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Abstract 

Eelgrass (Zostera marina) is an ecologically 

significant and fragile species of seagrass 

common in Denmark and the Northern 

Hemisphere. The depth limit of the eelgrass 

populations is used to evaluate the ecological 

condition of coastal waters, and coverage is used 

for evaluation of ecosystem health. Satellite 

remote sensing has the potential to improve the 

cost effectiveness of the analysis significantly. 

Based on a review of existing reported methods, 

this thesis used Sentinel-2 imagery with object 

based image analysis and various machine 

learning algorithms to classify submerged 

aquatic vegetation at Roskilde Fjord. An 

ecological model of eelgrass stress parameters 

was applied to the classification output to 

produce an empirical classification of eelgrass 

coverage. The results indicate that Random 

Forest is the most suitable machine learning 

algorithm for submerged aquatic vegetation 

classification, and a scale parameter of 10 

produces image objects that obtain the highest 

classification accuracy. Water column correction 

and multi-temporal analysis are demonstrated as 

techniques to improve classification accuracy. 

The thesis concludes Sentinel-2 imagery may be 

used for mapping submerged aquatic vegetation 

but not for the specific identification and analysis 

of eelgrass. 
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1 Introduction  

‘Due to the important role that seagrasses play in estuaries, there has 

been a considerable effort at developing sampling and mapping techniques to 

quantify the spatial distribution, biomass and health of seagrass communities, 

and monitor changes over time. Remote sensing approaches have seen 

increasing application to the mapping of seagrass beds due to their synoptic 

perspective and cost-effective mapping over large areas’  

(Lathrop, et al., 2006). 

 

Eelgrass (Zostera marina) is an ecologically significant and fragile 

species of submerged aquatic vegetation (SAV) that is widespread around 

Denmark and the Northern Hemisphere. It is of particular interest at regional 

and state levels because eelgrass depth limit is used as an environmental 

indicator to evaluate the ecological condition of coastal waters under the EU 

Water Framework Directive (WFD). The depth limit is surveyed by field 

sampling methods, which although serve the purposes for EU reporting; are 

expensive, and ineffective for capturing representative information about the 

diversity of an eelgrass area (Hossain, et al., 2015). Information about eelgrass 

coverage can fill this void, and provide guidance for monitoring population 

dynamics for directing policy and conservation efforts.  

 

The aim of this thesis is to determine whether Sentinel-2 imagery can 

be used to classify eelgrass coverage, and be used to direct field data collection. 

The methodology in this thesis is desirable because Sentinel-2 is freely available 

with good temporal coverage, and remote sensing is a fast and affordable 

technique for classification over large spatial and temporal scales. Although 

airborne imagery finds wider application in seagrass monitoring (Lathrop, et al., 

2006), satellite imagery such as Sentinel-2 is beneficial due to superior cost and 

temporal coverage. This thesis also addresses a limitation of Sentinel-2 imagery 

– the moderate spectral resolution, which is insufficient to distinguish SAV at a 
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species level, by incorporating an ecological model with remote sensing 

classification results. 

 

The methodology in this thesis incorporates classification with Object 

Based Image Analysis (OBIA) and machine learning algorithms (MLAs), which 

have been the focus of many studies in recent times (Qian, et al., 2015). OBIA 

combined with MLAs offer superior classification accuracy compared with more 

traditional methods, such as pixel based classification, however the challenge 

is optimising the vast array of variables that can influence classification 

accuracy. This thesis addresses several of these variables, such as MLA selection 

and segmentation parameter (SP) settings, by building on results from previous 

studies to optimise these techniques.  

 

This thesis was undertaken in collaboration with DHI GRAS, a remote 

sensing specialist organisation, to evaluate the feasibility of this technique for 

method and data evaluation purposes, to enable a validated work history of 

sentinel-2 classification of marine habitats.  

 

1.1 Background 

1.1.1 Remote Sensing in aquatic environments  

Remote sensing originated in the 1840’s, where cameras attached to 

balloons were used for topographic mapping applications (Lavendar & 

Lavendar, 2016). Remote sensing cameras were later mounted to aircraft and 

were used for reconnaissance and surveillance during World War One, followed 

by the first images from space with the launch of the Russian V-2 rockets. The 

first photos acquired from an orbiting satellite were from the US military 

satellites in the 1960’s, which acquired images using film that were dropped 

back to earth in re-entry capsules and caught mid-air by airplanes (Lavendar & 

Lavendar, 2016). The 1960’s heralded several satellite missions, which 

culminated in the launch of Apollo 9 in 1968 that captured the first 
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multispectral image using a four-lens camera. In 1972 Landsat 1 was launched, 

which represented the first continuous collection of earth observation (EO) 

data to support research. Since this mission, numerous other satellite missions 

have been launched, equipped with a variety of sensors that provide 

continuously improving spatial, temporal and spectral resolution imagery. In 

addition to satellites, other forms of remote sensing exist, including high 

resolution cameras mounted to fixed wing aircraft, helicopters and drones.  

 

The principle of remote sensing involves the detection of energy 

reflected or emitted from the earth as electromagnetic radiation (EMR) 

(Lavendar & Lavendar, 2016). Light is a form of EMR that exists in a wide range 

of wavelengths, from high energy radiation such as gamma rays and X-rays, to 

lower energy forms ranging from UV, visible light, and radio waves. The 

wavebands that can penetrate water are the visible, UV, and short infrared 

bands (Hossain, et al., 2015), which makes these bands particularly useful for 

remote sensing in marine environments. Visible bands penetrate further into 

the water column than UV and short infrared, which makes these bands useful 

for detecting bathymetric features. For detecting SAV, the green waveband is 

considered the best (Klemas, 2016), due to the combined low attenuation in 

the water column and high reflectivity from chlorophyll pigments in vegetation.  

 

Remote sensing is a desirable method for spatial monitoring, because it 

can cost and time effectively cover land and inaccessible areas with high 

frequency (O'Neill, et al., 2011). Marine environments are often characterised 

by large areas and limited accessibility, therefore remote sensing is particularly 

desirable as it can monitor and assess short and long-term changes and trends 

faster, more completely and at lower cost per unit area than field or ship 

surveys (Klemas, 2016). A rule of thumb for determining whether remote 

sensing of SAV within a water body may be feasible is whether bottom features 

are visually distinguishable from a boat, or visible in remote sensing imagery. 
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In the past four decades, rapid technological and methodological 

advancements have occurred in the field of remote sensing (Hossain, et al., 

2015), with the emergence of new satellites, sensors and data analysis 

techniques that are highly effective for the monitoring of coastal processes and 

features (Klemas, 2016), including seagrass habitats (Hossain, et al., 2015). 

However, despite these advancements in technology, no single method is 

suitable to measure all seagrass parameters (Hossain, et al., 2015), and 

therefore it is important to choose remote sensors and data analysis methods 

that are most appropriate for the specific seagrass study (Klemas, 2016).  

 

Remote sensing in aquatic environments is complicated by several 

factors, such as atmospheric interference, variability in water depth and 

bottom albedo, and water column attenuation by scattering and absorption 

(Figure 1) (Cho, et al., 2012). Accounting for water column attenuation is 

considered one of the greatest challenges (Yang, et al., 2010), due to the large 

number of variables associated with absorption and scattering; which increase 

with depth, concentrations of suspended particles, chlorophyll and dissolved 

organic matter (Visser, et al., 2013) (Yang, et al., 2010).  

 

Figure 1: Challenges remote sensing over a water body.  

(source: http://www.dmu.dk) 

http://www.dmu.dk/
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The water column effect can be mitigated by undertaking remote 

sensing in clear, shallow water where seagrasses grow in dense meadows and 

constitute the only dark features on a sandy bottom, and/or select clear, sunny 

days to obtain the imagery (Krause-Jensen, et al., 2004). These mitigation 

factors may not always be feasible however, in which case a water column 

correction (WCC) may be necessary.  

 

Another challenge with remote sensing in aquatic environments is the 

separation of the spectral signature for the features of interest, which can be 

confused particularly by dark features, such as mussel beds, stones or 

macroalgae (Krause-Jensen, et al., 2004). This was demonstrated in a study by 

(Kuusemäe, et al., 2016), who reported that macroalgae beds that are also 

green can be interpreted as eelgrass beds due to the small differences in 

spectral colour values (Kuusemäe, et al., 2016). Other challenges include 

movement of the water surface due to wind or currents, and tidal influence 

which can significantly vary the depth of the water body.  

 

SAV beds, including eelgrass, have high spatial complexity and temporal 

variability, which requires high spatial, spectral and temporal resolutions to be 

observed effectively (Klemas, 2016). (Visser, et al., 2013) demonstrated a 

solution to this problem, by using OBIA to distinguish features of interest based 

on spatial and textural information, however these trials were conducted in 

test pools with high resolution imagery at an individual plant level, therefore 

unlikely to have application in imagery with lower spatial resolution.  

 

1.1.2 Remote sensing imagery 

The recent advancements in multispectral and hyperspectral sensors 

have resulted in an increase in imagery with fine spatial (0.4-4m) and/or 

spectral (200 narrow bands) resolution (Klemas, 2016). The choice of 

multispectral and hyperspectral imagery is important, particularly for remote 



6 

sensing in marine environments, because hyperspectral imagery enables 

mapping SAV at a species level, as demonstrated by Phinn, et al. (2008), who 

used airborne hyper-spectral (CASI-2 sensor using a pixel size of 4.0 m) imagery 

for mapping seagrass species composition; and Reolfsema, et al., (2014), who 

combined field data with high spatial resolution imagery (Worldview-2 – 0.5m 

resolution) in a time series analysis to produce seagrass species and percentage 

cover maps on a landscape scale (>100km2). Furthermore, the use of 

hyperspectral imagery can improve classification accuracy, as demonstrated by 

O’Neill, et al., (2011), who conducted classification of eelgrass using 

hyperspectral imagery and achieved an overall accuracy of over 85%.   

 

One of the main constraints with hyperspectral imagery is the high cost 

(Roelfsema, et al., 2014). Therefore, the selection of appropriate imagery 

depends on funding and the desired outcome of the classification.  

 

Sentinel-2 is an EO mission by the European Space Agency (ESA) that 

consists of two multispectral satellites – Sentinel 2A and 2B. Launched on 23 

June 2015 and 07 March 2017 respectively, the satellites are equipped with 

Multispectral Instruments (MSI) that sample 13 spectral bands (Figure 2). 

Sentinel-2 has moderate spatial resolution, which makes it suitable for a variety 

of purposes, such as vegetation monitoring, soil and water cover, and 

observation of waterways.  

 

Data are acquired on 13 spectral bands in the VNIR and SWIR (European 

Space Agency, 2018), at the following spatial resolutions (Figure 2):  

• four bands at 10 m: Band 2, Band 3, Band 4, and Band 8 

• six bands at 20 m: Band 5, Band 6, Band 7, Band 8a, Band 11, and Band 

12 

• three bands at 60 m: Band 1, Band 9, and Band 10  
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Figure 2: Sentinel-2 spectral bands (source: (Noi & Kappas, 2017) 

 

Sentinel-2 data is available for download with or without atmospheric 

correction, as a Level 2A or 1C product respectively. Level 1C products have 

undergone radiometric and geometric corrections, including ortho-rectification 

and spatial registration, whereas 2A products have undergone additional 

atmospheric correction (European Space Agency, 2018).  

 

1.1.3 Eelgrass  

Eelgrass (Zostera marina) (Figure 3) is a common species of seagrass 

widespread in Denmark and the Northern Hemisphere, which serves as a 

keystone component of many marine ecosystems (O'Neill, et al., 2011). It 

serves as an important link in many food chains because it harnesses energy 

and nutrients that are consumed by organisms, provides critical structural 

components in benthic environments, and serves as essential habitat for many 

organisms such as shellfish, crabs, fish and waterbirds (Lathrop, et al., 2006). 

These ecological functions also have economic benefits, with the production of 

goods such as shellfish and finfish (Terrados & Borum, 2004). 
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Figure 3: Eelgrass (Zostera Marina) is a widespread and ecologically significant 

species of seagrass 

 

Eelgrass meadows can decrease the damaging effects of waves and 

reduce shoreline erosion (Klemas, 2016). Due to the wide variety of functions 

of eelgrass, and high sensitivity to degraded water quality (Lathrop, et al., 

2006), it is intimately linked to the health of the wider marine environment 

(Duarte, et al., 2004) and serves as an indicator of the status of the coastal zone 

(Terrados & Borum, 2004).  

