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Red band bidirectional reflectance factor data from the NASA MODerate resolution Imaging Spectro-
radiometer (MODIS) acquired over the southwestern United States were interpreted through a simple
geometric-optical (GO) canopy reflectance model to provide maps of fractional crown cover (dimensionless),
mean canopy height (m), and aboveground woody biomass (Mg ha~1!) on a 250 m grid. Model adjustment
was performed after dynamic injection of a background contribution predicted via the kernel weights of a
bidirectional reflectance distribution function (BRDF) model. Accuracy was assessed with respect to similar

:-:(?r/tzogfs'erving System maps obtained with data from the NASA Multiangle Imaging Spectroradiometer (MISR) and to
Forest contemporaneous US Forest Service (USFS) maps based partly on Forest Inventory and Analysis (FIA) data.
Structure MODIS and MISR retrievals of forest fractional cover and mean height both showed compatibility with the
Biomass USFS maps, with MODIS mean absolute errors (MAE) of 0.09 and 8.4 m respectively, compared with MISR
Carbon MAE of 0.10 and 2.2 m, respectively. The respective MAE for aboveground woody biomass was ~10 Mg ha=?,
Disturbance the same as that from MISR, although the MODIS retrievals showed a much weaker correlation, noting that
Multi-angle these statistics do not represent evaluation with respect to ground survey data. Good height retrieval
BRDF . . . . . .

Modeling accuracies with respec.t to averages from hlgh resolution discrete returr} lidar datva apd rpatches between
Land cover mean crown aspect ratio and mean crown radius maps and known vegetation type distributions both support

the contention that the GO model results are not spurious when adjusted against MISR bidirectional
reflectance factor data. These results highlight an alternative to empirical methods for the exploitation of
moderate resolution remote sensing data in the mapping of woody plant canopies and assessment of woody
biomass loss and recovery from disturbance in the southwestern United States and in parts of the world
where similar environmental conditions prevail.

Moderate resolution

© 2011 Elsevier Inc. All rights reserved.

using remote sensing is more challenging. Accurate, annual, wall-to-
wall maps of aboveground carbon stocks are needed to help address

1. Introduction

One of the three overarching objectives of NASA's Carbon Cycle and
Ecosystems program is to quantify global vegetation productivity,
biomass, carbon fluxes, and changes in land cover (NASA, 2006).
However, the amount and distribution of terrestrial carbon in forests are
dynamic and are still poorly known (Canadell et al., 2007; CCSP, 2007;
Heimann & Reichstein, 2008). Furthermore, while much forest remote
sensing has focused on deforestation (Broadbent et al., 2008; Goetz
etal., 2008), it is thought that forest degradation is at least as important
as deforestation in terms of carbon fluxes between the atmosphere and
the biosphere (Houghton & Goetz, 2008) and assessing degradation
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these issues but cannot be constructed with traditional multispectral
remote sensing methods because they do not provide explicit
information on canopy three-dimensional structure. Remote sensing
of vegetation over large areas using moderate spatial resolution data
from across-track scanning sensors such as the NOAA Advanced Very
High Resolution Radiometer (AVHRR) and the NASA MODerate
resolution Imaging Spectroradiometer (MODIS) has been used mainly
to estimate primary production using spectrally-derived metrics of
photosynthetic activity, and primarily spectral reflectance band ratios
such as the Enhanced Vegetation Index (EVI; Huete et al., 2002) or the
Normalized Difference Vegetation Index (NDVI; Tucker, 1979). The
advantage of this approach is that it appears to be applicable across
biomes and the ratios are quickly and easily calculated. However this
approach does not provide useful information on canopy structure
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because vegetation indices are composite measures of foliage greenness,
fractional vegetation cover, canopy depth, and background optical and
physical properties and are thus insensitive to canopy three-dimensional
structure; or at least, they are unable to decompose the signal into
measurable structural metrics.

Empirical approaches have been used to estimate physical canopy
parameters such as height for limited areas using data from NASA's
Airborne Multiangle Imaging SpectroRadiometer (AirMISR) and
Multiangle Imaging SpectroRadiometer (MISR), with some success
(Heiskanen, 2006; Kimes et al., 2006; Schull et al., 2007); however
empirical methods rely entirely on calibration data that may not be
available over large areas and may thus be prone to extrapolation
error. The most successful methods developed to date to exploit
MODIS data products to map forest aboveground live biomass at large
scales use nonparametric modeling methods such as regression trees.
For example, Blackard et al. (2008) developed a spatially explicit
dataset of aboveground live forest biomass using USDA Forest Service
Forest Inventory and Analysis (FIA) program ground measured
inventory plot data for the conterminous U.S., Alaska, and Puerto
Rico. While successful — correlation coefficients ranged from a high of
0.73 in the Pacific Northwest, to a low of 0.31 in the Southern region —
this approach requires extensive plot data and numerous input
variables that may not be available elsewhere.

