point value of the
mutual information [88]. In this sense, a Gaussian codebook
and a minimum Euclidean distance decoder cause every noise
distribution to appear as harmful as the worst (Gaussian) noise.
A situation in which transmission occurs over a channel

, and yet decoding is performed as though the channel
were , is sometimes referred to as “mismatched
decoding.” Generally, a decoder is mismatched with respect
to the channel if it chooses the codeword that
minimizes a “metric” defined for sequences as the additive
extension of a single-letter “metric” , where is, in
general, not equal to (see (103) below).
Mismatched decoding can arise when the receiver has

a poor estimate of the channel law, or when complexity
considerations restrict the metric of interest to take only a
limited number of integer values. The “mismatch problem”
entails determining the highest achievable rates with such a
hindered decoder, and is discussed in the following subsection.
5) Mismatched Decoding: Consider a known DMC (2).

Given a set of codewords define a decoder
by: if

for all (103)

If no such exists (owing to a tie), set . Here

and is a given function which is often
referred to as “decoding metric” (even though it may not be a
metric in the topological sense). The decoder thus produces
that message which is “nearest” to the received sequence
according to the additive “metric” resolving ties by
declaring an error.
Setting

where is a stochastic matrix , corresponds to the
study of a situation where the true channel law is but
the decoder being used is a maximum-likelihood decoder tuned
to the channel . This situation may arise as discussed
previously when achieves the saddle point in (102) or
when maximum-likelihood decoding with respect to is
simpler to implement than maximum-likelihood decoding with
respect to the true channel . Complexity, for example,
could be reduced by using integer metrics with a relatively
small range [108].
The “mismatch problem” consists of finding the set of

achievable rates for this situation, i.e., the supremum
of all rates that can be achieved over the DMC with the
decoder . This problem was studied extensively in [21], [22],
[43], [51], [84], [87], and [100]. A lower bound on ,
which can be derived using a random-coding argument, is
given by the following.
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Theorem 13: Consider a DMC with finite input and
output alphabets . Then the rate

is achievable with the decoder defined in (103). Here
denotes the mutual information between and

with joint pmf on , and the minimization is
with respect to joint pmf’s that satisfy

It should be noted that this bound is in general not tight
[51]. This is not due to a loose analysis of the random-coding
performance but rather because the best code for this situation
may be much better than the “average” code [100].
Improved bounds on the mismatch capacity can be

found in [51] and [87]. It appears that the problem of precisely
determining the capacity of this channel is very difficult; a
solution to this problem would also yield a solution to the
problem of determining the zero-error capacity of a graph
as a special case [51]. Nevertheless, if the input alphabet is
binary, Balakirsky has shown that the lower bound of Theorem
13 is tight [22]. Several interesting open problems related to
mismatched decoding are posed in [51].
Extensions of the mismatch problem to the multiple-access

channel are discussed in [87], and dual problems in rate
distortion theory are discussed in [89].
6) Decoders for the Arbitrarily Varying Channel: Maxi-

mum-likelihood decoders can be used to achieve the random-
ized code capacity of an AVC (5), without or with input or state
constraints (cf. Section IV-A2), passage following (86)). On
the other hand, fairly complex decoders are generally needed
to achieve its deterministic code capacity for the maximum
or average probability of error. In fact, the first nonstandard
decoder in Shannon theory appears, to our knowledge, in [10]
in the study of AVC performance for deterministic codes and
the maximum probability of error.
A significantly different decoder from that proposed in [10]

is used in [45] to provide the characterization in Theorem
4 of the deterministic code capacity of an AVC (5)
for the maximum probability of error. The decoder in [45]
operates in two steps. In the first step, a decision is made
on the basis of a joint typicality condition which is a modified
version of that used to define the divergence typicality decoder

in Section IV-B1). Any tie is broken in a second step
by a threshold test which uses empirical mutual information
quantities. Precisely, given a set of codewords

in , for some fixed type of sequences in (cf.
(80)), the decoder in [45] is defined as follows: iff

for some (104)

and for every which satisfies (104) for some ,
it holds that

(105)

where is the stochastic matrix in the definition
of the AVC (5), and is chosen sufficiently small. Here,

is the conditional mutual information
, where are dummy rv’s whose

joint pmf on is the joint type .
In decoding for a DMC (2), a divergence typicality decoder
of a simpler form than in (104) (viz. with the exclusion of the
state sequence ), defined by (93), suffices for achieving
capacity. For an AVC (5), the additional tie-breaking step
in (105) is interpreted as follows: the transmitted codeword