 

Eelgrass also has historical significance, as it has previously been used 

for stuffing mattresses and cushions, for the construction of dikes for land and 

sea defences (Haynes, 2000), and is the only known example of a grain that has 

been harvested from the sea for human consumption (Felger & Moser, 1973). 

 

Eelgrass populations declined worldwide at a rate of 2% per year 

between 1990 – 2000 (Duarte, et al., 2004), and populations continue an 

overall trend of decline today (The IUCN Red List of Threatened Species, 2017). 

This is due to factors such as anthropogenic pressure (O'Neill, et al., 2011), 

climate change (Klemas, 2016), declining water quality, dredging, macroalgal 

infestation and disease (Lathrop, et al., 2006). Furthermore, eelgrass depth 

limit is used as an environmental indicator of waterway health under the WFD 
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(Kuusemäe, et al., 2016), which is an EU initiative for all member states to 

determine the status of all waterbodies. To understand these pressures and 

direct coastal ecosystem management to protect these vital ecosystems, it is 

important to delineate and monitor eelgrass distribution (Klemas, 2016) 

(O'Neill, et al., 2011), as well as obtain an understanding of species 

composition, richness, abundance and spatial patterns (Phinn, et al., 2008). To 

achieve these objectives, spatial information is required (Phinn, et al., 2008).  

 

Eelgrass is widespread across a variety of habitats in the northern 

hemisphere. It is found in artic waters along the northern Norwegian coast, 

where it can endure several months of ice cover, as well as in Danish fjords, to 

the warm waters of the Mediterranean (Kuusemäe, et al., 2016). In Danish 

fjords, eelgrass has undergone widespread reduction in the past century due 

to wasting disease and eutrophication from nearby agriculture (Kuusemäe, et 

al., 2016). The depth limit of eelgrass growth in Denmark is 3-5m in fjords and 

a few metres deeper along the open coastline (The Danish Council for Strategic 

Research, 2017). Light availability is the limiting factor for depth.  

 

Knowledge of eelgrass growth and reproduction is crucial for eelgrass 

ecosystem management, as it provides information about recovery times 

(Marba, et al., 2004). Eelgrass has two mechanisms of reproduction – sexual 

through seed, and clonal though rhizome growth (Marba, et al., 2004). Sexual 

reproduction through seed occurs during plant flowering, which releases pollen 

into the water. Flowering is controlled by water temperature, which in Europe 

occurs in late spring and summer, where irradiance and water temperature is 

high (Marba, et al., 2004). Eelgrass plants release large quantities of seeds 

(thousands per m2), however as they are negatively buoyant, the seeds 

generally settle within a few metres of the plant and the majority are consumed 

by crabs and other grazers (Marba, et al., 2004). Seed may also be consumed 

and transported by waterbirds (Marba, et al., 2004). Clonal growth is the 
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primary method of seagrass bed expansion (Robbins & Bell, 1994), and the 

most important process for the maintenance of seagrass meadows (Cunha, et 

al., 2004). The speed of this process varies greatly amongst various seagrass 

species. For eelgrass, clonal growth is very slow (on average 16cm/yr) (Cunha, 

et al., 2004), which results in population recovery occurring over large 

timescales. During a widespread reduction from wasting disease in the 1930s 

(Kuusemäe, et al., 2016), recolonization was observed on a timeframe of 2-3 

decades (Cunha, et al., 2004). The implications of these findings are that 

monitoring programmes need to be sustained over long time periods to 

determine whether populations are regenerating, which makes remote sensing 

an optimal technique.  

 

The mechanisms hindering eelgrass recovery were identified and 

modelled by Kuusemäe, et al., (2016). The most significant factors were 1) lack 

of sediment anchoring capacity, 2) resuspension created by drifting ephemeral 

macroalgae, 3) seedling uproot by current and wave forces, 4) ballistic stress 

from attached macroalgae and 5) burial of seeds and seedlings by lugworms. 

These processes were quantified and modelled using an ecological DHI MIKE 

3D model, which is used as a national tool to predict areas where eelgrass 

restoration effort may be initiated, and has been incorporated in the results of 

this study. Krause-Jensen, et al., (2004), also identified salinity as a significant 

factor, which was not included in the model. 

 

Seagrass habitats can be visualized on multiple scales, ranging from 

millimetres to kilometres (Robbins & Bell, 1994). At the patch level, millimetres 

to centimetres, seagrass habitats are observed as individual plants to small 

patches on fine spatial scales. Such observations are only possible with 

transects or high-resolution imagery (Roelfsema, et al., 2014). At moderate 

scales (metres to tens of metres), eelgrass can be observed as a bed, which is a 

spatially contiguous area of similar percent cover composition. At the largest 
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resolution (hundreds of metres), eelgrass is measured as meadows, which 

consist of spatially contiguous areas of seagrass beds (Lathrop, et al., 2006). The 

limitation to visualising these scales lies with the spatial resolution of the 

imagery. Using 10m resolution imagery, such as with Sentinel-2, eelgrass can 

only be observed as beds or meadows, as the resolution is too low to observe 

patches.   

 

Eelgrass coverage can be used to determine distribution and/or 

abundance (Krause-Jensen, et al., 2004), and detect changes (Duarte, et al., 

2004). Distribution refers to where it is growing, abundance refers to cover at 

a specific depth. Abundance is a useful measure, because it can be directly 

linked with water quality, since eelgrass demonstrates depth dependence with 

the highest abundances typically at intermediate water depths where levels of 

exposure and light are moderate. Any decline in seagrass at this depth can be 

attributed, at least partly, to increased light attenuation in the water column 

and therefore changes in water quality (Duarte, et al., 2004) (Krause-Jensen, et 

al., 2004) – which is why this metric is used to report under the WFD. 

Abundance can also be used as a measure of eelgrass biomass, as 

demonstrated by (Carstensen, et al., 2015), who used eelgrass cover and light 

attenuation to determine eelgrass biomass.   

 

A diverse range of eelgrass monitoring programs are available, ranging 

from volunteer collected data to more complex scientific techniques, such as 

remote sensing (Duarte, et al., 2004). The method of measuring eelgrass 

coverage depends on the monitoring objectives (Krause-Jensen, et al., 2004) 

and available resources (Duarte, et al., 2004). For cataloguing 

presence/absence or coarse area distribution, macro-scale maps with low to 

moderate resolution imagery is suitable. However, for detailed information 

about distribution, change in seagrass areas or to estimate biomass, high 

resolution imagery is required. Monitoring on very fine scales (cm’s) requires 
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manual observations in conjunction with DGPS positions, which is very time and 

cost intensive (Krause-Jensen, et al., 2004)..  

 

Direct observations are collected annually to determine eelgrass 

abundance for the Danish national monitoring programme to report under the 

WFD (Krause-Jensen, et al., 2004), and have been used as observation data for 

several remote sensing studies (e.g. (Carstensen, et al., 2015)). This method is 

effective in detecting declines, however is time consuming if large areas are to 

be covered (Duarte, et al., 2004). Observations for the Danish national 

monitoring program are collected by a diver who swims along depth gradients 

and estimates percent cover at intervals of 5-10 m. Regular observations of 

cover, GPS position and water depth are recorded, and the average cover 

within depth intervals of 1 m is calculated (Krause-Jensen, et al., 2004). 

Observations are recorded at the same dive sites each year, to determine yearly 

trends. For Roskilde Fjord, these dive locations were established in 1979 

(Bruhn, et al., 2013). This method is reported as being the most repeatable, 

precise and cost-efficient of several methods tested (Krause-Jensen, et al., 

2004), however this study aims to demonstrate that this methodology is 

limited, since dive locations are determined by nothing more than historical 

locations, and remote sensing could be used to target eelgrass meadows to 

ensure dive sites are representative of the study area. This hypothesis is 

supported by Duarte, et al., (2004), who state that programs that assess 

changes across entire meadows are far more effective in detecting trends than 

quadrat-based programs, which can only provide inferences on ‘very local 

scales’.  

 

The use of conventional vegetation indices, such as strong NIR 

reflectance, and blue and red absorbance, cannot be used for SAV since the 

upwelling signal from waterbodies contain several sources of interference from 

the water column (Cho, et al., 2012), and the NIR wavelength is absorbed 
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strongly by water (Klemas, 2016). As such, the green region of the spectrum is 

considered best for sensing submerged aquatic vegetation, followed by the red, 

and red edge regions (Klemas, 2016), as these bands penetrate the water 

column and are reflected and absorbed respectively, by the SAV. However, 

using these bands to discriminate SAV is only feasible in shallow water up to 

0.5m deep, as the spectral signature attenuates strongly with depth (Klemas, 

2016) (Cho, et al., 2012). This value reduces further with increased turbidity or 

surface disturbance (Cho, et al., 2012). These results are replicated by (Yang, et 

al., 2010) , who demonstrated the appropriate wavebands for seagrass 

mapping generally lay between 500 and 630 nm (blue and green) and 680 and 

710 nm (red and red edge), and found a strong relationship between the 

reflectance value at 715 nm and Leaf Area Index. Based on the 

recommendations from these studies, the green, red, and red edge bands were 

used in this thesis.  

 

1.1.4 Image preprocessing  

Image preprocessing is a form of image rectification and restoration, 

that is used to correct distorted or degraded image data arising from image 

acquisition, to create a truer representation of the actual scene (Lillesand & 

Kiefer, 1999). It involves processing data using an equation, or series of 

equations, to form a new digital image that may be displayed or further 

processed. The type and degree of preprocessing is highly dependent upon the 

characteristics of the sensor used to capture the image, because of the variety 

of geometric distortions and noise (Lillesand & Kiefer, 1999). 

 

Resampling is the process of geometrically transforming a digital image 

to appropriately assign the appropriate digital number to an output cell or pixel 

(Lillesand & Kiefer, 1999). It is necessary when working with raster data sets 

that have different spatial resolutions, or that use different geographic 

coordinate systems. Some common methods are Nearest Neighbour, Majority 
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Resampling, Bilinear Interpolation and Cubic Convolution; which differ broadly 

by whether the data type is continuous or discrete.  

 

1.1.5 Object based image analysis 

OBIA is a technique used to classify digital imagery by grouping together 

clusters of pixels into image objects based on homogeneity through a process 

of segmentation, and then classifying these objects based on spectral, textural, 

neighbourhood and object specific shape parameters (Ouyang, 2015) (Yoon, et 

al., 2003). ‘A considerable amount of research has shown that object-based 

approaches are superior to traditional pixel-based methods in the classification 

of high spatial resolution data’ (Qian, et al., 2015). It is useful to extract tangible 

information from imagery for use with GIS, and has great potential for very high 

resolution imagery (Zhang & Maxwell, 2006) (Drǎguţ, et al., 2010), where pixel 

size is significantly smaller than objects of interest (Figure 4), which is increasing 

in prevalence with the improvements in satellite sensor resolution (Blaschke, 

2010).  

 

Figure 4: Relationship between pixel size and object of interest is important 

when selecting classifier: (a) pixel larger than objects, use sub pixel classifier 

(b) pixel and objects same size, use pixel classifier (c) pixels significantly 

smaller than objects, use object classification (source: (Blaschke, 2010)). 

 

An advantage of OBIA compared with pixel based methodologies, is it 

can overcome the salt-and-pepper effect, which is caused by high local spatial 

heterogeneity between neighbouring pixels (Lillesand & Kiefer, 1999). OBIA 
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clusters pixels together to remove small scale variation, and results in faster 

processes because objects, not individual pixels, are classified (Ouyang, 2015).  

 

OBIA hinges on image segmentation, which originated in the 1970’s 

where it was used for industrial image processing. It has gained prominence 

since the mid-2000s, as evidenced by the sharp increase in peer reviewed 

journal articles since this time (Blaschke, 2010). Image objects, which enables a 

user to define the scale at which image features are analysed, are built in a 

hierarchical structure that enables the user to display image object information 

at different scales simultaneously (Baatz & Schape, 1999).  

 

OBIA has great potential for classification in marine environments, 

where spectral information may be distorted, and over large areas. This has 

been demonstrated in several studies, such as Roelfsema, et al., (2014), who 

used OBIA and high spatial resolution imagery in a timeseries approach to map 

seagrass over a 142km2 area; and Lathrop, et al., (2006), who used OBIA to map 

SAV – eelgrass and Ruppia maritima (species which are also present in Roskilde 

Fjord), over a 36,000ha study site.  