Canopy reflectance modeling is a physical approach to interpreting
moderate resolution remote sensing data (e.g., Flasse, 1993; Stenberg
et al., 2008; Verstraete, 1994) and can provide structural as well as
functional information; however it can be difficult to invert complex
models with many adjustable parameters. An approach of interme-
diate complexity is the use of semi-empirical metrics in which canopy
structural information is embedded, obtained by exploiting the
directional signal (i.e., by exploiting the variation in spectral radiance
with off-nadir viewing and/or illumination into account; Asner et al.,
1998; Privette et al., 1997). These include the parameters of semi-
empirical bidirectional reflectance distribution function (BRDF)
models and ratios thereof, such as the Structural Scattering Index
(Gao et al., 2003). These metrics are useful in contexts such as
enhancing land cover mapping but they have two major limitations:
they do not provide physical measures that can be validated in the
field; and they hold less meaning for the user base (e.g., Forest Service,
ecologists, and modelers). An ideal approach might therefore be one
that is as simple and rapid as possible (c.f., vegetation indices), has
less stringent calibration requirements than empirical nonparametric
modeling, while providing first-order physical canopy structure
measures such as fractional crown cover (dimensionless) and mean
canopy height (m). These attributes are conceptually straightforward,
can be measured in the field or using an appropriate remote sensing
technology such as light detection and ranging (lidar), and are
strongly related to aboveground woody biomass (Mg ha™1!).

The goal of the research described here was to assess simple, fast
methods for exploiting the structural information in passive, moderate
resolution remote sensing observations that have broad spatial coverage
and high temporal sampling rates, to ascertain whether they can be used
to map aboveground woody biomass. Retrievals of these canopy
parameters were previously obtained over Arizona and New Mexico
by adjusting a simple geometric-optical (GO) canopy reflectance model
against MISR red band bidirectional reflectance factors (BRFs) mapped
onto a 250 m grid (Chopping et al, 2008a). The same method
was applied here in order to discover whether the structural signal
embedded in accumulated multi-angle data from MODIS red band BRFs
accumulated over multiple orbits can also be exploited to retrieve
canopy fractional cover and mean height, and with what accuracies.
Here, accumulated MODIS red band BRFs were used in an attempt to
map woody plant crown cover, mean canopy height, and — via
regression on Forest Service estimates — aboveground woody biomass
over most of the southwestern United States. In this region trends in
stocks and patterns of forest disturbance are known to be driven by

climate and changing rapidly; increasing awareness of both direct and
indirect effects of recent climate change is reflected in the literature
(McKenzie et al., 2009; van Mantgem et al., 2009; Westerling et al.,
2006).

2. Methods

Cloud-screened MODIS Collection 5 (V005) red band BRFs and
associated solar and viewing zenith and azimuth angles with a
nominal 250 m spatial resolution (mapped on a 231.7 m grid in
sinusoidal projection) were accumulated from the MODO09 product
over DOY 153-164 in June 2002, for MODIS tiles h08v05 and h09vO05.
This period represents the end of the dry season and was selected for
maximum woody plant greenness with largely senescent grasses, for
lower cloud cover, and for greater stability in surface conditions,
important because MODIS observations must be accumulated. The
area covered by these two tiles includes almost all of the southwest-
ern United States, including the states of Arizona, New Mexico, and
Nevada, most of California, and parts of Nebraska, Utah, Colorado, and
Texas. This area includes large tracts of desert grassland that often
show significant woody shrub encroachment, riparian and river valley
woodland, and upland forest. These data were processed in the
original sinusoidal map projection with a raster cell size of ~231.7 m
and were screened for contamination by cloud cover.

The use of an accumulated multi-angle data set obtained via
accumulation of MODIS BRFs over many orbits is not straightforward.
The most important assumption made in this study is that spectral
radiance measurements at the top of the atmosphere from subse-
quent overpasses represent the same area on the ground, as the
ground-projected instantaneous field-of-view (GIFOV) can vary by a
factor of three at the most extreme viewing angles. This assumption is
a first-order approximation and is adopted in order to avoid the need
to apply sophisticated methods for renavigating the data, or
operations that could degrade quality — such as resampling the data
to a coarser scale and then mapping back to a 250 m grid — and is only
partly mitigated by Tobler's first law of geography (“Everything is
related to everything else, but near things are more related than
distant things.”), since in the western US landscapes can be highly
heterogeneous. However, the data used were processed by standard
MODIS algorithms that result in the MODO09 product resampled onto a
231.7 m Sinusoidal projection grid and our results are produced on
this standard grid. Any analysis that requires the use of MODIS data
from more than a single overpass — such as applications that exploit
the temporal domain — would be subject to the same limitations.
Other limitations of the accumulation approach are the assumptions
that the surface does not change importantly during the accumulation
period and that the effectiveness of surface retrievals (corrections for
atmospheric attenuation) is similar for all overpasses.

The MODIS red band MOD09 BRFs were interpreted through a
simple GO model. GO models are able to resolve statistical distributions
of discrete objects within an instrument's GIFOV (Chen et al., 2000; Li
et al.,, 1995; Strahler et al.,, 2005). Simple GO models treat the surface as
an evenly distributed assemblage of discrete objects of equal radius,
shape and height. A tree or shrub crown is represented by a spheroid
with its center located at a specified mean height above a (nominally
diffuse scattering) plane (Fig. 1). These models predict the top-of-
canopy reflectance as a function of important canopy physical
parameters (plant number density, foliage volume, mean canopy
crown height, radius, and crown shape, background brightness and
anisotropy) and illumination-viewing geometry. BRFs are modeled as a
linear combination of the contributions from sunlit and viewed, and
shaded and viewed crown and background components (Li & Strahler,
1985), asin Eq. (1):

R = Gkg + Cke + Tky + Zk; (1)
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Fig. 1. (a) Schematic showing a simplified GO model concept. The GO model parameters include mean crown horizontal radius (r), crown aspect ratio (b/r), and crown center to
vertical radius ratio (h/b) for an area with tree number density (A, N m?). The trees are assumed to be located in a Poisson-like distribution (i.e., evenly-spaced) over a background
with known brightness and anisotropy, consisting of a mixture of bare soil, crusts, grasses, sub-shrubs, and other understory plants. Panels (b)-(g) with similar schematics showing

different backgrounds.

where R is bidirectional spectral reflectance; kg, k¢ kr and k; are the
GO modeled proportions of sunlit background, sunlit crown, shaded
crown and shaded background, respectively; and G, C, T, and Z are the
contributions of the sunlit background, sunlit crown, shaded crown,
and shaded background, respectively. Although GO models have been
used with nadir-spectral remote sensing data such as those from
Landsat (Peddle et al., 2003), they are particularly appropriate for
exploiting solar wavelength remote sensing data acquired at differing
viewing and/or illumination angles because the proportions of sunlit
and shaded crown and background in the remote sensing instrument
GIFOV vary with viewing and illumination geometry.