, the state sequence prevailing during its
transmission, and the received sequence , will satisfy
(104) with high likelihood. If is a spurious codeword
which, for some , also appears to be jointly typical
with in the sense of (104), then can be expected to
be only vanishingly dependent on given and , in the
sense of (105). As stated in [40], the form of this decoder is, in
fact, suggested by the procedure for bounding the maximum
probability of error using the “method of types.” An important
element of the proof of Theorem 4 in [45] consists in showing
that for a suitably chosen set of codewords
the decoder in (104) and (105) for a sufficiently small
is unambiguous, i.e., it maps each received sequence into at
most one message.
At this point, it is worth recalling that the joint typicality

and divergence typicality decoders for known channels, de-
scribed in Section IV-B1), are defined in terms of the joint
types of and , i.e., pairs of codewords and received
sequences. Such decoders belong to the general class of -
decoders, studied in [43], which can be defined solely in terms
of the joint types of pairs each consisting of a codeword
and a received sequence. In contrast, for the deterministic
code capacity problem for the AVC (5) under the maximum
probability of error, the decoder in [45] defined by (104) and
(105) involves the joint types of triples . This
decoder, thus, belongs to a more general class of decoders,
introduced in [42] under the name of -decoders, which are
based on pairwise comparisons of codewords relying on joint
types of triples .
We turn next to decoders used for achieving the determin-

istic code capacity of the AVC (5) for the average probability
of error, without or with input or state constraints. A com-
prehensive treatment is found in [49]. The decoder used in
[48] to determine the AVC deterministic code capacity
for the average probability of error in Theorem 5 resembles
that in (104) and (105), but has added complexity. It too
does not belong to the class of -decoders, but rather to
the class of -decoders. Precisely, given a set of codewords

in as above, the decoder in [48] is
defined as follows: iff

for some (106)
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and for every which satisfies (106) for some ,
it holds that

(107)

where is chosen sufficiently small. Here,
is the conditional mutual information

, where are dummy rv’s as arising above
in (105). A main step of the proof of Theorem 5 in [48] is
to show that this decoder is unambiguous if is chosen
sufficiently small. An obvious modification of the conditions
in (106) and (107) by allowing only such state sequences

as satisfy state constraint (cf. (24)), leads to a
decoder used in [48] for determining the deterministic code
capacity of the AVC (5) under input constraint
and state constraint (cf. Theorem 6).
It should be noted that the divergence typicality condition

in (106) is alone inadequate for the purpose of establishing
the AVC capacity result in Theorem 5. Indeed, a reliance on
such a limited decoder prevented a complete solution from
being reached in [53], where a characterization of was
provided under rather restrictive conditions; for details, see
[49, Remark (i), p. 756].
A comparison of the decoder in (106) and (107) with

that in (104) and (105) reveals two differences. First, the
divergence quantity in (104) has, as its second argument, the
joint type , whereas the analogous argument in (106) is
the product of the associated marginal types . Second, in
(105), is required to be small, whereas
in (107) we additionally ask that also be
small.
As a practical matter, the -decoder in (106) and (107)—al-

though indispensable for theoretical studies—is too complex
to be implementable. On the other hand, finding a good
decoder in the class of less complex -decoders for every
AVC appears unlikely. Nevertheless, under certain conditions,
several common -decoders suffice for achieving the deter-
ministic code capacity of specific classes of AVC’s for the
average probability of error. For instance, or can
be achieved under suitable conditions by the joint typicality
decoder, the “independence” decoder, the MMI decoder (cf.
Section IV-B2)) or the minimum-distance decoder. This issue
is briefly addressed below; for a comprehensive treatment, see
[49].
Given a set of codewords in as above,