 

OBIA was used for this study to measure eelgrass coverage on a 

landscape scale. Conventional classification techniques are difficult to apply for 

this purpose because of the inconsistency in spectral response for SAV beds, 

that change with water depth and turbidity (Lathrop, et al., 2006). Several 

studies have demonstrated successful use of OBIA techniques with medium 

and coarse resolution imagery, such as Myint, et al., (2008), who used Landsat 

TM (28.5m resolution) to conduct change detection following cyclone damage, 

and demonstrated a 15-20% higher accuracy with the object-oriented approach 

compared with pixel-based approaches. OBIA also provided the opportunity for 

knowledge about eelgrass growth to be incorporated into the classification by 
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specifying the size and shape of the image objects, as demonstrated by Visser, 

et al., (2013). 

 

1.1.6 eCognition 

The emergence of OBIA coincided with the launch of the eCognition 

software by Trimble in 2000, which was the first commercially available 

software that enabled image processing and GIS functionality in an object 

based environment (Blaschke, 2010). This software was later renamed 

‘Definiens’, and then reverted back to ‘eCognition’, which it is known as today. 

It is based on the approach originally known as Fractal Net Evolution (Baatz & 

Schape, 1999) (Blaschke, 2010), which encompasses the formation of image 

objects using contextual information such as form and texture. This was built 

into a programmable, user friendly workflow. This software has been used in a 

significant number of studies, and has led to the development of numerous 

other similar software applications (Blaschke, 2010).  

 

1.1.7 Segmentation  

Image object segmentation is a crucial process as it significantly 

influences classification results (Zhang & Maxwell, 2006). Shape and texture 

can be incorporated into the image object SP settings, and may produce better 

classification accuracy than differentiation of spectral signatures with very 

high-resolution imagery (Visser, et al., 2013). The basic strategy is to build up a 

hierarchical network of image objects which allows image information to be 

represented at different resolutions (scales) simultaneously.  

 

Various segmentation algorithms are available in eCognition, which are 

broadly divided by whether they operate on a top-down or bottom-up 

approach (Trimble Germany GmbH, 2016). Multi-resolution segmentation is a 

commonly used bottom-up approach, which consecutively merges pixels or 

existing image objects into larger ones, based on the criteria of relative 
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homogeneity (Qian et al., 2015), and was used in this thesis. Segmentation can 

be influenced with various scale parameter criteria, such as shape, 

compactness and scale parameter (Figure 5).  

 

 

Figure 5: Flow diagram illustrating the concept of multiresolution 

segmentation in eCognition (source: (Trimble Germany GmbH, 2016)) 

 

These parameters are usually set using a process of trial and error, with 

the objective to produce image objects that only contain a feature of interest. 

Several studies have developed more objective techniques to set these 

parameters, such as Zhang & Maxwell, (2006), who used fuzzy logic to 

determine suitable object SPs; and Drǎguţ, et al., (2010), who developed a tool 

for estimating the scale parameter setting that minimised the rate of variance 

change within image objects. This thesis did not use these techniques; 

however, it builds on the research by investigating the impact of adjusting the 

scale parameter on overall classification accuracy.  

 

1.1.8 Machine Learning Algorithms  

Machine learning (ML) is a branch of computer science that enables 

computer systems to learn (i.e. progressively improve performance on a 

specific task) the underlying behaviour of a system from a set of training data 
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without being explicitly programmed. It consists of a variety of algorithms that 

can provide various forms of regression (multivariate, nonlinear and 

nonparametric) and classification (supervised or unsupervised) (Lary, et al., 

2016). It has a wide variety of uses in areas where implementing algorithms is 

difficult or infeasible, such as email filtering, optical character recognition and 

computer vision.  

 

ML provides an effective empirical approach for use in nonlinear 

systems, such as remote sensing, because of its ability to learn underlying 

trends in a system though the input of training data (Lary, et al., 2016). It has 

increasing interest in conjunction with OBIA to determine the best performing 

algorithm (Qian, et al., 2015). ML with training samples enables classification of 

image objects based on underlying trends in the system which are unknown by 

the operator (Qian, et al., 2015), which was the approach used in this thesis.  

 

A principle underpinning all supervised ML is the equation:  

 

Y = f(X) 

 

Where Y is the output variable, f is the functional form of the model, 

and X is the input variables (James, et al., 2013).  

 

The shape of the model, f, determines how data points are separated 

and therefore how they are classified (James, et al., 2013). Defining the 

functional form of f is the purpose of the ML algorithm and the reason why 

selecting various ML algorithms result in different classification results. If f was 

already known, it could be used directly in the classification and would not need 

to be learned using ML algorithms. Central issues in ML are avoidance of 

overfitting, and balance between simplicity and fit to data.  
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MLA can be broadly divided as parametric and non-parametric, which 

describes whether the function used to separate the data for classification 

makes assumptions about the form of the function f (parametric) or not (non-

parametric). A comparison between parametric and non-parametric methods 

is illustrated at Figure 6, where linear and spline models have been fitted to the 

data. It can be observed the linear fit is not quite accurate, with the true f 

demonstrating some curvature which is well captured by the spline approach. 

This principle applied to spatial data would result in higher classification 

accuracy for the non-parametric approach.  

 

  

Figure 6: Parametric linear model (L) and nonparametric spline model (R). 

Note the superior fit of the model to the data in the nonparametric approach 

(source: (James, et al., 2013)) 

 

The MLAs used in this thesis were Naïve Bayes (NB) (parametric), 

Random Trees (Random Forest – RF) and Support Vector Machine (SVM) (both 

nonparametric), which are among the most widely used in remote sensing 

(Qian et al., 2015). It is valuable to trial different MLAs with a dataset to observe 

how the algorithm interacts with different types of data, and which can provide 

the more accurate result. A challenge with using various MLAs is determining 

the optimal tuning of indices, as demonstrated by (Qian et al., 2015).  
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Parametric models involve a two-step approach, where firstly an 

assumption is made about the functional form of f, and secondly the training 

data is used to fit or train the model (James, et al., 2013). Parametric algorithms 

are relatively simple to implement as they do not require many input 

parameters, and have fast processing speeds. The simplest form of a 

parametric model is linear, which assumes a linear relationship between the 

variables. The training data determines the intercept and slope of f to produce 

the predictive model. Although this method is simple to apply, it is susceptible 

to inaccurately representing underlying trends if it does not accurately reflect 

the relationship amongst the variables, and is best suited to more simplistic 

problems. Inaccuracy can be addressed by choosing flexible models that fit 

multiple forms of f to the data, however this requires estimating a greater 

number of parameters and can lead to overfitting of data, where errors or noise 

are followed too closely (James, et al., 2013). In relation to remote sensing, 

parametric models are likely only suitable in images with well defined spectral 

classes and with a suitable amount of training data (Qian, et al., 2015). In the 

case of complex imagery where classes are a mix of spectral values, or where 

training data is insufficient, these methods are likely too simplistic to accurately 

classify an image.  

 

The NB classifier is a simple probabilistic classifier based on Bayesian 

statistics, which assumes the strong independence of variables by assuming 

that the presence or absence of a particular feature, is unrelated to the 

presence or absence of another (Trimble Germany GmbH, 2016). Therefore, 

only a small amount of training data is required for classification, because only 

the variances of the variables need to be determined, rather than the entire 

covariance matrix (Trimble Germany GmbH, 2016). NB can be a practical 

choice, as it can achieve similarly high accuracy to SVM without the need to set 

any tuning parameter, however is sensitive to training sample size (Qian, et al., 

2015).  
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Nonparametric algorithms do not assume the form of f, and instead use 

the data points to make an estimate of f that best fits the data values and 

produces a smooth fit. This enables an accurate fit for a wide range of possible 

f shapes and more accurately reflect complex relationships than parametric 

approaches, which is the major advantage of this approach. A disadvantage 

however is that since estimating f is not reduced to a small number of 

parameters, as with parametric approaches, a larger number of observations is 

usually required to obtain an accurate estimate of f (Qian, et al., 2015) (James, 

et al., 2013). The non-parametric algorithms used in this thesis, RF and SVM, 

are the foremost at producing high classification accuracy (Noi & Kappas, 2017). 

SVM is less sensitive to training sample size than RF (Noi & Kappas, 2017), 

however SVM is particularly sensitive to tuning parameter settings (Qian, et al., 

2015). 

 

RF is based on the Decision Trees algorithm, which builds an ensemble 

of decision trees and merges them together using the bagging method. In this 

way, RF provides an accurate representation of the data during classification 

because instead of examining a single node from a single tree, it examines a 

random subset of nodes from multiple trees to decide on the most appropriate 

way to split the node, and from here, builds a new tree based on these 

decisions. In this way, it incorporates a broad subset of training data into the 

classification, and provides a result representative of the input data.  

 

RF default parameters often produce accurate prediction results (Noi & 

Kappas, 2017) which makes them relatively fast and simple to implement. Two 

key parameters are the number of trees (nTree) and the number of features 

incorporated in each node (mtry). Although several studies have stated that the 

default parameters provide satisfactory results (Duro, et al., 2012) (Liaw & 

Wiener, 2002), Noi & Kappas, (2017), demonstrated that nTree 500 was a 
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threshold at which classification accuracy stopped improving. This setting was 

used in this thesis.  

 

Support vector machine (SVM) are widely considered one of the best 

‘out of the box’ classifiers (James, et al., 2013). A SVM works by constructing a 

hyperplane, or a set of hyperplanes, to create maximum separation between 

data classes (Figure 7).  

 

Figure 7: Linear SVM. The hyperplane is shown as a solid line, the margins are 

the distance from the solid line to either of the dashed lines, the support 

vectors are the points within the margins (source: (James, et al., 2013)) 

 

SVM is good for classifying high dimensional data sets, and it works well 

on small data sets. The disadvantages are that choosing the correct kernel and 

parameter settings can be time consuming and computationally intensive. SVM 

is the least sensitive algorithm to sample sizes because it uses only the support 

vectors, which are the data that violate the margins (Figure 7), instead of all 

training samples, to build the separating hyperplane (Qian, et al., 2015). The 

width of the margins are effectively determined by cost (C), as it determines 

how tolerant the margins are to violations. A smaller C value is less tolerant to 
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violations; therefore, the margins are narrower and have a smooth decision 

boundary, and vice versa with a larger C value. A problem with SVM is 

overfitting, which is increased with high C values (Qian, et al., 2015). The 

important aspect of the training samples is to ensure they cover the full 

spectrum of pixel values in an image, as the extreme class values form the 

support vectors that determine f. Therefore, adding more training samples may 

not significantly affect the classification accuracy (Qian, et al., 2015). Setting C 

is thus a trade-off between a smooth decision boundary and one that classifies 

all points correctly.  

 

To map non-linear decision boundaries (i.e. data points that cannot be 

divided linearly), several SVM kernel functions are available, including linear, 

polynomial, radial basis function (RBF) (Figure 8) and sigmoid kernels. The RBF 

kernel has been demonstrated to be superior in a variety of studies (Qian, et 

al., 2015), and was used in this thesis.  

 

Figure 8: An SVM with an RBF kernel on non-linear data does a good job 

separating the two classes. The hyperplane is shown as a solid line, and the 

margins by the dashed line (source: (James, et al., 2013)) 
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The main parameter settings for the RBF kernel is C and gamma. Gamma 

influences the shape of the separating hyperplane (f) (Qian, et al., 2015), by 

defining how far the influence of a single training example reaches. Low values 

have greater influence from far data points, whereas high values have greater 

influence from close data. Consequently, high gamma values ignore further 

away points, and can result in a wiggly decision boundary because the points 

nearby have a large input on the shape, and consequently this setting is 

susceptible to overfitting data. Low gamma values have the opposite effect, 

and account for more of the data, and result in a straighter line. Overall, the 

RBF kernel has very local behaviour, in the sense that only nearby training 

observations influence the hyperplane (James, et al., 2013).  