The simple geometric model (SGM), a GO model incorporating a
dynamic background and an in-crown volume scattering term, was
used. The functions used in this model are derived from prior work on
kernel-driven bidirectional reflectance distribution function (BRDF)
models (Roujean et al., 1992; Schaaf et al., 2002; Strahler et al., 1996;
Walthall et al., 1985; Wanner et al., 1995) and are given in a number
of previous publications (Chopping et al., 2006, 2008a, 2008b). It is
formulated as Eq. (2):

R= GWalthall({}iﬂﬁv1@)~lcc(ﬁivﬁv1@) + CRoss(ﬁi’ﬁv"P)kc(ﬁi’ﬁv’@) (2)

where 9;, 9, and @ are the view zenith, solar zenith and relative
azimuth angles, respectively; ks and kc are the calculated proportions
of sunlit and viewed background and crown, respectively; Gwaichan iS
the background contribution from the Walthall model (Walthall et al.,
1985); and Cross is the simplified Ross turbid medium approximation
for plane parallel canopies (Ross, 1981). The shaded components T
and Z are discarded; they are assumed black. k¢ and k¢ are calculated
exactly via Boolean geometry for the principal and perpendicular

planes and approximated away from these; they are provided by
Egs. (3) and (4), respectively:

2 / "o,
kG — e—)\m {secﬂ, + secd, O(ﬁ,,ﬁv,cp)} (3)

ke = (1 —e’mzse”%> %(1 + cosg’) (4)

where ¢’ is the transformed scattering phase angle given by Eq. (5):
cos € = cosdicosV, + sindisind,cose. (5)

\ is the number density of objects; r is the average radius of these
objects; and O is the overlap area between the shadows of
illumination and viewing (Wanner et al., 1995); Eq. (6):

0 =1/m(t—sin t cos t)(sec I + secd)) (6)

where t is a parameter that indirectly expresses the locations of the
end points of the line that intersects the shadows of viewing and
illumination; this allows kg to be expressed in a way that depends
only on the value of t (Wanner et al., 1995). These functions include
the parameters b/r (vertical crown radius/horizontal crown radius)
and h/b (height of crown center/vertical crown radius) which describe
the shape and height of the crown. The prime indicates equivalent
zenith angles obtained by a vertical scale transformation in order to
treat spheroids as spheres (i.e., 9’ =tan™ '(b/r tan 9 ; Wanner et al.,
1995)). The model's parameters are mean plant crown horizontal
radius, r; crown aspect ratio, b/r (vertical crown radius/r); crown
height ratio, h/b (height of crown center/b); plant number density
(number per unit area), A; and per-crown leaf area index (LAI); and
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the four empirical parameters of the Walthall BRDF model (Walthall
et al,, 1985). The crown radius and number density parameters are
coupled internally; identical results are obtained if fractional cover is
maintained but either parameter is varied. However if number density
is fixed and mean crown radius is left adjustable then an estimate of
fractional cover can be obtained. The h/b and b/r parameters are also
coupled, since mean canopy height depends on b and the retrieval of b
depends on b/r. Similarly, mean canopy height cannot be obtained
without knowledge of both h/b and b but if h/b is fixed and r and b/r
are left adjustable then estimates of b (and therefore h) can be
obtained. This depends on the assumption that r and b/r respond to
different aspects of the BRF patterns presented to the minimization
algorithm: ideally, r should respond (mostly) to fractional cover and
b/r (mostly) to shadowing effects.

For the sake of simplicity the GO model makes some important
assumptions: diffuse irradiance is ignored and so the contributions of
shaded crown and background are discarded, as in kernel-driven BRDF
models; leaf reflectance is fixed at 0.09 (rather high for most conifer
species); and in-crown LAI is fixed at 2.08 (typical for mesquite
shrubs). Only r and b/r are allowed as free parameters on model
adjustment: since other parameters are fixed, these are effective rather
than physical parameters. However, the coupled dependent terms
(e.g., fractional cover and crown center height) are physical param-
eters: fractional canopy cover is obtained by using the retrieved r value
with the fixed A, as 1 —exp(—A 1 2); and canopy height is obtained
via h/bxb + b, where b=b/rxr.

For accurate retrievals of upper canopy parameters (fractional
crown cover and aspect ratio) it is critical to provide a priori estimates
of the contribution of the background to BRF at the viewing and
illumination angles of the observations. The background is defined
here as all elements in an instrument instantaneous field-of-view
(IFOV) that are not part of the woody plant canopy. In the arid and
semi-arid southwestern US the soil and understory background can
account for a large proportion of the surface area under mapped
IFOVs, typically up to 75% in desert grasslands with well established
woody shrub cover. Even though the background contribution is
much smaller in forest, it is not negligible (Gemmell, 2000) because
the mineral soils of this region are bright across the red to near-
infrared wavelengths and canopies are frequently open. The back-
ground may be complex and might typically contain a mixture of bare
soil, crusts, grasses, sub-shrubs, and other understory plants; the
method adopted here attempts to avoid this complexity by focusing
on estimation of the bulk background scattering behavior.