the joint typicality decoder in [49] is defined as follows:
iff

for some (108)
where is defined by (45), and is chosen suitably
small. If more than one satisfies (108), or no
satisfies (108), set . Observe that this decoder is
akin to the joint typicality decoder in Section IV-B1), but relies
on a less stringent notion of joint typicality than in (104). In
a result closely related to that in [53], it is shown in [49] that
for the AVC (5), if the input pmf (cf. paragraph following
(47)) satisfies the rather restrictive “Condition DS” (named

after Dobrushin and Stambler [53])—which is stronger than
the nonsymmetrizability condition (cf. (58) and the subsequent
passage)—then can be achieved by the previous joint
typicality decoder. An appropriate modification of (108) leads
to a joint typicality decoder which achieves under
an analogous “Condition DS( )” [49].
For the special case of additive AVC’s, the joint typicality

decoder in (108) is practically equivalent to the independence
decoder [49]; the latter has the merit of being universal in
that it does not rely on a knowledge of the stochastic matrix

in (5). Loosely speaking, an AVC (5) with
and being subsets of a commutative group is called additive
if depends on and through the difference
only. (For a formal definition of additive AVC’s, see [49, Sec.
II].) For a set of codewords in as above,
the independence decoder is defined as follows:
iff

(109)

where is the mutual information
involving dummy rv’s with joint pmf

on being the joint type , and is chosen
sufficiently small. If no or more than one
satisfies (109), set . In effect, the independence
decoder decodes a received sequence into a message

whenever the codeword is nearly “independent”
of the “error” sequence . This decoder is shown in
[49] to achieve and under “Condition DS” and
the analogous “Condition DS ,” respectively.
The joint typicality decoder (108) reduces to an elementary

form for certain subclasses of the class of deterministic AVC’s,
the latter class being characterized by stochastic matrices

in (5) with -valued entries. This
elementary decoder decodes a received sequence into
a message iff the codeword is “compatible”
with . In this context, see [51, Theorem 4] for conditions
under which the “erasures only” capacity of a deterministic
AVC can be achieved by such a decoder.
The MMI decoder defined in Section IV-B2) can, under

certain conditions, achieve or . Specifically, let
be dummy rv’s with joint pmf on
, where is a saddle point for (46). If

the condition

(110)

is satisfied, then can be achieved by the MMI decoder
[49]. When input or state constraints are imposed, if
satisfies in Theorem 6 as well
as the condition (110) above, then can be achieved
by the MMI decoder [49]. Next, for any channel with binary
input and output alphabets, the MMI decoder is related to the
simple minimum (Hamming) distance decoder [49, Lemma
2]. Thus for AVC’s with binary input and output alphabets,
the minimum-distance decoder often suffices to achieve or

. See [49, Theorem 5] for conditions for the efficacy
of this decoder.
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V. THE GAUSSIAN ARBITRARILY VARYING CHANNEL
While the discrete memoryless AVC (5) with finite input and

output alphabets and finite-state space has been the beneficiary
of extensive investigations, studies of AVC’s with continuous
alphabets and state space have been comparatively limited.
In this section, we shall briefly review the special case of
a Gaussian arbitrarily varying channel (Gaussian AVC). For
additional results on the Gaussian AVC and generalizations,
we refer the reader to [41]. (Other approaches to, and models
for, the study of unknown channels with infinite alphabets can
be found, for instance, in [63], [76], [106], and [107].)
A Gaussian AVC is formally defined as follows. Let the

input and output alphabets, and the state space, be the real
line. For any channel input sequence and
state sequence , the corresponding channel
output sequence is given by