 

1.1.9 Accuracy assessment 

Accuracy of a classification is expressed using a confusion matrix (Table 

1). It indicates how well a classification has categorized a representative subset 

of pixels used in the training process of a classification, by comparing, on a 

category-by-category basis, the relationship between known reference data 

(ground truth) and corresponding results of an automated classification 

(Lillesand & Kiefer, 1999). The number of rows and columns are equal to the 

number of categories for the classification being assessed, therefore a 

confusion matrix is always square. Accuracy assessment is an essential 

component of remote sensing, which is re-enforced by a quote by (Lillesand & 

Kiefer, 1999) – ‘A classification is not complete until its accuracy is assessed’  

 

The training cover types are listed in columns, and the pixels classified 

by the classifier are listed horizontally (Table 1), enabling interpretation of the 

performance of the classification.  
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Table 1: Confusion matrix 

 

 

Running along the major diagonal of the error matrix, from upper left 

to lower right (shaded cells), are the training pixels that were correctly classified 

(Table 1). Either side of this major diagonal are the classification errors of 

omission (exclusion) and commission (inclusion), with omission elements 

displayed in columns and inclusion errors horizontally in rows.  

 

The producer and user accuracies are displayed around the periphery 

of the table (Table 1). The producer accuracy is derived from dividing the total 

number of correctly classified pixels by the total number of reference pixels, 

and provides an indication of how well a particular cover type was classified. 

The user accuracy is calculated by dividing the number of correctly classified 

pixels by the total number of pixels within that category. This provides an 

indication of the probability that a pixel classified in a particular category 

actually represents that category on the ground (Lillesand & Kiefer, 1999).  

 

The overall accuracy is a measure of the total number of correctly 

classified pixels, divided by the total number of reference pixels. Caution should 

be taken when interpreting overall accuracy, because it is an average all classes 

and can be skewed by particular classes, therefore it does not reveal the 

distribution between classes (Lillesand & Kiefer, 1999). Overall accuracy should 

be interpreted in conjunction with user and producer accuracies.  
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Kappa is an accuracy measure that reflects the difference between 

actual agreement and agreement expected by chance. This measure was 

excluded from this thesis as recent peer reviewed articles suggest that the basis 

for kappa accuracy is fundamentally flawed and should not be used (Foody, 

2011) (Lyons, et al., 2012).  

 

Accuracy assessment with validation samples should be undertaken 

using random sampling, to ensure sampling biases are not present, and the 

samples are representative of the data set under analysis (Lillesand & Kiefer, 

1999). Outlined below are techniques for creating random sample points:  

• Simple random sampling: sites are generated independently, tends to 

under sample small but potentially important areas;  

• Stratified random sampling: the study area is split into strata and 

random samples are generated in each stratum. Strata are allocated 

samples based on proportionate size of the strata, which ensures 

samples are geographically representative of the data set; and,  

• Equalised stratified random sampling: creates points that are randomly 

distributed within each strata, where each class has the same number 

of points. Does not weight strata size, therefore small strata can have 

a disproportionate weighting on the classification.  

 

1.1.10 Water column correction  

The effect of the water column inhibits quantifying seagrass cover, 

especially in optically shallow water where radiance can be modified by 

phytoplankton, suspended organic and inorganic matter and dissolved organic 

substances (Yang, et al., 2010). Water column correction removes the effect of 

the water column by normalizing an image around a relative bathymetry to 

remove the effect of depth related light attenuation, for applications such as 

seagrass habitat maps (Hossain, et al., 2015). 
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The most commonly cited approach is that of Lyzenga (1978), which 

uses a correlation between two imagery bands to generate a pseudo-colour 

band, which is used to normalise the image bands (Yang, et al., 2010) (Lyzenga, 

1978). This approach was used in this thesis. Other WCC techniques have been 

developed, for example Misbari & Hashim, (2016), demonstrated the use of the 

bottom reflectance index for quantifying seagrass total aboveground biomass. 

Future studies should focus on optimising WCC for the water body of interest, 

as this can yield significant classification improvements.  

 

1.1.11 Multi-temporal analysis 

Multi-temporal image analysis is a classification technique that merges 

band combinations from separate dates, to produce a time series of 

atmospheric and geometrically corrected images to detect changes, such as 

vegetation growth (Lillesand & Kiefer, 1999). The extent to which this technique 

improves classification accuracy is clearly a function of the growth of the crop 

or vegetation type, and the number and timing of the dates used in the 

classification (Lillesand & Kiefer, 1999). This technique is particularly useful in 

aquatic environments where detecting SAV can be challenging, and to 

distinguish growing vegetation from other dark features, such as mussel beds, 

stones or macroalgae, which can confuse interpretation (Krause-Jensen, et al., 

2004). Furthermore, low density meadows may be challenging to detect and 

sensitivity of mapping is higher for dense meadows (Krause-Jensen, et al., 

2004), therefore multi-temporal analysis can improve classification as density 

increases throughout the growing season.  

 

Various types of multi-temporal analysis can be used to combine 

multitemporal data for classification. One approach, and the approach trialled 

in this study, is to combine all spectral bands from all dates into a master 

dataset for classification. Alternatively, principle component analysis can be 

used to reduce the dimensionality of the combined dataset, by computing the 
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first three principle components of each image and merging them to create a 

final 6 band image for classification. This 6-band image can be stored, 

manipulated and classified with much greater efficiency than the original 12 

band image (Lillesand & Kiefer, 1999). A third strategy is the multitemporal 

profile approach, where modelling is based on the behaviour of each crop’s 

spectral response pattern over a period of time.  

 

Multi-temporal analysis has yielded high classification accuracies for 

seagrass mapping on a landscape scale in multiple studies (Roelfsema, et al., 

2014). Lyons, et al., (2013), used a trend and time series approach to describe 

the processes that drive seagrass growth and decline, with a time series of 23 

annual maps and 16 monthly maps to demonstrate the inter and intra annual 

dynamics of seagrass populations. Both studies propose the integration of 

environmental data, such as water quality, with mapping outputs, to enable 

assessment of the impacts of management actions on seagrass meadows 

(Roelfsema, et al., 2014) (Lyons, et al., 2013). This thesis follows these 

recommendations by applying a model of eelgrass stress factors to a 

classification output, and proposes additional benefits of using this technique, 

namely to guide field researchers. This is important because time-series 

mapping should be used as a compliment, rather than a replacement, for on-

ground monitoring efforts (Roelfsema, et al., 2014). This is reinforced by 

Hossain, et al., (2015), who states ‘no single approach is suitable for and 

capable of measuring all seagrass parameters and assessing change. 

Integration of field data, imagery, and mapping approaches is therefore 

required’.  

 

1.1.12 Outlook 

There are several emerging technologies within remote sensing in 

aquatic environments. Significant advances in sensors and software have 

recently occurred, and continue to occur with the emergence of drone imagery 
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(Ørberg, et al., 2018). This thesis proposes more significant advancements lie 

within the automation of field data collection and processing, which have been 

demonstrated to add significant cost to monitoring programmes (Roelfsema, 

et al., 2014).  

 

Field data collection in aquatic environments is usually undertaken by 

snorkelers, with manual photo analysis used to estimate seagrass composition 

and abundance (Roelfsema, et al., 2014). Sometimes observations of percent 

cover are undertaken in-situ, however these methods have been demonstrated 

to be sensitive to observer bias (Krause-Jensen, et al., 2004). Krause-Jensen, et 

al., (2004), proposes this bias be addressed with adequate training, however 

this thesis proposes this method is subjective, expensive and time consuming; 

and computer recognition algorithms of video transects, which are currently 

being developed, could be a better solution. This sentiment is reflected by 

Roelfsema, et al., (2014), who states ‘automation of this process (collection of 

field data by snorkelers and manual photo analysis) would reduce processing 

effort’. 

 

1.2 Problem statement  

Eelgrass is an ecologically significant marine plant and highly sensitive 

to many important water quality parameters, such as nitrogen and phosphorus 

levels, and turbidity. As such, the depth limit at which it grows is used to assess 

waterway health under EU regulations. Collection of eelgrass field data for this 

purpose is undertaken using diver transects in locations established in past 

years - for Roskilde Fjord these locations were established in 1979. The same 

locations are dived each year, and eelgrass percentage coverage and depth is 

recorded to determine any trends. This methodology is flawed because 

eelgrass could be growing in another location in deeper water which is not 

captured by the sampling. These data are used to report to the EU, however 

can also be used for training and validation samples with remote sensing 
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applications. As such, the methodology by which these data are collected could 

be improved to more accurately represent current eelgrass standing crop. This 

study proposes such an approach, by identifying areas of SAV with classification 

using various MLAs with OBIA and Sentinel-2 imagery, and overlaying a model 

with eelgrass stress parameters to provide a likelihood about whether classified 

SAV is eelgrass. Factors effecting classification accuracy are also assessed. 

 

Aim: To evaluate the feasibility of remote sensing with Sentinel-2 imagery to 

determine eelgrass coverage and provide guidance for eelgrass field data 

collection. 

 

1.3 Research questions  

1. What is the influence of varying the scale parameter on 

classification accuracy? 

2. Which machine learning algorithm performs best for 

classification of SAV?  

3. Can Water Column Correction and Multi-Temporal Analysis to 

improve classification results? 

4. How can classified SAV be used to guide researchers to find 

Eelgrass?  
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2 Study Area and Data  

2.1 Study Area 

This thesis focussed on Roskilde Fjord, Zealand, Denmark (Figure 9). The 

area is a 40km long and narrow fjord, consisting of approximately 30 small 

islands and islets. It has a surface area of 123km2, and a mean depth of 3m 

(Pedersen, et al., 2014) and tidal amplitude of 0.2m (Kuusemäe, et al., 2016).   

 

 

Figure 9: Location of Roskilde Fjord 
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Eelgrass growth is during spring and summer, where solar radiation is 

higher. The timeframe for change is coverage is long due to slow epiphytic 

growth. Eelgrass coverage is approximately 8%, which grows mainly along the 

shoreline (Kuusemäe, et al., 2016), and can grow up to 1m high. Strong currents 

are often present at the southern region of the mid-fjord bottle neck (Hansen, 

et al., 2015), which could result in eelgrass and other SAV lying flat and covering 

possible sand areas. The presence of currents can also influence eelgrass 

detection through blade orientation and minimising algae growth.  

 

Roskilde Fjord contains several species of aquatic plants (Table 2) 

(Hansen, et al., 2015) and the substrate is sand and mud. This is useful to know 

due to the overlapping spectral signatures of various plants, and the substrate, 

which can confuse classification.  
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Table 2: Aquatic plants in Roskilde Fjord 

Plant Description Image 

Eelgrass 
(Zostera 
marina) 

Most ecologically 
significant plant in 
fjord.  
Scale:  

• Patch: 1-10cm2 

• Bed: 10-100m2 

• Meadow: >100m2 
 

Gutweed Green algae that 
grows in shallow 
water 

 

Sea felt and 
brown algae 

Form continuous 
thick carpets on 
fjord bed 

 

Sea lettuce Large green alga, 
forms lettuce like 
sheets, thrives in 
still, shallow water 

 

Spiral 
tasselweed 
(Ruppia 
cirrhosa) 

Long, thin stems that 
grow in very shallow 
water 

 

 

Several factors influence water turbidity (Table 3) (Hansen, et al., 2015), 

which are useful to understand to determine the optimal time of year for 

remote sensing.  
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Table 3: Factors that influence water turbidity in Roskilde Fjord 

Parameter (source) Influence When 

Nutrients: nitrate 

(agriculture) and 

phosphate (sewage, 

industry, agriculture) 

Eutrophication that can 

result in algal blooms 

After large rain 

events  

Oxygen (increase from 

plants, atmosphere; 

decrease from ice 

coverage) 

Adequate oxygen required 

for plant growth and 

decomposition 

Anoxic periods 

are rare in 

Roskilde Fjord 

Heat (warm weather) Promotes algal growth Warmer 

months: May – 

Aug 

Salinity (exchange with 

ocean, evaporation) 

Determines which plants and 

species thrive. Approx. 1.8% 

in north, 0.8% in south1.  

During windy 

weather 

 

2.2 Imagery 

2.2.1 Sentinel-2  

Sentinel-2 image tiles were identified using Remotepixel Viewer 

(https://viewer.remotepixel.ca), which enables users to view map tiles from 

several sensors2, with options to change band combinations and histogram cut. 

Imagery from spring to late summer 2016 was viewed to assess cloud coverage 

and water visibility. This period was selected to coincide with optimal eelgrass 

                                                      

1 These salinity ranges are considered low concentrations. Eelgrass populations from low 

salinity environments have been demonstrated to have remarkable plasticity to thrive in low - 

high salinity conditions (Salo & Bostrom, 2014), which indicates salinity is not a limiting factor 

in the fjord.  

