
Remotely Attacking System Firmware
Alex Bazhaniuk Jesse Michael Mickey Shkatov



• Overview
• Remote attack surface
• BIOS Remote attack vectors
• Walkthrough exploits
• Detecting compromise

Agenda



Overview



Overview
14

3

3

4 5 6

2

2

1

5 6



BMC - Remote Attack surface

1

2

3

1

2

3

CPU

SRAM

FLASH



BMC - Remote Attack surface
• Designed for Out of Band server management
• Common use cases

- KVM
- BIOS FLASH
- Etc.

• Licensing tiers



Nmap scan report for supermicro-x11ssm-bmc.x.x.x (x.x.x.x)
Not shown: 65530 closed ports
PORT     STATE SERVICE  REASON         VERSION
80/tcp   open  http     syn-ack ttl 64 ATEN/Supermicro IPMI web interface
443/tcp open  ssl/http syn-ack ttl 64 ATEN/Supermicro IPMI web interface
623/tcp open  asf-rmcp syn-ack ttl 64 SuperMicro IPMI RMCP
5900/tcp open  vnc      syn-ack ttl 64 VNC (protocol 3.8)
MAC Address: 0C:C4:7A:40:60:97 (Super Micro Computer)

Nmap done: 1 IP address (1 host up) scanned in 1403.00 seconds

BMC - Remote Attack surface



BMC - Remote Attack surface

IPMI Specification, V2.0, Rev. 1.1

1
2

3 4
1

2

3

SHARED or DEDICATED NIC

SERIAL/MODEM

IPMB Remote management Card

4
4 ICMB Bridge



HP iLO4 auth 
bypass and 
RCE

Multiple vulns including 
trivial auth bypass: curl 
-H "Connection: 
AAAAAAAAAAAAAAAAA
AAAAAAAAAAAA"

2018

SMC PSBlock 
password file 
vulnerability

Zachary Wikholm discovered that 
Supermicro BMCs have plaintext 
password file which could be 
retrieved remotely  without auth, 
32k on internet

2014

Many BMC/IPMI 
vulnerabilities 
published

Dan Farmer and HD Moore 
found over 300k BMCs 
connected to the internet, 53k 
vulnerable to cipher-zero auth 
bypass

2013

IPMI v2.0 
spec

New features including Serial 
over LAN, Enhanced 
Authentication, Firmware 
Firewall, and VLAN support

2004

IPMI v1.5 spec

Many enhancements to base 
specification including IPMI 
over LAN and IPMI over 
Serial/Modem

IPMI v1.0 spec

Base version of IPMI 
specification released

1998

BMC/IPMI history

2001

BMC - Remote Attack surface



ME/AMT Remote Attack surface
- Code loaded from platform SPI
- Code running in dedicated CPU in chipset
- Uses dedicated RAM & main RAM



ME/AMT Remote Attack surface
Manageability Ports
16992 Intel(R) AMT HTTP
16993 Intel(R) AMT HTTPS
16994 Intel(R) AMT Redirection/TCP
16995 Intel(R) AMT Redirection/TLS
623 ASF Remote Management and Control Protocol (ASF-RMCP)
664 ASF Secure Remote Management and Control Protocol (ASF-RMCP)
5900 VNC (Virtual Network Computing) - remote control program
https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide



Multiple vulns 
in AMT v8 
through v11

Positive Technologies 
found more vulns in AMT 
including multiple buffer 
overflows allowing LPE
and RCE

Also 2017

Critical auth 
bypass in AMT 
v6 through v11

Embedi discovered that 
you could login to AMT as 
admin  with no password 
on all vPro systems since 
2010

2017

AMT 6.0

Remote KVM support 
added here 

2010

AMT 4.0

Over-the-internet 
provisioning capabilities

2008

AMT 2.5

Wireless network 
support added here

2007

AMT 1.0

First version of Intel AMT 
available in Core 2 Duo 
vPro,  included embedded 
web server and fw update 
capabilities