(111)

where is a sequence of i.i.d. Gaussian rv’s
with mean zero and variance , denoted . The
state sequence may be viewed as interference inserted by
an intelligent and adversarial jammer attempting to disrupt the
transmission of a codeword . As for the AVC (5), it will be
understood that the transmitter and receiver are unaware of the
actual state sequence . Likewise, in choosing , the jammer
is assumed to be ignorant of the message actually transmitted.
The jammer is , however, assumed to know the code when
a deterministic code is used, and know the probability law
generating the code when a randomized code is used (but not
the actual codes chosen).
Power limitations of the transmitter and jammer will be

described in terms of an input constraint and state constraint
. Specifically, the codewords of a length- deterministic code

or a randomized code will be required to satisfy,
respectively,

(112)

or

a.s., (113)

where and denotes Euclidean norm. Similarly, only
those state sequences will be permitted which satisfy

(114)

where .
The corresponding maximum and average probabilities of

error are defined as obvious analogs of (42)–(44) with ap-
propriate modifications for randomized codes. The notions of
-capacity and capacity are also defined in the obvious way.
The randomized code capacity of the Gaussian AVC (111),

denoted , is given in [80] by the following theorem.

Theorem 14: The randomized code capacity of
the Gaussian AVC (111) under input constraint and state
constraint , is given by

(115)

Further, a strong converse holds so that

(116)

The formula in (115) appears without proof in Blachman
[28, p. 58].
Observe that the value of coincides with the

capacity formula for the ordinary memoryless channel with
additive Gaussian noise of power . Thus the arbitrary
interference resulting from the state sequence in (111) affects
achievable rates no worse than i.i.d. Gaussian noise comprising

rv’s. The direct part of Theorem 14 is proved in
[80] with the codewords being distributed
independently and uniformly on an -dimensional sphere of
radius . The receiver uses a minimum Euclidean distance
decoder , namely iff

for (117)

and we set if no satisfies (117). The
maximum probability of error is then bounded above using a
geometric approach in the spirit of Shannon [116]. Theorem 14
can also be proved in an alternative manner analogous to that
in [47] for determining the randomized code capacity
of the AVC (5) (cf. (48)–(50)). In particular, if
is a saddle point for (48), then the counterpart of in the
present situation is a Gaussian distribution with mean zero
and variance ; the counterpart of is a Gaussian channel
with variance .
If the input and state constraints in (112)–(114) on individ-

ual codewords and state sequences are weakened to restrictions
on the expected values of the respective powers, the Gaussian
AVC (111) ceases to have a strong converse; see [80]. The
results of Theorem 14 can be extended to a “vector” Gaussian
AVC [81] (see also [41]). Earlier work on the randomized
code capacity of the Gaussian AVC (111) is due to Blachman
[27], [28] who provided lower and upper bounds on capacity
when the state sequence is allowed to depend on the actual
codeword transmitted. Also, the randomized code capacity
problem for the Gaussian AVC has presumably motivated
the game-theoretic considerations of saddle points involving
mutual information quantities in (cf. e.g., [36] and [97]).
If the state sequence in (111) is replaced by a sequence

of i.i.d. rv’s with a probability distribution
function which is unknown to the transmitter and receiver
except that it satisfies the constraint

(118)

the resulting channel can be termed a Gaussian compound
memoryless channel (cf. Section II, (3) and (4)). The parameter
space (cf. (3)) now corresponds to the set of distribution
functions of real-valued rv’s with . The capacity
of this Gaussian compound channel follows from Dobrushin
[52], and is given by the formula in (115). Thus ignorance of
the true distribution of the i.i.d interference ,
other than knowing that it satisfies (118), does not reduce
achievable rates any more than i.i.d. Gaussian noise consisting
of rv’s.
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We next turn to the performance of the Gaussian AVC (111)
for deterministic codes and the average probability of error.
Earlier work in this area is due to Ahlswede [3] who deter-
mined the capacity of an AVC comprising a Gaussian channel
with noise variance arbitrarily varying but not exceeding a
given bound. As for its discrete memoryless counterpart (5),
the capacity of the Gaussian AVC (111) shows a
dichotomy: it either equals the randomized code capacity or
else is zero, according to whether or not the transmitter power
exceeds the power of the (arbitrary) interference . This result
is proved in [50] as