2 Landsat-8, Sentinel-2 and CBERS-4 

 

https://viewer.remotepixel.ca/
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growth periods (Krause-Jensen, et al., 2004), minimal cloud coverage, and good 

water visibility3. Ensuring these parameters were optimal gave the best chance 

of observing eelgrass.  

 

Selected tiles were then downloaded using the python Sentinelhub.aws 

command, that uses a Sentinel hub API to accesses imagery from the Amazon 

Web Services (AWS) library. This methodology was preferred to download 

directly from the Remotepixel website, because it enabled a fast and seamless 

method to download a complete tile to a specified location (refer Appendix 1 

for screen captures of commands).  

 

Tiles for 12May16, 24Jul16, and 12Sep16 were downloaded, pre-

processed and clipped to the study area (Figure 10). Three images were 

selected to examine which was best for classification, and for multi-temporal 

analysis later in the study.  

                                                      

3 Water visibility in Roskilde Fjord is optimal in May, and several months preceding.  
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Figure 10: Sentinel-2 imagery clipped to AOI for (L to R) 12May16, 24Jul16, 

and 12Sept16 

 

It was determined that the 12May16 image would be select to 

undertake the primary analysis for the study, primarily due to better water 

clarity. This selection process was a trade-off because greater eelgrass coverage 

is visible later in the year, however superior water quality was deemed more 

important to maximise classification accuracy results.  

 

The imagery was inspected as RGB composites to observe water clarity 

and whether SAV was visible. SAV and suspected eelgrass was visible along the 

banks of the fjord in all 3 sets of images, with cover increasing later into the 

year as expected (refer Figure 45). Moving inwards from the banks, the water 

rapidly became darker, which could have been due to turbidity or depth. As the 

mean fjord depth is 3m and secchi depth is about 5m (Hansen, et al., 2015), it 

was expected these dark areas would be visible in the imagery. Therefore, the 

images were stretched in the darker water areas, which revealed previously 

unseen features (Figure 11) 
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Figure 11: 12May16 RGB image with percentage clip stretch applied. Clumps 

of SAV and sand are visible 

 

Large meadows of suspected SAV were visible in the deeper sections of 

the fjord. The depth raster (incorporated later into the study), indicated these 
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meadows were in water less that 4m deep and were outlined by bands of sand, 

which increased the likelihood the patches were meadows of SAV.  

 

2.2.2 Orthophoto  

A high resolution orthophoto from spring 2016 was downloaded from 

Kortforsyning (the Danish Geodata Agency), primarily to create training and 

validation samples, and to assist with interpretation of features in the Sentinel-

2 imagery (Figure 12). The higher resolution (2m) also enabled better feature 

detection, to distinguish and verify image objects.  

 

  

Figure 12: High resolution orthophoto of the southern fjord (L) and zoomed in 

on visible SAV (R) 

 

2.3 Training data 

Initially, it was intended to use diver transect data of SAV observations, 

including eelgrass, from 2010 to 2016 which was collected for the Danish 

National Monitoring Program, and provided by Aarhus University. However, 

these data proved inadequate for this classification for several reasons.  

 

Firstly, the data did not correlate with the Sentinel-2 and orthophoto 

imagery, with low observations recorded in areas that appeared have high 

cover of eelgrass, and vice versa. Secondly, the data was collected on a much 

finer spatial scale than the Sentinel-2 imagery. This resulted in a small pixel 
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coverage of the diver data compared with the total area of the fjord, which was 

insufficient to train the classifier and use as validation samples. Also, adjacent 

high and low observations were observed on a fine spatial scale (Figure 13), 

which was undesirable as it could confuse the classification, particularly given 

the scale disparity.  

 

 

Figure 13: Diver transect data from Danish National Monitoring Program 

 

Therefore, training and validation sample data were instead created 

with manual observations of Sentinel-2 and high resolution orthophoto 

imagery (Figure 14).  

 

Figure 14: Creating training data from orthophoto imagery 
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These observations were conducted on pixel by pixel basis over the 

water area, and labelled either ‘Sand’ or ‘SAV’. Using this method to create 

manual training data is not ideal, as it introduces bias through operator 

judgement, on the other hand however, it provided an opportunity to 

demonstrate the feasiblilty of this methodology, as field data will not always be 

available.  

 

A presence/absence classification was deemed more appropriate than 

percent SAV coverage due to the lack of an accurate measurement method, 

and the image resolution was assessed as too low to produce a reasonable 

accuracy. Data were collected as single pixels, however since data points have 

no geometry, a fishnet raster of 10m x 10m was created to coincide with the 

pixels from the imagery. An observation was made on the majority coverage of 

the pixel containing the data point, to ensure the data point represented the 

pixel.  

 

Training data was then created by manually selecting 125 samples each 

of SAV and sand, which is the minimum number of training samples per class 

demonstrated to produce optimal classification accuracy for all the MLAs used 

in this study (Qian, et al., 2015).  

 

A spectrally diverse array of samples was collected to avoid overfitting 

the model. These observations were made on a pixel by pixel basis, however 

this was not essential as OBIA is usually tolerable to training data spanning 

multiple pixels, so long as it is within an image object. The training samples 

were updated during the classification to improve the classification if it was 

observed performing poorly.  

 

Validation samples totalling 60 per class were created using Equalized 

stratified random points, which randomly distributed an equal number of 
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points within the SAV and sand feature classes, and ensured each class was 

represented by an unbiased, spatially and spectrally diverse selection of 

training pixels. Values were then assigned to the points based on the majority 

content of the pixel containing the point (Figure 15).  

 

Figure 15: Creating validation samples with Sentinel-2 (L) and Orthophoto (R) 

 

Sixty validation samples constituted approximately 50% of the number 

of training samples for each class (125), which is sufficient for accuracy 

assessment (Qian, et al., 2015).  

2.4 Software 

The classification was undertaken with Trimble eCognition® Developer, 

which provides a comprehensive array of image analysis algorithms to 

undertake OBIA for a variety of remote sensing applications. Users can develop 

algorithms or rule sets for the automatic analysis and extraction of remote 

sensing data, primarily by tinkering with SP settings to influence image objects, 

and during the classification process, which are selected based on either image-

driven or knowledge-driven process.  

 

ArcGIS was used for functions such as image and data visualisation, 

creating data samples, and map algebra.  
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3 Methods 

3.1 Preprocessing 

The image preprocessing workflow is outlined below (Figure 16).  

 

 

Figure 16: Preprocessing workflow 

 

The first step of preprocessing was to resample the Sentinel-2 image 

bands to 10m, due to the differing spatial resolutions (refer Figure 2). This was 

undertaken using gdalwarp within a batchfile (.bat) (Figure 48). The .bat file is 

saved within the folder containing the image bands, and the function is called 

using a python command. Via this command, each band was resampled to 10m 

spatial resolution using Nearest Neighbour.  

 

A virtual raster (.vrt) was then created, which is essentially an XML file 

that enables a lightweight way to manage large datasets with multiple files. This 

was undertaken using the gdalbuildvrt command. The ‘-separate’ command 

was included to place each file into a separate band, to ensure the resulting 

image had multiple bands and could be accessed accordingly (Figure 49). The 

.vrt files were then mosaiced with gdal_merge.py to combine the imagery into 

a single .vrt (Figure 50).   

 

The .vrt was then clipped with a shapefile created for the AOI of Roskilde 

Fjord, with the gdalwarp command (Figure 51). The ‘crop_to_cutline’ 
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command was included, which crops the extent of the dataset to the extent of 

the cutline, which ensures no areas of ‘no data’ remain.  

 

The AOI shapefile was created in QGIS using the plugin ‘rectangles ovals 

digitizing’ to create a perfect rectangular bounding box. A perfect rectangle 

boundary is preferable because the gdalwarp -cutline function creates a 

bounding box using the upper and lower limits of the clip object, and any 

overlap with the shapefile results in an area of ‘No Data’, which is problematic 

for further analysis. Using a perfectly symmetrical object ensures no overlap, 

and consequently no ‘No Data’ areas.  

 

Screen captures of these commands are provided at Appendix 1.  
 

3.2 Depth raster 

The use of a depth enabled areas of dense SAV or turbid water to be 

distinguished from deep water. This was useful to visualise the imagery to get 

an indication of the size and shape of SAV in the dark water areas. It also 

enabled depth thresholds to be used during the classification based on 

knowledge of the depth of eelgrass growth and anticipated light penetration in 

the fjord.  

 

The depth raster was created using the Danish Maritime Safety 

Administration 50m resolution data from DHI. Land areas had values of infinity, 

which made it unsuitable to use in eCognition because an integer is required 

for it to be valid data during classification.  

 

To remove the infinity values, the raster calculator in ArcGIS was used 

to convert these values to 1, which was land for the classification, using the 

following expression:  

 

("DK_merge.tif" < -100) * (1)+("DK_merge.tif" >= -100)*("DK_merge.tif) 
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With ‘DK_merge.tif’ the identity of the depth raster. Following this 

process, it was then resampled to 10m, to provide a smoother appearance, and 

clipped to the study area (Figure 17).  

 

Figure 17: Depth raster clipped to study area 

 

3.3 Water Column Correction 

Water column correction (WCC) was considered for this classification to 

remove the effect of the water column, which varies spatially within the fjord, 

and temporally during the year. Removing variability from the water column 

was desirable to achieve consistent classification results and facilitate multi 

temporal analysis.  

 

The methodology used was based on the method developed by Lyzenga 

(Lyzenga, 1978). The first step was to explore the band combinations, to 

determine which resulted in the smoothest depth gradient. Each band 
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combination was calculated and visualized in ArcGIS. The raster calculator was 

used to perform calculations on the bands, and they were then visualized to 

determine the most suitable combination for calculating the relative 

bathymetry. The equation used was (Lyzenga, 1978):  

 

𝐷 =
ln⁡(𝑏2)

ln(𝑏1)
 

 

Where b2 is the band with the longer wavelength, and b1 is the 

preceding band with the shorter wavelength. The Ln of each band is used 

because light attenuates in a water column as a logarithmic function of depth. 

By applying this ratio between two bands, the method becomes closer to 

becoming bottom type independent. Using this methodology, it was 

determined that band combination 3/2 (green/blue) was the most suitable to 

normalise the image bands.  

 

The next step was to create several data points to capture a single 

bottom type across as wide a range of depths as possible (Figure 18). 

 

Figure 18: Placing points to extract depths for WCC 
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Values for the relative bathymetry, as well as each band within the 

raster, were then extracted to the points using the Extract multi-values to 

points tool in ArcGIS. This data was then exported to Excel, and plotted in a 

scatterplot with the relative bathymetry on the X axis, and the various band 

values on the Y axis. An ordinary least squares regression was performed for 

each band combination, with the A value from the resulting equation A * X + B 

noted for use later in the process. 

 

Next a ‘delta relative depth’ value was calculated, by using the highest 

extracted relative depth and subtracting the relative bathymetry pixel value 

from it. This value served as a normalisation depth for the remainder of the 

calculation.  

 

The final step was to normalize each of the bands using the A value and 

‘delta relative depth’ with the following formula:  

 

′𝑑𝑒𝑙𝑡𝑎⁡𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒⁡𝑑𝑒𝑝𝑡ℎ′ ∗ 𝐴 + 𝑝𝑖𝑥𝑒𝑙⁡𝑣𝑎𝑙𝑢𝑒 

 

This function was performed in ArcGIS using the raster calculator, with 

each band used as ‘pixel value’. The resulting normalised bands were then 

mosaiced using the composite bands tool.  

 

3.4 Object Based Image Analysis  

OBIA was undertaken using eCognition software, and followed the 

workflow depicted at Figure 19. The methodology thus far was preparing the 

imagery for use in this workflow.  
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Figure 19:The OBIA workflow  

This process consists of a series of segmentation and classification 

processes, that result in classified image objects. The eCognition process tree 

developed for this workflow is presented at Figure 20.  

 

 

Figure 20: eCognition process tree 
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The first step was to separately load the 12May16 image bands into 

eCognition, which enabled individual bands to be accessed during the analysis. 

The depth raster was also loaded as a layer (Figure 21). The training data was 

added as a thematic layer to train the various MLAs.  

 

Figure 21: Image bands and depth raster loaded into eCognition 

 

3.4.1 Separate land/water/deep  

The first stage of the process was to separate land, water and deep 

areas to focus the classification accordingly. This was undertaken using the 

Process Tree at Figure 22.  