To enable GO model adjustment for fractional cover and crown
center height, the contribution of the background should ideally be
approximated for each location, for the angular illumination and
viewing configurations of the observations a priori (before the r and
b/r parameters are adjusted). This is attempted here using regression of
the background model parameters on LiSparse-RossThin BRDF model
(Wanner et al, 1995) isotropic, geometric, and volume-scattering
kernel weights. Kernel weight maps were obtained via inversion against
the same MODIS red band BRFs used for GO model inversion, using the
Algorithm for Modeling Bidirectional Reflectance Anisotropies of the
Land Surface (AMBRALS) code (Strahler et al.,, 1996), with the objective
of minimizing the absolute Root Mean Square Error (RMSE) between
the model and data. Obtaining the regression coefficients that will be
used to predict the background model parameters for each location
is not straightforward sing MODIS data. Since it is difficult or impossible
to find areas of 250x250 m (62,500 m?) that do not include some
woody plants, the background contribution in the MODIS viewing plane
must be extracted for a set of locations using the GO model and
estimates of A, r, and h, or some combination thereof. To this end, the
parts of the MODIS tiles corresponding to the US Department of
Agriculture (USDA), Agricultural Research Service (ARS) Jornada
Experimental Range were resampled using bilinear interpolation to
the Universal Transverse Mercator map projection, WGS84 spheroid/

datum zone 13, with a grid interval of 250 m, to match shrub canopy
statistics extracted from 1 m spatial resolution panchromatic Ikonos
imagery. These sites were chosen in shrub-dominated desert grassland
because the background signal is stronger than in forest; a greater
proportion is exposed. Backgrounds were extracted for a small number
(10<N<30) of locations by finding the best-fitting set of Walthall
model parameters, using numerical methods with initial values set to
those corresponding to a field-measured BRDF for sand. The set of sites
used was refined by assessing the significance of the regressions and
removing outliers.

The relations established between LiSparse-RossThin model red
band kernel weights and background model parameters allow
prediction of the background contribution at the illumination and
viewing angles of each MODIS observation. This method has been
shown to be feasible in a first approximation using MISR BRFs, with
low extrapolation error over large areas (Chopping et al., 2008a). For
the V005 MODIS data used here, the extraction of backgrounds was
found to be much more problematic than with the MISR data. This
may be because: the MODIS viewing plane is closer to the solar
principal plane at these latitudes leading to greater variability in BRDF
shape; multi-angle data are accumulated; the angular sampling is not
always complete and/or consistent; and/or the background model
used has too many parameters (four), leading to instability in model
fitting. Typical fitted Walthall model backgrounds, resulting modeled
background contributions, and observed BRFs are shown for three
calibration sites in Fig. 2, along with the corresponding 1 m
panchromatic Ikonos image subsets and derived shrub maps.

In view of these difficulties, an alternative method for background
extraction was explored that uses the US Forest Service (USFS) Forest
Inventory Analysis (FIA)-based Interior West forest map series
(henceforth FIA-IW) instead of Ikonos-derived shrub canopy statistics.
The FIA-IW maps are a suite of raster products with a spatial resolution
of 250 m produced using a nonparametric modeling framework (using
classification and regression trees) that makes use of Forest Inventory
Analysis survey data, soils, topographic, MODIS vegetation index,
MODIS MOD44 Vegetation Continuous Fields, and climate variables as
predictor variables (Blackard & Moisen, 2005; Blackard et al., 2008;
Ruefenacht et al., 2004). The outputs include maps of aboveground
biomass, crown cover, and forest height that were also used as
reference data in this study. In this background extraction method, the
mean crown radius parameter was specified using crown cover data
extracted from the FIA-IW maps for seven contrasting forest locations
distributed across New Mexico and Arizona. The data were selected to
represent a range of forest cover and height values (avoiding very high
cover situations in which the background signal would be too weak)
and screened for topographic shading using a hillshade map derived
from a digital elevation model constructed through interpolation of
Shuttle Radar Topography Mission elevation data (Farr et al., 2007). The
background model parameters were fitted in the same way as before.

Three SGM inversion runs were performed for the two MODIS tiles:
one using the V005 data with canopy statistics estimated from the FIA-
IW maps (termed _mod11); one using the V005 data with Ikonos-
derived canopy statistics for sites in the Jornada Experimental Range
(termed _mod9); and one using Collection 4 (VO04) data with more
complete angular sampling and the same Ikonos-derived canopy
statistics (termed _mod3). Each 4800x4800 MODIS tile required
23,040,000 model inversions since inversions were performed wall-
to-wall (ie. including both forest and non-forest areas); each run
therefore required a total of 46,080,000 inversions. The results are
referred to collectively as MODIS-SW. The inversion protocol was the
same as that used in previous MISR mapping work in New Mexico/
Arizona (henceforth MISR-NM/AZ) and Colorado (henceforth MISR-CO)
using site-based backgrounds. In all cases, the SGM was adjusted against
the red band data in all available viewing/illumination configurations
(up to nine looks from MISR and more than 13 from MODIS) using the
Praxis algorithm (Brent, 1973; Powell, 1964) with min(— RMSE]|) as the
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Fig. 2. (a)-(c) MODIS BRFs, Walthall background contributions, and SGM BRFs for three shrub-dominated sites in the USDA, ARS Jornada Experimental Range near Las Cruces, New
Mexico, USA, at various relative azimuths (d)-(f) 1 m panchromatic Ikonos image subsets corresponding to these sites (g)-(i) shrub maps derived from the Ikonos imagery, green =
shrub and beige = background. Note the variation in background brightness within the site depicted in (f).