Theorem 15: The deterministic code capacity of the Gauss-
ian AVC (111) under input constraint and state constraint
, for the average probability of error, is given by

if

if
(119)

Furthermore, if , a strong converse holds so that

(120)

Although exhibits a dichotomy similar to the
capacity of the AVC (5) (cf. (57)), a proof of
Theorem 15 using Ahlswede’s “elimination” technique [7] is
not apparent. Its proof in [50] is based on a straightforward
albeit more computational approach akin to that in [48]. The
direct part uses a code with codewords chosen at random
from an -dimensional spheres of radius and selectively
identified as in [48]. Interestingly, simple minimum Euclidean
distance decoding (cf. (117)) suffices to achieve capacity, in
contrast with the complex decoding rule (cf. Section IV-B6))
used for the AVC (5) in [48].
In the absence of the Gaussian noise sequence

in (111), we obtain a noiseless additive AVC
with output . The deterministic code capacity
of this AVC under input constraint and state constraint
, for the average probability of error, is, as expected, the
limit of the capacity of the Gaussian AVC in Theorem 15
as [50]. While this is not a formal consequence of
Theorem 15, it can be proved by the same method. Thus the
capacity of this AVC equals if ,
and zero if , and can be achieved using the minimum
Euclidean distance decoder (117). As noted in [50], this result
provides a solution to a weakened version of an unsolved
sphere-packing problem of purely combinatorial nature. This
problem seeks the exponential rate of the maximum number
of nonintersecting sphere of radius in -dimensional
Euclidean space with centers in a sphere of radius .
Consider instead a lesser problem in which the spheres are
permitted to intersect, but for any given of norm not
exceeding , only for a vanishingly small fraction of
sphere centers can be closer to another sphere center
than to . The exponential rate of the maximum number of
spheres satisfying this condition is given by the capacity of
the noiseless additive AVC above.

Multiple-access counterparts of the single-user Gaussian
AVC results surveyed in this section, remain largely unre-
solved issues.
We note that many of the issues that were described in previ-

ous sections for DMC’s have natural counterparts for Gaussian
channels and for more general channels with infinite alphabets.
For example, universal decoding for Gaussian channels with a
deterministic but unknown parametric interference was studied
in [98], and more general universal decoding for channels with
infinite alphabets was studied in [60]; the mismatch problem
with minimum Euclidean distance decoding was studied in
[100] and [88].

VI. MULTIPLE-ACCESS CHANNELS
The study of reliable communication under channel un-

certainty has not been restricted to the single-user channel;
considerable attention has also been paid to the multiple-access
channel (MAC). The MAC models a communication situation
in which multiple users can simultaneously transmit to a single
receiver, each user being ignorant of the messages of the other
users [39], [44].
Many of the channel models for single-user communication

under channel uncertainty have natural counterparts for the
MAC. In this section, we shall briefly survey some of the
studies of these models. We shall limit ourselves throughout to
MAC’s with two transmitters only; extensions to more users
are usually straightforward.
A known discrete memoryless MAC is characterized by two

finite input alphabets , a finite output alphabet , and
a stochastic matrix . The rates and

for the two users are defined analogously as in (12). The
capacity region of the MAC for the average probability of error
was derived independently by Ahlswede [4] and Liao [94]. A
rate-pair is achievable for the average probability of
error iff

(121)
(122)

and
(123)

for some joint pmf on of the form

where the “time-sharing” random variable with values in
the set is arbitrary, but may be limited to assume two
values, say [44]. Extensions to account for average
input constraints are discussed in [66], [121], and [127]. Low-
complexity codes for the MAC are discussed in [70] and
[105].
It is interesting to note that even for a known MAC, the

average probability of error and the maximal probability of
error criteria can lead to different capacity regions [54]; this is
in contrast with the capacity of a known single-user channel.
The compound channel capacity region for a finite family

of discrete memoryless MAC’s has been computed by Han
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in [77]. In the more general case where the family is not
necessarily finite, it can be shown that a rate-pair
is achievable for the family

iff there exists a joint pmf of the form

so that (121)–(123) are satisfied for every , where the
mutual information quantities are computed with respect to
the joint pmf