 

Figure 22: Process tree for separating land/water/deep 

 

The delete level algorithm was inserted to reset the process tree after 

trialling various settings and processes (step 1 Figure 22).  
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The multi threshold segmentation algorithm enabled water and land to 

be separated based on a threshold NIR value (step 2 Figure 22). This value was 

determined by displaying only band 8 (NIR), and hovering the mouse over land 

and water areas to determine a NIR threshold value (Figure 23). NDWI, a 

popular band ratio algorithm for detecting shallow water bodies, was not used 

in this study to separate land and water because the fjord is generally too deep 

for it to work effectively, and NIR was sufficient for this purpose.  

 

Figure 23: Determining the NIR threshold to separate land and water 

 

Large NIR differences were observed between land and water, with the 

majority of values <1000 over water, and several thousand over land. The value 

of 1200 was selected (step 2, Figure 22), as this value generally separated land 

and the main water body well, with a few exceptions.  

 

Firstly, areas with shadows from clouds or trees have low NIR values, so 

these areas were often classified as water, and resulted in small patches of 

incorrectly classified water (Figure 24). Small patches of water were also 

produced by dams and lakes, which were not wanted in the classification.  
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Figure 24: Misclassified water – clouds (L) and washed up reeds (R) 

 

These small water bodies were removed by changing their classification 

to land by specifying a minimum threshold size with the assign classification 

algorithm (step 3, Figure 22). As Roskilde Fjord was the only water body of 

interest, and significantly larger than small dams, lakes and shadows in the 

scene; this threshold value was not conservative.  

 

Secondly, Vegetation along the fjord banks, such as washed up reeds or 

algae, have a high NIR value and therefore are classified as land (Figure 24). 

These instances were fairly rare and inconsequential for the classification, and 

were therefore ignored. The map with land and water separated is shown at 

Figure 25.  
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Figure 25: Map with land and water separated 

 

Deep and shallow areas were separated to account for dark objects in 

the water which were not patches of SAV, and account for areas too deep for 

eelgrass to grow. This was done with the depth raster (Figure 17), which was 

loaded into the assign class algorithm and enabled ‘Deep’ and ‘Water’ areas to 

be thresholded (step 5, Figure 22).  

 

Eelgrass depth limit in Roskilde Fjord is reported as 2-3m and the 

densest beds are in waters 1-2m deep (Hansen, et al., 2015), however as light 

is the main limiting factor to eelgrass growth (Kuusemäe, et al., 2016), and 

secchi depth in 2016 was 5.5m (Hansen, et al., 2015), it was anticipated eelgrass 

may be detected at 4m.  

 

Depth was selected based on examining the image with stretch applied 

(Figure 11) to determine at what depth SAV and bathymetric features were 

visible. Depths were reduced at 0.5m intervals to determine the depth at which 
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features were no longer visible. Using this methodology, 4m depth was 

selected (Figure 26).  

 

Figure 26: Depth raster applied with 4m threshold 

 

Small patches of deep water, and small patches of water within the 

deep feature class were removed using merge and assign class algorithms for 

each (steps 6 – 9, Figure 22).  

 

3.4.2 Segmentation 

Segmentation was undertaken on the water feature class to create 

image objects that distinguished SAV from sand. As illustrated at Figure 19, 

input sources for the segmentation were spectral information, the depth 

raster, and expert knowledge about eelgrass growth patterns, which were 

input into the segmentation using the multispectral segmentation algorithm 

(Figure 27) 
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Figure 27: Multispectral segmentation algorithm was used to segment the 

water feature class 

 

Spectral information was incorporated into the multispectral 

segmentation algorithm by assigning a weight to each to each band (Figure 29). 

As clusters of SAV were the objects of interest, band 3 (green) was assigned a 

weight of 2, due to SAV having a greater absorbance at the green wavelength 

(Hossain, et al., 2015), which was also observed in the imagery (Figure 28).  

  

Figure 28: Band 3 (green) showing SAV in shallow and deep areas 

Other bands were given a weighting of 1 (Figure 29).  
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Figure 29: Multiresolution segmentation parameter settings 

 

The scale parameter was adjusted to create image objects based on 

larger or smaller amounts of pixel homogeneity, which was examined in detail.  

 

Knowledge and observations of eelgrass growth patterns were input 

into the segmentation with the shape and compactness settings within the 

multiresolution segmentation algorithm (Figure 27). The weighting of the shape 

parameter determines the influence of shape compared with colour. Shape 

homogeneity is based on the deviation of a compact (or smooth) shape, and 

colour homogeneity is based on the standard deviation of the spectral colours 

(Trimble Germany GmbH, 2016). Compactness weighting determines the 

influence of compactness compared with smoothness. Compactness is a 

measure of how compressed an image object is, and smoothness is a measure 

of the evenness of the object boundary.  

 

Eelgrass is characterised by bands of growth which have a low 

compactness, as opposed to other SAV in the fjord such as sea lettuce or 

gutweed which are more compact (Table 2), which is also observed in the 

imagery (Figure 30).  
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Figure 30: SAV growing along the banks of the fjord. Suspected eelgrass due to 

growth patterns 

 

Determining size, shape and spectral parameters can be done based on 

knowledge, however the process is essentially trial and error to find the settings 

that segment the image appropriately. The rule of thumb is to ensure that the 

feature of interest does not contain other features in image objects. The 

combination used for this thesis was shape 0.5 and compactness 0.5, which 

gave even weight to all settings to attempt to capture the features along the 

banks and deep areas evenly.  

 

The segmentation results are presented at Figure 31. It can be observed 

that image objects cover areas of SAV, and have captured features in shallow 

and deep areas reasonably well.  
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Figure 31: Segmentation of shallow (L) and deep (R) areas 

 

3.4.3 Classification  

Classification was the second stage of the OBIA workflow (Figure 19), 

where image objects are classified based on their attributes, such as spectral 

characteristics, shape, colour and context (Trimble Germany GmbH, 2016). The 

MLAs used were Bayes (parametric), RF and SVM (both nonparametric). It was 

anticipated SVM would produce the highest accuracy based on findings from 

previous studies (e.g. (Noi & Kappas, 2017)). The steps to apply these 

algorithms in the eCognition OBIA workflow is presented at Figure 32.  

 

Figure 32: Process Tree to undertake classification with MLAs 

 

Training data was loaded using the assign class by thematic layer 

algorithm, and applied to the water feature class, as illustrated at Step 1. This 

classified the ‘Water’ feature class with the sample value ‘SAV’ or ‘Sand’ (Figure 

33).  
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Figure 33: Water feature class classified with ‘SAV’ and ‘Sand’ samples visible 

as green and yellow objects 

 

Step 2 was to train the various MLAs with the newly created ‘SAV’ and 

‘Sand’ feature classes. The example at Figure 32 used the RF classifier, and the 

features B4 (red), B3 (green), B2 (blue), B5 (red-edge 1), and Depth raster as 

the input values. During this step, classifier tuning parameter are set (Figure 

34).  

 

Figure 34: Classifier settings are input during MLA training 

 

Tuning parameter setting is significant to optimise classification 

accuracy, and can have a more significant impact on overall accuracy than the 

number of training samples (Qian, et al., 2015). Tuning parameter settings must 
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be optimised based on the training parameter sample size (Qian, et al., 2015) 

(Noi & Kappas, 2017).  

 

The key parameter settings for the SVM RGB Kernel are C and gamma. 

Qian, et al., (2015), demonstrated that the optimal settings varied with sample 

size, however for training sample sizes of 125 per class (which matched the 

training sample size for this study), the optimal values of C and gamma were 

10,000 and 0.001, respectively. These results were backed up by Noi & Kappas, 

(2017), who concluded ‘in general, a high value of C and a low value of gamma 

produced the lowest error’. Various combinations of these values were tested 

for this thesis.  

 

For DT parameter settings, the key parameter settings are depth and 

nTree (Noi & Kappas, 2017). Depth and nTree were set at 20 and 500 

respectively, which were demonstrated to produce optimal results (Noi & 

Kappas, 2017).  

 

Step 3 (Figure 32) applied the classification to the water feature class 

(Figure 35).  

 

Figure 35: RF Classification applied 
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3.5 Accuracy Assessment  

An accuracy assessment was undertaken in ArcGIS with the Compute 

Confusion Matrix tool, using the validation samples and classification results as 

input. Previous studies have demonstrated the validity of using of manually 

created sample data undertake accuracy assessment (e.g. (Roelfsema, et al., 

2009)).  

 

3.6 Eelgrass stress model 

An eelgrass stress model was applied to the SAV feature class to indicate 

the likelihood of the classified SAV being eelgrass. This model was provided by 

(Kuusemäe, et al., 2016), following their study into modelling stressors on 

eelgrass recovery. The inputs to the model were:  

• Concentrations of nutrients N and P,  

• Turbidity resulting from macroalgae,  

• Mechanical damage from stones attached to drifting macroalgae, and,  

• Turnover of sediment by lugworms.  

 

Values were provided in the model as g C m2 (grams of Carbon per metre 

squared), which were converted to percentage coverage using a conversion 

factor of 1% coverage equals to 2 g C m2 (Carstensen, et al., 2015). The resulting 

percentage values ranged from 0 to 47 %, with a large proportion of 0 values. 

These values were classified as Low (>10), Medium (10 to >=30) and High (>30), 

to provide an optimal representation, as demonstrated at Figure 36, and 

visualised at Figure 37.  
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Figure 36: Percent values classified as Low, Medium, and High 

 

 

Figure 37: Eelgrass stress model for north fjord, with biomass interpreted into 

percent coverage 
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The output of this model is eelgrass biomass, however this has been 

interpreted as eelgrass probability, as areas of higher biomass are more likely 

to contain eelgrass than lower biomass areas.  

 

The above model was loaded into eCognition as a thematic layer 

labelled ‘Coverage’, and overlaid onto the SAV classification using the assign 

class algorithm (Figure 38).  

 

 

Figure 38: Overlaying the eelgrass stress model to the SAV classification 

 

The result is presented at Figure 39. Areas that were classified SAV have 

been reclassified as a high, medium or low probability of being eelgrass based 

on the eelgrass stress parameter model.  

 

Figure 39: Eelgrass stress model overlaid on SAV feature class. 
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4 Results and Discussion 

The aim of this project was to evaluate the feasibility of remote sensing 

with Sentinel-2 imagery to determine eelgrass coverage and provide guidance 

for eelgrass field data collection. To achieve this aim, four research questions 

were proposed:  

 

1. What is the influence of varying the scale parameter on classification 

accuracy? 

2. Which machine learning algorithm performs best for classification of 

SAV?  

3. How can one improve the accuracy of eelgrass detection for future 

studies?  

4. How can classified SAV be used to guide researchers to find Eelgrass? 

 

Presented below are the results and discussion in the context of the 

research questions, and the strengths and weakness of the project. 

 

4.1 What is the influence of varying the scale parameter on classification 

accuracy? 

The scale parameter (SP) is one of several settings, including shape and 

compactness, within the multiresolution segmentation algorithm in eCognition; 

which have been demonstrated in several studies to impact OA (Smith, 2010) 

(Drǎguţ, et al., 2010). The SP effectively determines the size of image objects 

by setting a threshold value for the degree of spectral heterogeneity permitted 

within each image object. Larger SP values produce larger image objects, and 

vice versa for small values (Trimble Germany GmbH, 2016). The size and shape 

of image objects underpin classification accuracy, because training data and 

classification algorithms are applied to these objects. Varying the SP and 

observing the influence on classification, was selected as a research question 

for this study to demonstrate the effect on OA with classifying SAV with 
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moderate resolution imagery, and provide recommendations for the optimal 

SP setting.  

 

RF was selected to test the various SP settings from amongst the 3 

MLA’s used in this study. RF was demonstrated by (Pal, 2005) to perform 

equally well to SVM in terms of OA, and required fewer and easier to define 

parameters to obtain similar classification accuracy results. RF was selected 

over Bayes due to the anticipated superior performance of a nonparametric 

algorithm versus parametric.   

 

Varying the SP settings influenced OA, as demonstrated at Table 4. 

Image objects generally grew larger with increasing the scale parameter, as 

spectral heterogeneity increased.   
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Table 4: Overall accuracy for the classifications undertaken with RF at various 

SP settings. Note: shape and compactness were consistent at 0.5 each 

SP 1 10 20 

OA 

(%) 
68.1% 72.2% 66.4% 

 

   

    

SP 30 40 50 

OA 

(%) 
66.4% 68.1% 67.2% 

 

   

 

The highest OA was achieved with a scale parameter of 10, with OA of 

72.2%. The second highest OA of 68.1% was obtained with both SP 1 and 40, 

followed by SP 50 which obtained OA of 67.2%. The lowest OA of 66.4% was 

obtained with both SP20 and 30.  