objective function and no constraints or weighting of the error terms.
The crown LA A, and h/b model parameters were fixed at 2.08, 0.012
(740 plants per grid cell), and 2.00, respectively, with r and b/r left as free
parameters and set to initial values of 0.25 and 0.2, respectively, for the
MODIS-SW and MISR-NM/AZ runs, and to typical ranges of values for
the MISR-CO runs (140 combinations: seven different backgrounds; r
from 3.0-6.0 in increments of 1.0; and b/r from 0.5-2.5 in increments of
0.5). Model inversion runs proceeded by submitting BRFs and kernel
weights to the minimization code and accumulating the results (model-
fitting RMSE, r, b/r, fractional cover, and h) in an output file.
Aboveground woody biomass estimates were obtained via regression
on retrieved cover and height, using estimates from the FIA-IW biomass
map.

GO model inversion results previously obtained using MISR data
over New Mexico/Arizona (MISR-NM/AZ; Chopping et al., 2008a) and
over Colorado (MISR-CO; Chopping et al., 2009) are used here for
comparative purposes. MISR data products used include Level 1B2
MI1B2T Terrain-projected Spectral Radiance; Level 1B2 MI1B2GEOP
Geometric Parameters; Level 2 MIL2ASAE Aerosol; Level 2 MIL2ASLS
Land Surface; and the MIANCAGP Ancillary Geographic products. The
MI1B2T product is the terrain-projected top-of-atmosphere spectral
radiance with a nominal 1.1 km spatial resolution in the off-nadir,
non-red bands and a nominal 275 m spatial resolution in the nadir
multi-spectral and off-nadir red bands (Diner et al., 1999). For the
MISR-NM/AZ mapping, MISR spectral radiances were acquired for
twelve Terra satellite overpasses in late May and early June 2002 and
surface reflectance estimates were estimated using the MISR aerosol
data, assuming a desert aerosol type. GO model retrievals from

multiple inversions over each location were selected on the basis of
minimum model fitting error, as this was found to be monotonically
related to accuracy (Chopping et al., 2008a). For the MISR-CO
mapping the spectral radiances for a single overpass were converted
to bidirectional reflectance factor (BRF) estimates via regression on
the Land Surface product BRFs using MISR Toolkit routines developed
at NASA's Jet Propulsion Laboratory.

Reference data were extracted from the FIA-IW aboveground
biomass, crown cover, and canopy height maps for the same 1063
random locations used to assess the MISR-NM/AZ results (Chopping
et al.,, 2008a). The FIA-IW maps were not intended for validation
purposes but are the most comprehensive and extensive contiguous
geospatial data available that include forest height estimates. For this
study the maps were resampled to match the ~231.7 m MODIS
Sinusoidal grid. The accuracies of the FIA-IW estimates and the MISR-
CO retrievals have been assessed with respect to canopy heights
calculated from discrete return lidar data and cover estimates from
orthophotography acquired as part of the Cold Land Processes
Experiment (CLPX) in the Rocky Mountains in Colorado (Chopping
etal., 2009; Miller, 2003). The lidar canopy height estimates over MISR
raster cell areas were calculated by generating a 2 m spatial resolution
digital elevation model (DEM) via interpolation of the lidar ground
elevations and subtracting these values from the corresponding
vegetation elevations (with checks for anomalies, i.e., where either
of the elevations was out of range). This produced a 2 m spatial
resolution “tree height” raster image from which averages for MISR
raster cells were calculated (i.e., statistics for all MISR raster cells fully
within the lidar-derived “tree height” rasters were extracted with all
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zero values ignored). Since the horizontal spacing of the lidar shots
was ~1.5 m and crowns are sometimes more than 3 m in diameter (but
rarely much more), the resulting means may on occasion be biased
downwards by returns from the edges of crowns; however returns
from low trees and shrubs that are quite prevalent in many places have
afar greater influence on the mean. No effort was made to filter out the
heights for these lower plants and this is appropriate because the GO
model-derived values include all woody plants (trees and shrubs). For
the CLPX area the FIA-IW maps are known to contain some anomalies
but the method has been shown to be generally reliable over large
areas (Blackard et al., 2008). For the _mod3 and _mod9 runs crown
cover and mean height are retrieved from the GO model with no
rescaling and they are retrieved independently from the reference
data.

3. Results and discussion

Model fitting RMSE was generally low with means between 0.016
and 0.035 and was clearly lower for forested than non-forested
regions. RMSE is relatively large (>=0.05) in some places and
particularly in east-central Texas (Fig. 3); this is probably owing to
the need to apply a different background for this region and may
reflect differences in vegetation type and soil optical and structural
properties. The resulting MODIS-SW fractional cover and mean height
maps are shown in Figs. 4 and 5, along with the corresponding USFS
Interior West maps that only include forest. Spatial distributions of
forest canopy cover and mean canopy height values retrieved using
the accumulated MODIS red band multi-angle BRFs show reasonable
matches with those in the USFS FIA-IW maps. It can be seen that the
retrievals of fractional cover and mean canopy height were less
reasonable where model fitting RMSE is high, with more extreme
values for both cover and height in the _mod11 and _mod9 run
outputs in east-central Texas; a different set of background prediction
coefficients may be therefore be required for this region.