The direct part of the proof of this claim follows from
the code constructions in [95] and [103], in which neither
the encoder nor the decoder depends on the channel law.
The converse follows directly from [39, Sec. 14.3.4], where a
converse is proved for the known MAC.
Mismatched decoding for the MAC has been studied in [87],

and [88], and universal decoding in [60] and [95].
We turn next to the multiple-access AVC with stochastic

matrix where is a finite set.
The deterministic code capacity region of this multiple-access
AVC for the average probability of error, denoted , was
determined by Jahn [85] assuming that it had a nonempty in-
terior, i.e., . A necessary and sufficient computable
characterization of multiple-access AVC’s for deciding when

was not addressed in [85]. Further, assuming
that , Jahn [85] characterized the randomized
code capacity region, denoted , for the average probability
of error in terms of suitable mutual information quantities,
and showed that . The validity of this characterization
of , even without the assumption in [85] that ,
was demonstrated by Gubner and Hughes [75]. Observe that
if , at least one user and perhaps both users,
cannot reliably transmit information over the channel using
deterministic codes.
In order to characterize multiple-access AVC’s with

, the notion of single-user symmetrizability
(58) was extended by Gubner [72]. This extended notion of
symmetrizability for the multiple-access AVC, in fact, involves
three distinct conditions: symmetrizability with respect to
each of the two individual users, and symmetrizability
with respect to the two users jointly; these conditions
are termed symmetrizability- , symmetrizability- , and
symmetrizability- , respectively, [72]. Neither of the
three conditions above need imply the others. It is readily
seen in [72], by virtue of [59] and [48], that if a multiple-
access AVC is such that , then it must
necessarily be nonsymmetrizable- , nonsymmetrizable- ,
and nonsymmetrizable- . The sufficiency of this set
of nonsymmetrizability conditions for was
conjectured in [72] and proved by Ahlswede and Cai [15],
thereby completely resolving the problem of characterizing
. (It was shown in [72] that under a

set of conditions which are sufficient but not necessary.)

Ahlswede and Cai [16] have further demonstrated that if
the multiple-access AVC is only nonsymmetrizable-
(but can be symmetrizable- or symmetrizable- ), both
users can still reliably transmit information over the channel
using deterministic codes, if they have access to correlated
side-information.
The randomized code capacity region of the multiple-access

AVC under state constraint (cf. (24)) for the maximum
or average probability of error, denoted , has been de-
termined by Gubner and Hughes [75]. The presence of the
state constraint renders nonconvex in general [75]; the
corresponding capacity region in the absence of any state
constraint [85] is convex. Input constraints analogous to (22)
are also considered in [75].
The deterministic code capacity region of the multiple-

access AVC under state constraint for the average probability
of error remains unresolved. For preliminary results, see [73]
and [74].
Indeed, multiple-access AVC counterparts of the single-user

discrete memoryless AVC results of Section III-A2), which
have not been mentioned above in this section, remain by and
large unresolved issues.

VII. DISCUSSION
We discuss below the potential role in mobile wireless

communications of the work surveyed in this paper. Several
situations in which information must be conveyed reliably un-
der channel uncertainty are considered in light of the channel
models described above. The difficulties encountered when
attempting to draw practical guidelines concerning the design
of transmitters and receivers for such situations are also
examined. Suggested avenues for future research are indicated.
We limit our discussion to single-user channels, in which

case the receiver for a given user treats all other users’ signals
(when present) as noise. (For some multiuser models see [26],
[110], and references therein.) We do not, therefore, investigate
the benefits of using the multiple-access transmitters and
receivers suggested by the work mentioned in Section VI.
We remark that the discrete channels surveyed above should
be viewed as resulting from combinations of modulators,
waveform transmission channels, and demodulators.
A few preliminary observations are in order. Considerations