 

SP1 used a chessboard segmentation, and represents a pixel based 

classification. It demonstrates the improvement in OA possible with OBIA. SP10 

effectively captured areas of SAV and excluded sand. As SP increased, more 

sand is included in the image objects, as the minimum spectral homogeneity 
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increases. SP30 and 40 appear to have identical image objects, however SP40 

has a slightly higher OA, and second highest OA overall. This indicates the 

increased spectral homogeneity is beneficial in some areas of the fjord, and 

beneficial overall for the classification, compared with SP30.  

 

Image objects for SP10 in the deep and along the shore are illustrated 

at Figure 40. It can be observed that the smallest image objects, 1 to 2 pixels in 

size, are clustered around the shoreline, and increase in size moving away from 

the shore. Larger image objects, up to 2000m2, are in the deeper areas. These 

large segments could be a source of bias during classification, as the entire 

object is classified by a single training point, which is only a single pixel. This 

demonstrates how classification accuracy can be impacted through 

segmentation.  

 

 

Figure 40: Segmentation for SP10 showing variation in image object size 

between deep and shallow 
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It is not possible to attribute the SP directly with image object size, as 

demonstrated by the degree of image object size variation in shallow and deep 

areas (Figure 40), and the minimal influence on image object size by varying SP 

from 20 to 40(Table 4); therefore it is not possible to make conclusions about 

the influence of image object size on classification accuracy.  

 

Varying the SP modifies spectral heterogeneity within an image object, 

which influences classification accuracy based on how well this setting reflects 

the features in the scene. The challenge for the user is to determine this setting, 

in conjunction with shape and compactness.  

 

It is recommended segmentation be undertaken on multiple levels 

when features vary in size, shape and/or spectrally. This is particularly 

applicable in marine environments, where features vary in the shallow and 

deep areas, and water quality can influence the spectral signature, which can 

vary over small spatial scales. This is demonstrated with feature size and shape 

varying in the shallow and deep regions of the fjord, and the southern region 

being more spectrally homogenous than the north (Figure 11 and Figure 12). It 

is expected that dividing the north and south regions, and undertaking a 

separate segmentation for shallow and deep areas would improve classification 

accuracy.  

 

4.2 Which machine learning algorithm performs best for classification of 

SAV? 

The classification outputs for the highest overall accuracy (OA) achieved 

with each MLA are presented at Figure 41. The highest OA was achieved with 

SVM with 73.1%, followed by RF and Bayes with 72.3% each. The OA for SVM 

and RF was obtained using identical SPs, which used a scale parameter of 10 to 

create image objects, whereas the OA for Bayes was obtained with a scale 
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parameter of 20. All other SP settings were identical (refer to Section 3.4.2 for 

the specific SP settings). 

 

Figure 41: Comparing the overall classification for the 3 MLA used in the study 

- SVM, RF and Bayes 

 

SVM and Bayes classified a similar overall SAV coverage of 34.8% and 

33.6% respectively, whereas RF classified SAV lower at 28.9% (Figure 41). It can 

be observed that RF classified the most sand (22.7%) and least SAV, due to 

classifying sand in the southern and mid-northern regions of the fjord. All MLAs 

produced visually similar results for total SAV cover in the far northern region 

of the fjord.  
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The official percentage eelgrass coverage in Roskilde Fjord in 2016 was 

9.4% (Kuusemäe, et al., 2016), which indicates the results obtained in this study 

captured additional SAV growing in Roskilde Fjord, which supports the 

hypothesis that that it would not be possible to distinguish eelgrass from other 

SAV.  

 

The performance of each MLA is discussed below. Manual creation of 

verification and training data was an error source due to operator 

inconsistencies in selecting Sand and SAV samples. For analysing the 

performance of each MLA however, it is assumed the training and verification 

data is accurate.  

 

SVM was examined in detail due to the expectation of higher OA, based 

on results from other studies (e.g. (Qian, et al., 2015)). It is also the most 

sensitive to tuning parameter settings ( (Noi & Kappas, 2017) (Qian, et al., 

2015)), therefore is most suitable to examine the effects of varying parameter 

settings.  

 

The highest overall classification accuracy obtained with SVM used 

parameter settings of C = 10,000 and gamma = 0.001, which is presented in 

detail at Figure 42 and Table 5.  
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Figure 42: SVM classification map 

Table 5: SVM confusion matrix C=10,000, gamma=0.001 
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The P_Accuracy (producer accuracy) indicates OA was biased by under 

classification of sand and over classification of SAV, due to the low sand 

producer accuracy of 55.8%. This indicates that 55.8% of sand validation 

samples were mapped as sand, and since there were only 2 categories used in 

the classification, these areas were instead classified SAV. This is also evident 

at Figure 42, with large areas of the southern region of the fjord classified as 

SAV. An explanation for this result is that SVM is overfitting the training data, 

and the training data is not representative of the entire fjord. This is 

demonstrated in the southern region of the fjord, which is relatively more 

spectrally homogenous, and therefore more susceptible to overfitting if the 

training data is not accurate. Another reason could be due to SP settings, as 

demonstrated at Section 4.1.  

 

To examine the effect of adjusting tuning parameters, C and gamma 

were adjusted, which alters the margins and shape of the classification kernel 

respectively, to determine the effect on the classification. Results from the 

study by (Qian, et al., 2015) were used as a basis to set the parameters. This 

study demonstrated high OA for parameter settings C=1,000,000 and gamma= 

0.0001, with sample sizes higher and lower than 125. For very low sample sizes 

(25 per class) parameter settings C=10,000 and gamma=0.001 obtained the 

highest OA. Three different settings were tested and are presented below 

(Table 6 – Table 8). 

 

Increasing C and reducing gamma had a negative effect on the 

classification in every accuracy measure (Table 6). 
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Table 6: SVM parameter settings C=1,000,000 and gamma= 0.00001 

 

Increasing C widens the margins and increases the fit of the model to 

the data, whereas reducing gamma counteracts this by increasing the distance 

of the training data that influence the model (refer Figure 7 and Figure 8). The 

results presented at Table 6 indicate the model was neither under or overfit to 

the data, but simply a bad fit, because all accuracy results were low.   

 

The next alteration of the SVM parameters was to lower C to 1000 and 

increase gamma to 0.001, which positively influenced classification accuracy 

(Table 7).  

Table 7: SVM parameter settings C=1,000 and gamma= 0.001 

 

OA was 71.4%, which was marginally lower than highest OA (73.1%), 

however this result was characterised differently. This combination of C and 

gamma narrowed the support vectors, but increased their sensitivity to data 

points further away, which means the function uses less data to set the 

hyperplane, but more data to determine the shape.  

 

A more precise classification of SAV was observed with a U_Accuracy 

(user accuracy) of 86.7% (Table 7), however the producer accuracy for SAV was 

low at 58.2%, which indicates a poor correlation with the validation sample. For 

use in the field, the classification at Table 7 would probably be more useful than 
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the classification at Table 5, especially given the large size of Roskilde Fjord, 

because a researcher could be more certain to find SAV at the locations defined 

at Table 7.  

 

To test the influence of reducing the C parameter, C was reduced to 500 

and gamma was maintained at 0.001 (Table 8). Overall accuracy improved to 

72.2%, and small improvements were generally observed for the user and 

producer accuracies. 

Table 8: SVM parameter settings C=500 and gamma= 0.001 

 

Reducing C reduces the hyperplane margins, which appears to have 

benefited the classification in this instance. It is hypothesised this was 

beneficial because it increased the robustness of the model to account for the 

spectral heterogeneity within classes across the fjord, particularly in the 

northern and southern regions (refer Figure 11). A more robust model has the 

versatility to classify these regions more accurately, because it treats spectral 

variability as noise rather than training data.  

 

Comparing Table 7 and Table 8, sand was classified similarly for 

producer and user accuracy, whereas values improved for SAV. The producer 

accuracy for SAV increased slightly from 58.2% to 59.7%, which indicates these 

parameter settings increase the agreement with the training and validation 

sample, however this value is still low. SAV areas are classified as sand, more 

often than vice versa, which indicates sand is being mistaken for SAV 

approximately 40% of the time. This highlights one of the main challenges with 

this study, because many sand areas have a green tinge from the water body, 

and are therefore susceptible to being classified as SAV.   
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Increasing or decreasing C is a trade-off between bias and variance. 

Reducing C reduces the margins of the classifier and thereby the number of 

training samples that can influence the classification. This increases bias (the 

number of assumptions about the form of the target function) and reduces 

variance (the amount the target function will change given the introduction of 

new training data) (James, et al., 2013), with the opposite effect when C is 

increased. This highlights the challenge with small training data sets, as a higher 

proportion of the data set needs to be incorporated into the model to represent 

the ground truth, however this can make the model susceptible to overfitting.  

 

RF is resilient to overfitting data due to each decision tree using only a 

subset of the total data for training (Noi & Kappas, 2017). In these results it 

demonstrated the most versatility across the entire fjord, highlighted by the 

evenness of producer accuracy for sand and SAV, the relatively high accuracies 

obtained for all categories, and classification of sand and SAV in the relatively 

spectrally homogenous southern fjord region (Figure 41 and Table 9.  

Table 9: RF confusion matrix (nTrees= 500) 

 

RF produced an OA of 72.3%, which was slightly lower than SVM 

(73.1%). The relatively even results achieved for user and producer accuracies 

for both classes highlight the ability of RF to account for all variables equally 

during parameter selection.  

 

The OA classification result achieved with Bayes (72.3%) (Table 10) was 

comparable to SVM and RF, however closer inspection of the confusion matrix 

indicates the OA was driven by biased classification of SAV over sand, which 
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highlights why interpreting solely OA as an indication of the classification 

accuracy can be misleading.  

Table 10: Bayes confusion matrix 

 

Bayes achieved the highest OA with a SP of 20, which resulted in image 

objects with greater spectral heterogeneity than used for the other MLAs. 

These SP settings however biased the classification to over classify SAV, as 

demonstrated in the producer accuracy (Table 10), which indicates that 85.1% 

of the validation samples were classified correctly for SAV, however only 55.8% 

for sand.  

 

Overall, it is assessed that RF performs best for classification of SAV, due to the 

following reasons:  

• High overall accuracy,  

• Even producer and user accuracy for both feature classes, and,  

• Versitility to classify accurately across a large study area.  

 

However, selection of MLA for future studies should be undertaken with 

consideration to the size of the training sample.   

 

4.3 Can Water Column Correction and Multi-Temporal Analysis to improve 

classification results?  

Many techniques are available to improve classification accuracy 

throughout the OBIA workflow (refer Figure 19). Several of these techniques 

have already been demonstrated, such as the selection of appropriate MLA, 

segmentation algorithm selection and parameter settings, and training 
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samples. In addition to these, two other techniques were examined – Water 

Column Correction (WCC) and Multi-Temporal Analysis (MTA).  

 

Water column correction (WCC) removes the effect of the water column 

on the underlying bathymetry, thereby increasing homogeneity and improving 

suitability for segmentation and classification (Figure 43). It is necessary for 

MTA because it normalises the water body within each image.  

 

Figure 43: Roskilde Fjord with water column correction applied. Moving 

clockwise L to R: the entire fjord, the bottleneck, the northern fjord with image 

stretch applied.   
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It can be observed that the bathymetry is spectrally more homogenous, 

and SAV beds and meadows remain visible along the banks and deep areas of 

the fjord (Figure 43). This imagery was classified using the SVM classifier, with 

the same parameter and segmentation settings that achieved the highest OA 

(SP10) (refer Section 4.2) (Figure 44).  

 

Figure 44:WCC classification with SVM 

 

It can be observed that the improved spectral homogeneity from the 

WCC resulted in smaller image objects (Figure 44). More sand (29.4%) and less 

SAV (22.6%) was detected.  
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Table 11: Confusion matrix of SVM classifier with WCC 

 

OA was 49.6 % (Table 11), which is significantly lower than the accuracy 

obtained by the SVM classifier (73.3%) with the non-WCC image. From these 

results, it is evident the WCC did not improve classification accuracy.  