2006

Intel ME/AMT history

ME/AMT Remote Attack surface



BIOS- Remote Attack surface

- Code loaded from main platform SPI
- Code running in main platform CPU 
- Uses main RAM



Missing size 
checks in 
DHCP code

Topher Timzen noticed
that DHCP code used 
untrusted length from 
network for copy 
without checks

2016

UEFI 2.6

TLS implementation 
added based on 
OpenSSL

2016

UEFI 2.5

WiFi, Bluetooth, HTTP, 
and HTTP BOOT 
functionality added

2015

UEFI 2.1

Cryptography, 
network 
authentication, and UI 
infrastructure added

2007

EFI 1.10

Intel released EFI 1.10 
standard and 
contributed it to 
Unified EFI Forum

2002

EFI 1.02

First version of 
Extensible Firmware 
Interface standard 
written by Intel

1998

UEFI history

BIOS- Remote Attack surface



BIOS- Remote Attack surface
• Reference Code
• Implemented from 

scratch
• Runs before OS



BIOS- Remote Attack surface
• Additional features 

implemented by vendor
• Extensions on top of 

UEFI standard
• Some features 

eventually get pulled 
into UEFI standard



UEFI Bluetooth Stack Architecture
BIOS- Remote Attack surface

http://www.uefi.org/sites/default/files/resources/Tony%20Lo_UEFI_Plugfest_AMI_Spring_2017_Final.pdf

• Bluetooth feature 
created by AMI

• Allows the use of BT 
devices before 
ExitBootService( )

• BluetoothSMM



BIOS- Remote Attack surface

http://www.uefi.org/sites/default/files/resources/Tony%20Lo_UEFI_Plugfest_AMI_Spring_2017_Final.pdf

• AMI built their own WiFi
stack with additional 
features



HTTP and PXE boot
BIOS- Remote Attack surface

• Allows download of UEFI boot loader or 
ISO via HTTP(S)

• Checks signature before execution to 
allow Secure Boot



HP Intelligent Provisioning

BIOS- Remote Attack surface

• Built into HP servers
• Allows download of 

firmware/drivers from internet
• Simple configuration and installation 

of operating system



SMTP from UEFI
BIOS- Remote Attack surface

● Sends email from BIOS
● Can mount NTFS partitions
● Attach any file from HD to 

email
● Could be used maliciously



Remote Diagnostics Download and Execute

BIOS- Remote Attack surface
● Downloads UEFI 

executable from 
remote server over 
internet

● Can download tool 
from HP or custom URL

● Optionally upload 
results back to 
customer-provided URL



BIOS- Remote Attack surface

● Download updates from remote 
server over internet

● Multiple vendors have 
implemented this on their own

● What could go wrong?

UEFI updates over Internet



UEFI updates over Internet
BIOS- Remote Attack surface

● ASRock 
implementation



UEFI updates over Internet
BIOS- Remote Attack surface

● ASUS 
implementation

● Essentially the 
same functionality, 
implemented 
differently



● Can specify check frequency
● Can configure automatic 

download and installation

BIOS- Remote Attack surface
UEFI updates over Internet



Remote Update Vulnerabilities



Provide firmware updates for all affected systems disabling this functionality
Basically all recent motherboards had this vulnerability

Affected models:
● Intel 1151 (Skylake, Kaby Lake, Coffee Lake): 159 unique models
● Intel 1150 (Haswell, Haswell-WS, Broadwell): 109 unique models
● AMD AM4 (Excavator, Zen, Zen+) : 27 unique models

ASRock’s response to our vulnerability report:

Remote Update Vulnerabilities



ASUS’s response to our vulnerability report:

Remote Update Vulnerabilities



Exploit Walkthrough



Exploit Walkthrough



Exploit Walkthrough



Exploit Walkthrough



Exploit Walkthrough



Exploit Walkthrough



Exploit Walkthrough



Exploit Walkthrough



Exploit Walkthrough



Debugging System Firmware Exploits
● Intel Hardware Debug Interface

XDP (Old)                               CCA (Newer)                                 DbC (Current)
$3000                                            $390                                                   $15

Exploit Walkthrough



Exploit Walkthrough
Debugging System Firmware Exploits
● Intel System Debugger



Exploit Walkthrough
Debugging System Firmware Exploits
● Intel Debug Abstraction Layer



UEFI post-exploitation environment
● “Normal” shellcode won’t work
● No operating system = no syscalls

Exploit Walkthrough



UEFI post-exploitation environment
● Running as ring0
● No ASLR
● No stack canaries
● No memory protection
● Executable stack

Exploit Walkthrough



UEFI post-exploitation environment
● Can use Boot Services UEFI functionality
● Need to know how UEFI works internally

Exploit Walkthrough



UEFI post-exploitation environment
UEFI protocols
● Inter-component OOP mechanism 
● Identified by GUID
● One application/driver registers protocol interface using GUID
● Another app/driver finds protocol interface using GUID and 

calls functions in object

Exploit Walkthrough
GUID

PROTOCOL INTERFACE

PRIVATE DATA

FUNCTION POINTER 1
FUNCTION POINTER 2
FUNCTION POINTER 3
FUNCTION POINTER N



UEFI post-exploitation environment
Useful Boot Services functions
● LocateProtocol()

○ Finds a protocol by GUID
● LoadImage()

○ Loads a UEFI image into memory
● StartImage()

○ Transfers control to a loaded image’s entry point.

Exploit Walkthrough



NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP EGGHUNTER SHELLCODE RETURN ADDRESS

ON THE STACK

8-BYTE TAG LOAD & START IMAGE SHELLCODE ARBITRARY UEFI APPLICATION

ON THE HEAP
COPY & DECODE STUB

Exploit Walkthrough



NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP EGGHUNTER SHELLCODE RETURN ADDRESS

ON THE STACK

8-BYTE TAG LOAD & START IMAGE SHELLCODE ARBITRARY UEFI APPLICATION

ON THE HEAP
COPY & DECODE STUB

LOAD & START IMAGE SHELLCODE ARBITRARY UEFI APPLICATION

COPIED FROM HEAP TO SAFE LOCATION

Exploit Walkthrough



Potential UEFI security hardening

● Hardened paging configuration
● Stack canaries
● ASLR
● NX/DEP

Mitigations



Detecting the ASRock buffer overflow with YARA
rule ASRockUpdateOverflow 
{

strings:
$liveupdate = "LiveUpdate"
$urln = /<URL[0-9]+?.+?<\/URL[0-9]+?/

condition:
$liveupdate and for any i in (1..#urln) : ( !urln[i] > 260 )

}

Mitigations



Detecting the ASUS buffer overflow with YARA
rule ASUSUpdateOverflow 
{

strings:
$prod = "<product>"
$desc = “<~description>”
$ver = /<version>.+?</

condition:
$prod and $desc and for any i in (1..#ver) : ( !ver[i] > 260 )

}

Mitigations



Detecting UEFI/BIOS modification with CHIPSEC
Extract BIOS SPI flash from platform and create whitelist from contents:

# chipsec_main -m tools.uefi.whitelist

Generate whitelist from contents of uefi.rom:

# chipsec_main -i -n -m tools.uefi.whitelist -a generate,efilist.json,uefi.rom

Check contents of uefi.rom against whitelist:

# chipsec_main -i -n -m tools.uefi.whitelist -a check,efilist.json,uefi.rom

Detection



● System firmware is complex and highly privileged
● BIOS is hard to update, so done rarely
● Network functionality is being added in new and exciting places
● New features to make updates easier are also adding new exploit vectors

Conclusions



Questions?