of delays in encoding and decoding as well as decoder
complexity typically dictate the choice of blocklength of
codewords used in a given communication situation. Encoding
delays result from the fact that a message must be buffered
prior to transmission until an entire (block) codeword for it
has been formed. Decoding delays are incurred since all the
symbols in a codeword must be received before the operation
of decoding can commence. Once a blocklength has been
fixed, the channel dictates a tradeoff between the transmitter
power, the code rate, and the probability of decoding error.
We note that if the choice of the blocklength is determined
by delay considerations rather than by those of complexity,
the use of a complex decoder for enhancing channel coding
performance becomes feasible. On the other hand, overriding
concerns of complexity often inhibit the use of complex de-
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coder structures. For instance, the universal MMI decoder (cf.
Section III-A1)), which is known to achieve channel capacity
and the random-coding error exponent in many situations, does
not always afford a simple algorithmic implementation even
when used in conjunction with an algebraically well-structured
block code or a convolutional code on a DMC; however,
see [92], [93], and [129]. Thus the task of finding universal
decoders of manageable complexity constitutes a challenging
research direction [93]. An alternative approach for designing
receivers for use on unknown channels, which is widely used
in practice, employs training sequences for estimating the
parameters of the unknown channel followed by maximum-
likelihood decoding (cf. Section IV-B1)) with respect to the
estimated channel. In many situations, this approach leads
to simple receiver designs. A drawback of this approach is
that the code rate for information transmission is, in effect,
reduced as the symbols of the training sequence appropriate a
portion of blocklength fixed by the considerations mentioned
earlier. On the other hand, in situations where the unknown
channel remains unchanged over multiple transmissions, viz.
codewords, this approach is particularly attractive since chan-
nel parameters estimated with a training sequence during a
transmission can be reused in subsequent transmissions.
An information signal transmitted over a mobile radio

channel undergoes fading whose nature depends on the relation
between the signal parameters (e.g., signal bandwidth) and the
channel parameters (e.g., delay spread, Doppler spread). (For a
comprehensive treatment, cf., e.g., [104, Ch. 4].) Four distinct
types of fading can be experienced by an information signal,
which are described next.
Doppler spread effects typically result in either “slow”

fading or “fast” fading. Let denote the transmission time (in
seconds) of a codeword of blocklength , and the channel
coherence time (in seconds). In slow fading, , so
that the channel remains effectively unchanged during the
transmission of a codeword; hence, it can be modeled as a
compound channel, without or with memory (cf. Section II).
On the other hand, fast fading, when , results in
the channel undergoing changes during the transmission of a
codeword, so that a compound channel model is no longer
appropriate.
Independently of the previous effects, a multipath delay

spread mechanism gives rise to either “flat” fading or
“frequency-selective” fading. In flat fading, , where

is the root-mean-square (rms) delay spread (in seconds);
in effect, the channel can be assumed to be memoryless from
symbol to symbol of a codeword. In contrast, frequency-
selective fading, when , results in intersymbol
interference (ISI) which introduces memory into the channel,
suggesting the use of finite-state models (cf. Section II).
The fading effects described above produce the four differ-

ent combinations of slow flat fading, slow frequency-selective
fading, fast flat fading and fast frequency-selective fading. It
is argued below that the resulting channels can be described to
various extents by the channel models of Section II; however,
the work reviewed above may fail to provide satisfactory
recommendations for transmitter–receiver designs which meet
the delay and complexity requirements mentioned earlier.