 

There are several possibilities for these observations. Firstly, the large 

size of the fjord could have resulted in a single delta relative depth being 

inadequate to normalise the entire scene using this value alone. The southern 

region exhibits greater water turbidity than the north, which could influence 

the overall WCC result because an area in the northern section of the fjord was 

used to extract the relative depth values. This methodology could be improved 

by extracting separate relative bathymetries at multiple areas of the fjord to 

better account for this variability. Secondly, the creation of points to extract 

the relative depths is a subjective process and therefore prone to operator 

error. The objective when creating depth extraction points is to maximise 

coverage of depth values across a single bottom type. This is based on the 

operator’s judgement to identify the bottom type based on appearance in the 

imagery. This could be improved by trial and error.  

 

Another technique that can yield classification improvements is MT 

analysis. This method was hypothesised to be particularly useful for this study 

to visualise seasonal changes, and distinguish eelgrass from features that could 

confuse the classification, such as black mussels and rocks. The imagery 

displayed visible changes across the timespan, with increased SAV coverage 

particularly evident along the banks (Figure 45), which is expected with 
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increased sunlight. These areas are in relatively shallow water, and the effect 

of the water column is not particularly visible, therefore it was anticipated this 

technique could yield improved results without undertaking WCC for each 

scene. The image was classified with SVM, using the same parameter settings 

that achieved highest OA (refer Section 4.2). The result of this classification is 

overlaid on the Sep2016 image (Figure 45).  

 

Figure 45: Multi-temporal analysis, with classification overlaid on Sep2016 

image  
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It can be observed at Figure 45 the classifier failed to capture SAV 

growth moving later into the season, and given OA reduced (66.4%) (Table 12), 

it seems to have added redundant and confusing information.  

Table 12: Confusion matrix for multi-temporal analysis with SVM classifier 

 

This result is hypothesised to have occurred for the following reasons. 

Firstly, the water column could have influenced the result, despite not 

displaying visual differences as described earlier, which highlights the subtleties 

within remote sensing. WCC was not undertaken on each image, due to the lack 

of improvement in the OA (as earlier described), however if WCC was optimised 

it is hypothesised it would be beneficial. Secondly, this result could be improved 

with more accurate training data, that includes each species of SAV and other 

aquatic features, and reflects eelgrass phenology throughout the year.  

 

Although WCC and MTA did not improve classification accuracy in this 

thesis, it is hypothesised both would be beneficial if the techniques are 

optimised.  

 

4.4 How can classified SAV be used to guide researchers to find Eelgrass?  

It is assessed SAV was classified with reasonable accuracy across the 

fjord, based on visual observations of classification performance (Figure 42). To 

provide an empirical approach to indicate the likelihood of whether the 

classified SAV is eelgrass, output from a 2011 DHI MIKE 3D model of eelgrass 

stress factors was overlaid on the classification output (Figure 46).  
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Figure 46: Classification with eelgrass modelled stressors overlayed 

The areas in Roskilde Fjord where eelgrass is likely to grow is illustrated 

at Figure 46. It can be observed there are generally more areas in the southern 

region where high probabilities of eelgrass are predicted. Nutrient influx has 

been demonstrated to be a major eelgrass stress factor (Kuusemäe, et al., 

2016), which is heavily influenced by surrounding land use. It is unknown what 

the surrounding land use is, however crops are visible in the satellite imagery 
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in many areas of the southern fjord. This could be an indication that fertilizer 

application is not adversely affecting water quality, and is being properly 

managed.  

  

Locations where diver data was collected as part of the Danish National 

Monitoring Program are indicated Figure 46. It can be observed that the dive 

sites generally correlate with areas of high probability of eelgrass growth. 

However, there are also areas where the dive sites do not correlate with these 

areas, such as in the northern region of the fjord (top right box, Figure 46). 

Eelgrass is more likely to be found along the shore than deeper areas, which 

supported by the literature (Hansen, et al., 2015).  

 

The DHI MIKE 3D model of eelgrass stress factors was generated in 

2011, so it is unlikely these predictions are accurate today, as water quality has 

improved due to the reduction of nutrient inflow from surrounding land use 

(Hansen, et al., 2015). Nevertheless, this technique demonstrates a robust 

method to illustrate the location of eelgrass crop from moderate resolution 

imagery.  

 

This technique could be improved by undertaking a regression to 

determine the correlation between dive sites and probability of areas likely to 

contain eelgrass. Field data collection to verify the accuracy of the classification 

and model would be an interesting next step.  
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5 Conclusion  

The aim of this thesis was to evaluate the feasibility of remote sensing 

with Sentinel-2 imagery to provide guidance for eelgrass field data collection, 

using Roskilde Fjord as a case study.  

 

It demonstrated that classifying eelgrass using spectral signature alone 

with moderate spatial resolution imagery it not feasible due to spectral mixing 

from varies SAV types, scattering and attenuation in the water body, spectral 

signature from the seabed, and atmospheric and water column effects; 

however, detecting SAV is feasible.  

 

Scale parameter was demonstrated as important for determining the 

spectral heterogeneity of image objects, which influences classification 

accuracy depending on how accurately the image objects represent the 

spectral signature of the features of interest. It demonstrated that image 

segmentation is important for determining OA.  

 

Although the highest classification accuracy was achieved with SVM, RF 

is recommended for future classification of SAV due to high OA and tendency 

to not overfit the training data. An interesting next step would be to collect 

field data to validate the MLA results.  

 

Several techniques to improve the classification accuracy of eelgrass 

detection were presented, however it is hypothesised accurate WCC could yield 

the highest improvements, particularly over large study areas where the water 

column turbidity is highly variable. It is anticipated MT analysis could also yield 

improved results, provided accurate atmospheric correction and WCC is 

undertaken, and thorough training data available.  

 



83 

A technique to guide field studies to eelgrass locations was 

demonstrated by overlaying a model simulating eelgrass stress parameters 

with classified SAV. Combining these techniques provided an empirical 

approach to locating eelgrass, rather than speculating about the identity of SAV 

which can vary significantly throughout a study area. This technique could be 

improved by overlaying a model of eelgrass stress parameters with up-to-date 

data. An interesting next step would be to validate the research by undertaking 

field samples on the high, medium and low probability areas to determine if 

they correlate with the predicted values.  

 

The results from this study are significant because they build on existing 

research into remote sensing of SAV, and demonstrate the benefits of fusing 

spectral characteristics with modelling results to provide an empirical result. A 

limitation of the study was a lack of accurate field data, however this also 

provided an opportunity to demonstrate a technique to classify SAV from 

manual observations. This is valuable because it is likely accurate field data will 

not usually be available, particularly in remote locations or very large study 

areas.  
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6 Future direction 

This study provides a basis to implement several current and emerging 

technologies to build on the results.  

 

1. Use imagery with higher spectral resolution 

One of the key challenges with this study was distinguishing features 

from the moderate spectral resolution of the imagery. Imagery with higher 

spectral resolution can distinguish features more accurately, such as 

hyperspectral imagery, which obtains spectral signatures on much narrower 

bandwidths than multi-spectral imagery. This is accomplished by hyperspectral 

sensors that acquire images in many, very narrow, contiguous spectral bands 

across a broad range of spectra, which constructs an effectively continuous 

reflectance for every pixel in a scene (Lillesand & Kiefer, 1999). Such imagery is 

useful for distinguishing features that have very similar spectral signatures. 

Several studies have collected in-situ reflectance measurements for eelgrass 

(e.g. (O'Neill, et al., 2011)), and the species composition and bottom 

composition of Roskilde Fjord has been well studied and documented (e.g. 

(Krause-Jensen, et al., 2004)) .If the spectral signatures (endmembers) of all 

SAV and bottom composition could be established, an accurate classification 

using hyperspectral imagery could be undertaken.  

 

Hyperspectral imagery can be collected from sensors mounted to a 

variety of vehicles, such as drones, aircraft and satellites (Lillesand & Kiefer, 

1999). Aircraft imagery, collected at relatively low altitudes, is high resolution 

however is expensive due to the cost of aircraft operation and can also be 

hazardous for the aircraft to fly in certain locations, altitudes and weather 

conditions. Drones provide a solution to these challenges because they are 

unmanned and can be programmed, and as a result are low cost and low risk. 

Drones can be operated at very low altitudes, which enables collection of very 
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high spatial resolution imagery that can be used for classification, and is an 

emerging technology in this field.  

 

2. Collect more accurate training data  

As documented, a major limitation of this study was the absence of 

accurate training data, collected from in-situ observations. While collection of 

such data is unlikely to improve OA, it does enables more confident 

interpretation of results because the values do not incorporate any speculation 

about identity of features.  

 

One of the major challenges with collecting submerged training data is 

the time and effort required to collect it, as it usually involves diver transects 

which are slow and laborious (Roelfsema, et al., 2014) (Armstrong, 2016). 

However, advances in technology are providing solutions. Software algorithms 

that use a python code to detect eelgrass from the shape of the blades enable 

eelgrass leaf area to be extracted automatically from video transects (Figure 

47) (Sengupta , et al., 2018). This greatly improves the efficiency of data 

collection because traditional methods rely on estimation of plant coverage 

over a particular area. 

 

Figure 47: Python based software that detects eelgrass from blade shape 

(source: (Sengupta , et al., 2018)) 
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Methods for collection of video transects are also being developed. 

Diver transects are traditionally recorded by a diver with a camera, or a 

suspended camera under a vessel. These methods are relatively slow and 

laborious, particularly the diver collected data, as the diver is required to 

surface regularly to record GPS location. In situ platforms, such as autonomous 

underwater vehicles (AUVs), remotely operated vehicles (ROVs), towed 

platforms and drop cameras are being developed primarily for data collection 

in areas where remote sensing is not feasible due to water depth or turbidity 

(Armstrong, 2016). However, these technologies could also be used to collect 

field data for remote sensing to reduce time and cost, particularly in large 

and/or hazardous areas.     

 

3. Reduce scene area 

This thesis demonstrated the challenges with classifying a large scene, 

such as accounting for the spectral variation in the northern and southern 

sections of the fjord. Dividing the scene to isolate these areas, and performing 

separate classifications on each, is expected to improve OA, assuming accurate 

WCC cannot be performed for the entire fjord.  

 

4. Segment SAV on multiple image object levels  

A visual inspection of the scene indicates that SAV grows in Roskilde 

Fjord on multiple spatial scales, with smaller patches usually growing along the 

banks and larger beds and meadows in the deeper areas. Such areas would 

benefit from segmentation on multiple scales, which could be achieved by 

segmenting according to an image object hierarchy, as demonstrated by (Lyons, 

et al., 2012).  

 

5. Account for within scene variation of atmosphere and water column  

As demonstrated with the WCC (refer Section 4.3), accurately 

accounting for light attenuation at varying depths and water clarity is a 
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challenge. More stable and effective WCC techniques can provide a purer 

spectral response from the underlying substrate and SAV. To determine the 

effect of the water column, further research could focus on conducting this 

classification of the same scene several times throughout the year, and observe 

the OA as water quality varies.  

 

The same can be said for atmospheric correction, although this is less 

important than accurate WCC, because it is likely to vary on a smaller spatial 

scale than water column variation, and therefore less likely to vary significantly 

within a scene. As a result, atmospheric correction is only important if a multi-

temporal analysis is to be conducted, to account for atmospheric variation 

within each scene.  

 

An atmospheric correction technique that is specialised for use over 

water bodies is Case-2 Regional/Coast Colour (C2RCC), which is implemented 

through the Sentinel Application Platform (SNAP) software from ESA. This 

application is specialised for atmospheric correction over water bodies because 

it provides water leaving reflectance.   

 

6. Bathymetric LiDAR 

Bathymetric lidar uses a laser in the green spectrum to measure 

bathymetry. Since vegetation is highly reflective in this region, bathymetric 

lidar could be used to determine the presence/absence of SAV. Given the very 

high resolution of lidar point cloud data, this could be used in addition to 

remote sensing classification to distinguish SAV from other features, such as 

rocks and mussels. A setback of this technique is the high cost.   
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8 Appendix 1 

 

 

Figure 48: Batch file calling gdalwarp to resample each band to 10m 

resolution using nearest neighbour 

 

Figure 49: gdalbuildvrt command, with -separate, to build a virtual raster 

placing each input .jp2 image into a separate band 

 

Figure 50: gdal_merge.py is a python command that automatically mosaics a 

set of images 

 

Figure 51: gdalwarp command used to clip .vrt with AOI.shp 
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