The best MODIS-SW retrievals in terms of spatial distributions and
with respect to the reference data were obtained for run _mod3, i.e.,
using the set of background prediction coefficients derived against
Collection 4 (V004) MODIS data for a slightly earlier period than the
V005 data used to invert the SGM. This is most likely because the V005
data used to calibrate the background for run _mod9 were screened
very conservatively for poor aerosol retrievals so that observations in
the near-nadir to 40° backscattering viewing zenith angle range were
removed from the data (Fig. 2a—c). This potentially impacts the
extraction of backgrounds, the quality of the LiSparse-RossThin model

kernel weights used in background prediction, and the eventual SGM
inversions through which retrievals of forest cover and height are
made possible. The _mod11 retrievals appear to be less accurate with
respect to the other MODIS-SW runs and the FIA-IW maps: cover is
overestimated for parts of southern Nevada and height is under-
estimated in forest in northern Arizona and in the Colorado Rockies.

The MODIS-SW _mod3 (n=895) and MISR-NM/AZ (n=576)
estimates of forest fractional cover and mean height both show
general agreement with the reference data extracted from the FIA-IW
maps, with MODIS mean absolute errors (MAE) of 0.09 and 8.4 m
respectively; and MISR MAE of 0.10 and 2.2 m, respectively (Table 1).
The mean absolute error values for estimates of aboveground woody
biomass via regression against USFS estimates were ~10.1 Mg ha—!
for both MODIS and MISR, although the MODIS relationships were
much weaker and height retrievals were biased (Fig. 6b). MODIS
fractional cover and height retrievals show linear relationships with
the USFS map data, with some unexplained scatter, particularly in the
height retrievals (Fig. 6b). This may be an artifact of topography, or
owing to inadequate prediction of the background contribution
stemming from the inconsistent angular sampling of the MODIS
data that affects background extraction and the LiSparse-RossThin
kernel weights used in background prediction. Extending the period
over which MODIS data are accumulated and/or relaxing screening
for poor observation quality (based on aerosol or cloud flags) may
alleviate this problem. There is a tradeoff between ensuring data
quality and providing an angular sampling that better describes
surface reflectance anisotropy; further research is required to assess
the optimal settings for data screening. Nevertheless, there is a strong
correspondence between MODIS/GO, MISR/GO, and USFS height
estimates.

There are several limiting factors in GO model inversion against
multiangle data sets synthesized from MODIS data. The most important
one for sparse, arid environments is the requirement to provide the
background red wavelength reflectance magnitude and anisotropy,
since here the contribution from bright, exposed backgrounds is very
large at many angular configurations. As mentioned in the Methods
section, difficulties were encountered in finding optimal sets of
regression coefficients to predict the background a priori from MODIS
data. Recent research into retrieving forest backgrounds confirm and
support the finding that retrieval of the background reflectivity is
problematic at the typical range of viewing and illumination angles of
MODIS data, while those of MISR provide acceptable results (Pisek,
2009; Pisek & Chen, 2009). Another limitation of the approach as
presented here is that changes in leaf spectral reflectance owing to

Fig. 3. Map of model-fitting absolute root mean square error (RMSE) for SGM inversions of tiles h08v05 and h09vO05 (sinusoidal projection), run _mod3. Values close to 0.1 indicate

very poor model fitting. Yellow lines are state boundaries.
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Fig. 4. Fractional crown cover maps for tiles h08v05 and h09v05 (sinusoidal projection): (a) Forest Service 2005 FIA-based map, extent limited to forest in the Interior West; three
MODIS-SW SGM maps with different sets of background calibration coefficients (see text): (b) _-mod11 (c) _-mod9 and (d) _mod3.

(e.g.,) widespread mortality from pine beetle infestation will impact GO
model retrievals. However a change from living (green) to dead (red-
brown) leaves is likely to result in a reduction in retrieved cover and
height, as red band reflectance will increase (recent MISR/GO biomass
mapping runs indicate that dead trees in affected parts of Colorado and
Wyoming are treated as absent, with biomass losses of more than
150 Mg ha~ ! in 2009 over 2000; Chopping et al., 2010); moreover,
there is no way to integrate easily this information a priori.

Since the concept of retrieving canopy heights from mono-spectral
moderate resolution Earth observation data may seem implausible in
view of the prevailing multi-spectral remote sensing paradigm and
the simplicity of the GO model; and since the comparisons presented
thus far show only assessments against USFS maps made using
empirical methods, two lines of supporting evidence from adjustment

of the model against MISR bidirectional reflectance factor data are
provided here: first, the spatial correspondence between retrieved r
and b/r parameters and known vegetation distributions; and second, a
summary of assessments of MISR/GO height retrievals against
estimates from high resolution discrete return lidar data.

Maps of mean crown shape and mean crown radius for the USDA,
ARS Jornada Experimental Range in southern New Mexico show
good matches with a 1998 Long Term Ecological Research (LTER)
vegetation map that includes dominant shrub species; and with
known vegetation distributions (Fig. 7). In particular, more oblate
crown shapes are retrieved for mesquite-dominated areas, more
spherical shapes for creosotebush-dominated areas, and more prolate
shapes for woodland, while mean crown radius retrievals are highest
for riparian pecan orchards near the Rio Grande (<=7 m), high for

Fig. 5. Canopy height maps for tiles h08v05 and h09v05 (sinusoidal projection): (a) Forest Service 2005 FIA-based map, extent limited to forest in the Interior West; three MODIS/GO
maps with different sets of background calibration coefficients (see text): (b) _mod11 (c) _mod9 and (d) _mod3.
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MODIS (n=2895) and MISR (n=576) retrievals vs forest service Interior West map data.