For channels with slow flat fading, the compound DMC
model (4) is an apt choice. The MMI decoder achieves
the capacity of this channel (cf. Section IV-B4)); however,
complexity considerations may preclude its use in practice.
This situation is mitigated by the observation in [100] that
a code with equi-energy codewords and minimum Euclidean
distance decoder is often adequate. Alternatively, a training
sequence can be used to estimate the prevailing state of the
compound DMC, followed by maximum-likelihood decoding.
A drawback of this approach, of course, is the effective loss
of code rate alluded to earlier.
Channels characterized by slow frequency-selective fading

can be described by a compound finite-state channel model
(cf. Section III-A1)). The universal decoder in [60] achieves
channel capacity and the random coding-error exponent. The
high complexity of this decoder, however, renders it imprac-
tical if complexity is an overriding concern. In this situation,
a training sequence approach as above offers a remedy, albeit
at the cost of an effective reduction in code rate. A training
sequence can be used to estimate the unknown ISI parameters
of the compound FSC model followed by maximum-likelihood
decoding; the special structure of the ISI channel renders both
these operations fairly straightforward.
Channels with fast flat fading fluctuate between several

different attenuation levels during the transmission of a code-
word; during the period in which each such attenuation level
prevails, the channels appear memoryless. A description of
such a channel will depend on the severity of the fast fade. For
instance, consider the case where different attenuation levels
are experienced often enough during the transmission of a
codeword. A compound finite-state model (cf. Section II) is a
feasible candidate, where the set of states corresponds to the
set of attenuation levels, by dint of the fact that the “ergodicity
time” of the channel satisfies . However, no
encouraging options can be inferred from the work surveyed
above for acceptable transmitter–receiver designs. A complex
decoder [60] is generally needed to achieve channel capacity
and the random-coding error exponent. Furthermore, the feasi-
bility of the training sequence approach is also dubious owing
to the inherent complexity of the estimation procedure and of
the computation of the likelihood metric.5 Next, if , a
compound FSC model is no longer appropriate, and even the
task of finding an acceptable channel description from among
the models surveyed appears difficult. Of course, an AVC
model (5), with state space comprising the different attenuation
levels, can be used provided the transitions between such levels
occur in a memoryless manner; else, an arbitrarily varying
FSC model (9) can be considered. When , the choice
of an arbitrarily varying channel model may, however, lead
to overly conservative estimates of channel capacity. It must,
however, be noted that in the former case, an AVC model
does offer the feasibility of simpler transmitter and receiver
designs through the use of randomized codes (with maximum-
5Even when the law of a finite-state channel is known, the maximum-

likelihood decoder may be too complex to implement, since the computation
of the likelihood of a received sequence given a codeword is exponential in the
blocklength (7). A suboptimal decoder which does not necessarily achieve the
random-coding error exponent, but does achieve capacity for some finite-state
channels is discussed in [69] and [101].
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likelihood decoder) for achieving channel capacity (cf. Section
IV-A2)).
Finally, a channel with fast frequency-selective fading can

be understood in a manner analogous to fast flat fading,
with the difference that during the period of each prevalent
attenuation level the channel possesses memory. Also, if
, such a channel can be similarly modeled by a compound

FSC (cf. Section II), where the set of states—representing
the various attenuation levels—now corresponds to a family
of “smaller” FSC’s with unknown parameters. Clearly, the
practical feasibility of a decoder which achieves channel
capacity or a receiver based on a training sequence approach
appears remote. If , similar comments apply as for
the analogous situation in fast flat fading; each arbitrarily
varying channel state, representing an attenuation level, will
now correspond to a “smaller” FSC with unknown parameters.
Thus information-theoretic studies of unknown channels

have produced classes of models which are rich enough to
faithfully describe many situations arising in mobile wireless
communications. There are, of course, some situations involv-
ing fast fading which yet lack satisfactory descriptions and
for which new tractable channel models are needed. However,
the shortcomings are acute in terms of providing acceptable
guidelines for the design of transmitters and receivers which
adhere to delay and complexity requirements. The feasibility
of the training sequence approach is crucially reliant on the
availability of good estimates of channel parameters and the
ease of computation of the likelihood metric, which can pose
serious difficulties especially for channels with memory. This
provides an impetus for the study of efficient decoders which
do not require a knowledge of the channel law and yet allow
reliable communication at rates up to capacity with reasonable
delay and complexity.
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[121] S. Verdú, “On channel capacity per unit cost,” IEEE Trans. Inform.
Theory, vol. 36, pp. 1019–1030, Sept. 1990.
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