Fractional cover Mean height Aboveground woody biomass

(Dimensionless) (Meters) Tons/acre Mg ha !

MODIS MISR MODIS MISR MODIS MISR MODIS MISR
Mean relative error (%) 26 30 20 28 25 28 n/a n/a
Mean absolute error 0.09 0.10 8.4 2.2 4.5 4.5 10.1 10.1
2 Standard deviations 0.19 0.30 5.4 10.1 20.8 26.0 46.6 58.2
Means 0.44 0.48 7.8 103 20.5 21.8 46.0 49.0
R? 0.55 0.78 0.50 0.70 0.75 0.81 n/a n/a
RMSE 0.10 0.12 2.6 33 6.0 6.2 134 14.0

upland juniper and mesquite-dominated areas (<=3 m), intermedi-
ate for creosotebush- and tarbush-dominated areas (<=2 m), and
lowest for playa grasses with few woody plants (<=0.04) (Fig. 7). The
linear boundaries between creosotebush (cyan), tarbush (blue/
purple), and the town of Organ (purple) can also be seen in the
south-east quadrant of the b/r ratio map, immediately to the west of
the North arrow. Note that these matches are obtained even though r
and b/r are retrieved as effective rather than physical parameters
(since the A and h/b ratio parameters are fixed); they thus improve
confidence in model operation.

Recent assessments of MISR/GO height retrievals against high
resolution (~2 m) discrete return lidar data acquired as part of the
CLPX campaign in April and September 2003 were obtained as part of
a research initiative aimed at developing methods to reduce un-
certainties in satellite-derived maps of fractional snow cover by
accounting for canopy cover and height. The lidar data correspond to
means for mapped 250 m? MISR observations for 57 forest sites in the
Colorado Rocky Mountains. Model inversion runs were completed for
140 combinations of dynamic backgrounds and initial r and b/r values,

with the same inversion protocols that were used in this study. For all
runs with reasonable backgrounds and an initial b/r value of <2.0,
RMSE distributions vs. the April and September lidar mean heights
were centered around means of 2.5 m and 3.7 m with maxima of
5.5m and 5.6 m, respectively, while R? distributions were centered
around means of 0.4 and 0.7 with minima of 0.10 and 0.24 (Table 2).
With some care taken in background extraction and selection of initial
values, it is possible to achieve an RMSE of ~3.0 m and R? of ~0.7
(Chopping et al., 2009). The absolute errors are roughly comparable to
those achieved with lidar instruments over areas with marked
topography or mixed crown shapes and at different times of year
(Hyde et al., 2007; Lefsky et al., 2008; Pang et al., 2008; Sun et al.,
2008), although the relationships are weaker. Because fractional cover
and mean height are retrieved from GO model adjustment indepen-
dently from the reference data with no training or rescaling, it is
unlikely that these results could be obtained unless the GO model is
able to explain the observed data, implying that the correspondence
between MODIS-SW, MISR-NM/AZ, and USFS FIA-IW height estimates
is not spurious.

- be C
%1.0- = 30.0 < 80.0
= sl
o y = 0.68x + 0.19 '5\ y = 0.55x + 3.17 - y = 0.75x + 4.94 :
So0g8] R'=055 @ R? = 0.50 > R? = 0.75 .
20.8 T o .
3 4 S 60.0 1 se
o .o 2 20.01 S R .
0.6 7 8 T w . »
= 34 © P 44 v %4 -
=] (o 0‘ o o.‘ B 240.0' . }. . *
B hd = " 4 +* ?0’.
@ 0.4 . © . . =] v ottan’, .
= vt 4 £10.0{ 4 @ . 2.
° 4 : o e T 20.01 3o
0.2 [7] L Y 4 ok i -
2 ® . * o L
®0.0 S 0.0 B 0.0
w - I.I‘ﬁ . Wi . T
e e~ f
S0 E 30,0 - D 80.0
y = 1.05x + 0.08 o y = 1.04x + 1.30 3]
Lé R? = 0.78 "] =) RZ=0.69 ' =
0.8 | Pae L= . )
E . . o ne S 60.0 |
e * ’“ o " .~ .‘ o .
o £ E 20.0 1 ‘o =
E 0.6* % 8 L) m
o 3 . T 5 g 40.0 1
To.4a = 13 . )
[ * C —
e " . 8 10.0 *, o
3 * = T g 20.0
% 0.2 8 A . .J'-ul
E © <ol E &
0.0 - : : : E o0 ‘ ! % 0.0 ‘ ‘ !
W p0 02 04 06 0.8 1.0 E 0.0 10.0 20.0 30.0 w 0.0 20.0 40.0 60.0 80.0

USFS Fractional Crown Cover

USFS Weighted Height (m)

USFS Biomass (tons/acre)

Fig. 6. Retrieved fractional canopy cover and height and estimated aboveground woody biomass vs. reference data from a 2005 Forest Service map series for the Interior West
(random samples). (a)-(c) MODIS-SW cover, height, and biomass, respectively (N=2895); and (d)-(f) MISR-NM/AZ cover, height, and biomass, respectively (N =576). Note that
statistics refer to the GO model inversion results vs. data derived from other moderate resolution remote sensing products as well as ground data.
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Fig. 7. (a) Map of crown aspect ratio (b/r ratio) from adjustment of the GO model against MISR bidirectional reflectance factors. A value of 1.0 indicates a preponderance of spherical
crowns; <1.0 indicates a larger proportion of oblate crowns; and >1.0 indicates a larger proportion prolate crowns (b) map of mean crown radius from adjustment of the GO model
against MISR bidirectional reflectance factors (c) the 1998 Long Term Ecological Research vegetation type map (courtesy Barbara Nolen and the Jornada LTER). Location: USDA, ARS
Jornada Experimental Range, the Chihuahuan Desert Rangeland Research Center, and environs.

4. Conclusions

The results presented here show that in spite of many assumptions
and approximations, a simple GO model can be inverted against
moderate resolution red band multi-angle reflectance data to retrieve
reasonable distributions of forest canopy cover and mean canopy
height over large areas. As far as is known, this is the first time that the
structural signal in an accumulated MODIS multi-angle data set has
been exploited in an attempt to map canopy height over large areas, or
indeed at all. Retrievals using MISR data are more accurate with

-ll\—/EIlII;lRe/éo height retrieval RMSE and correlation vs. lidar-derived estimates.
RMSE (m) R?
Mean Min Max Mean Min Max
April lidar 2.0 14 3.8 0.44 0.22 0.52
September lidar 3.6 2.8 5.6 0.66 0.38 0.73

respect to the FIA-IW estimates than those from MODIS but the latter
were achieved using data sets with part of the angular domain
obscured (missing observations in the 5-40 backscattering region)
and sets of background regression coefficients that are thought to be
far from optimal. The difficulty of isolating the background signal at
MODIS observation geometries is thought to be the major limitation
for the exploitation of accumulated MODIS multiangle data sets with a
GO model. This has also been noted by other researchers (Canisius &
Chen, 2007), although forest background reflectance brightness has
been successfully extracted over larger areas using data from MISR
(Pisek & Chen, 2009; note that for GO model inversion both magnitude
and anisotropy are required to provide estimates of the contribution of
the background at all illumination and viewing geometries; this is
somewhat more challenging than estimating only brightness). This
raises the possibility that MISR-derived background reflectance
magnitude and anisotropy maps could be used to enable GO model
inversions with MODIS data, although it is not clear what advantages
this might provide over the use of MISR for both background retrieval
and GO model inversion.
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This may also have implications for practical implementation of other
canopy reflectance modeling methods and particularly the very prom-
ising spectral invariants approach that is based on estimates of recollision
and escape probabilities (Huang et al., 2007, 2008; Knyazikhin et al., 2005;
Lewis & Disney, 2007; Schull et al., 2007; Stenberg, 2007). The original
spectral invariants approach makes the assumption that the vegetation
canopy is bounded from below by a non-reflecting (black) surface; this is
clearly violated in the real world and so efforts must be made to address
how the canopy and background signals might be isolated.

An important caveat is that the results presented here cannot be
considered as validated because (1) the data extraction was for a
random sample of 1063 points in Arizona and New Mexico that are not
completely representative of the mapped area even though they span a
large set of conditions over more than 200,000 km?; and (2) the
accuracy of the FIA-IW estimates may be much lower than required. The
question of the required accuracy of aboveground live woody biomass
estimates from near-future Earth observation systems has largely been
resolved by the NASA Vegetation Structure Working Group: an accuracy
of 10% in biomass (or 10 Mg C ha™!) is sought as this would yield a first
estimate of the fractions of forest area disturbed, recovering, and
unchanged in different regions of the earth and thus advance our
understanding of forest dynamics (NASA, 2008). Uncertainty in biomass
currently contributes ~100% uncertainty to estimates of carbon
emissions (Houghton, 2005, 2008). Since it is not feasible to acquire
ground data for the validation of moderate resolution remote sensing
results, canopy height estimates from lidar instruments such as NASA's
Laser Vegetation Imaging Sensor (LVIS) provide the best means of
evaluating retrievals. On the other hand, retrievals are unlikely to be
completely spurious because MISR/GO mean crown shape and radius
distributions correspond well with known vegetation type distributions
and match high resolution discrete return lidar heights reasonably well
(Chopping et al., 2009).

The main limitation of the GO model approach is that it is unlikely to
be suitable for closed canopies and where the background is dark,
leading to lack of contrast (Pinty et al, 2002). However it might be
applied for mapping and monitoring woodlands, savannas, and shrub-
dominated zones in arid and semi-arid regions worldwide. Application
over very large areas with differing backgrounds requires constructing a
sparse grid of background regression coefficients. Extracting the
necessary data is not straightforward, requiring at a minimum estimate
of crown cover from high resolution imagery; calibration for dynamic
background prediction might also benefit from the use of lidar height
estimates to set the b/r parameter rather than using approximations, as
here. These results have implications for using moderate resolution
remote sensing data in the assessment of woody biomass loss and
recovery from fire and other disturbance factors (pathogens, pests,
thinning, logging, and windstorms). Applications of this approach might
extend to provide a baseline crown cover, canopy height, and
aboveground biomass record from 2000 onwards in support of the
NASA Deformation, Ecosystem Structure and Dynamics of Ice (DESDynl)
mission that is not likely to start prior to 2017. Canopy height is also
intrinsically important in forest assessment since it is a key indicator of
successional status: it is not currently possible to say what fraction of the
landscape is in recently disturbed or rapidly re-growing stands
(Houghton, 2008). Further research is required to assess the results
more rigorously against lidar-derived canopy height metrics and to
determine whether it is feasible to use MISR-derived backgrounds to
enable MODIS/GO and/or spectral invariant approaches, or combined
MISR/MODIS data sets in model inversions to obtain a wider angular
sampling — since the viewing planes are almost orthogonal (Jin et al.,
2002) — in order to obtain more accurate retrievals.
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