
REMOTE SENSING WITH DRONES

YNCenter Video Conference Chang Cao 08-28-2015

Drone remote sensing

- It was first utilized in military context and has been given great attention in civil use in recent years.
- Three Unmanned Aerial Systems (UAS) components:

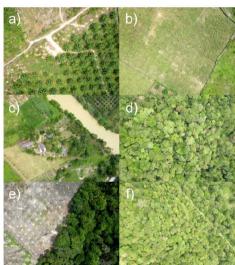
Source: Colomina et al. (2014)

Source: Hunt et al. (2010)

UAS classification

- aerial platform (size and weight, endurance, aerodynamics, etc.);
- the system operation (mission range or flying altitude, nature of its application, etc.)
- Cameras
- RGB; multi-spectral; hyperspectral and thermal-imaging camera

Manufacturer and model	Resolution (Mpx)	Size (mm ²)	Pixel size (µm)	Weight (kg)	Spectral range (nm)
Tertracam	CMOS	6.66	5.2	0.7	450-1050
MiniMCA-6	1.3	×5.32	×5.2		
Quest Innovations	CCD	10.2	7.5	0.8	400-1000
Condor-5 UAV-285	1.4	×8.3	×8.1		


Common and/or representative multispectral cameras for UAS.

Source: Colomina et al. (2014)

Pros and cons of UAV

• Pros:

- High spatial and temporal resolution
- Manually controlled (altitude, route...) not labor-intensive
- Rarely affected by cloud cover
- Cost-effective
- Flexibility

- Cons:
- Sensitive to wind

- Source: Lian et al. (2012)
- Poor geometric and radiometric performance
- Short flight endurance

4

Application of UAVs

- High resolution of digital elevation model
- Precision agriculture
- Water plant monitoring
- Forest inventory (gap vs biodiversity)
- Atmospheric science (aerosol)

Source: Lian et al. (2012)

Source: Getzin et al. (2012)

Objectives

- Exploring the image processing and analyzing techniques based on the data we have.
- Finding new points.

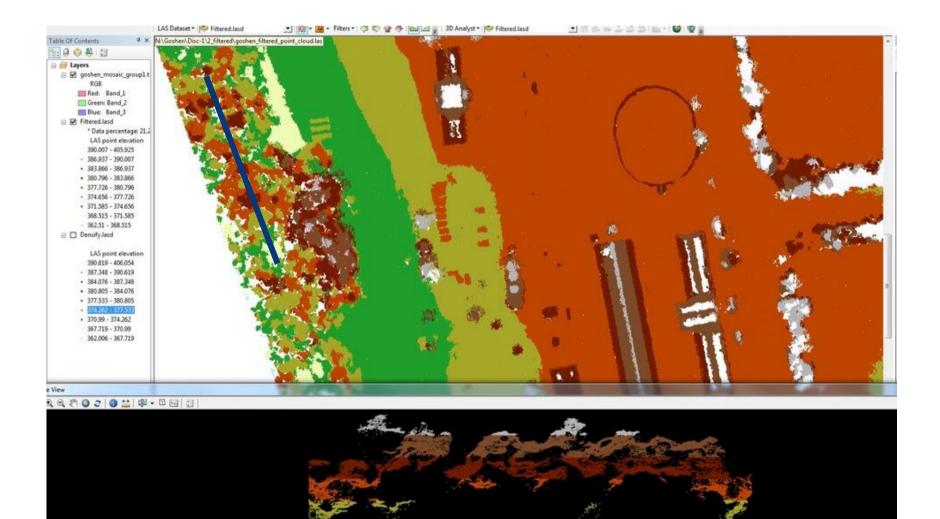
Data introduction

Name	Location	Time	Band	Point Cloud
Goshen	CT, US	Mar, 2014	R, G, B	Yes
Goshen_Nov_ RGB	CT, US	Nov,2014	R, G, B	Yes
Goshen_Nov_ NIR	CT, US	Nov, 2014	G,R, NIR	Yes
Cheshire	CT, US	Apr, 2015	G, R, Red edge, NIR	No
Maryland State Park	MD, US	Mar, 2015	No	Yes

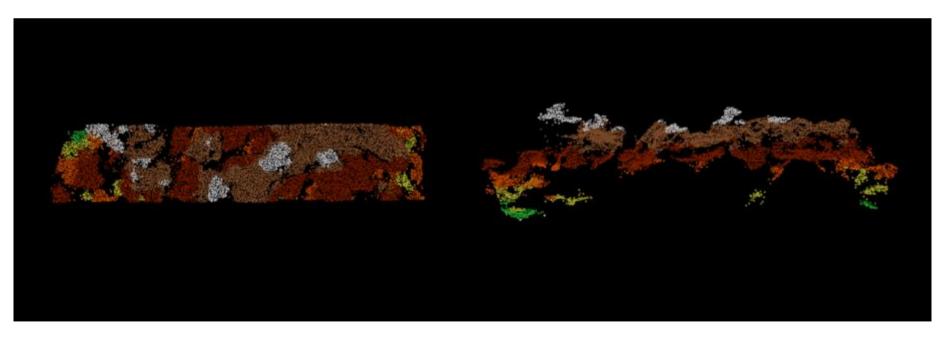
Goshen

Figure 1 | Goshen image

3D map in ENVI


3D map in ArcGis

The boundaries of road and trees are not clear.


28 August 2015

Point Cloud Visualization in ArcGIS

X-Z Plane

Goshen November

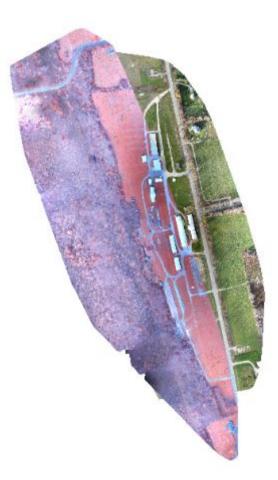
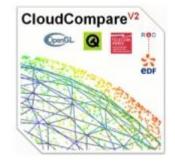



Figure 2 | Goshen images taken in Nov, 2014

3D view of Goshen images in CloudCompare

3D view of Goshen images (NIR)

Point cloud – remove things

Original image

Translated image

NDVI Goshen November

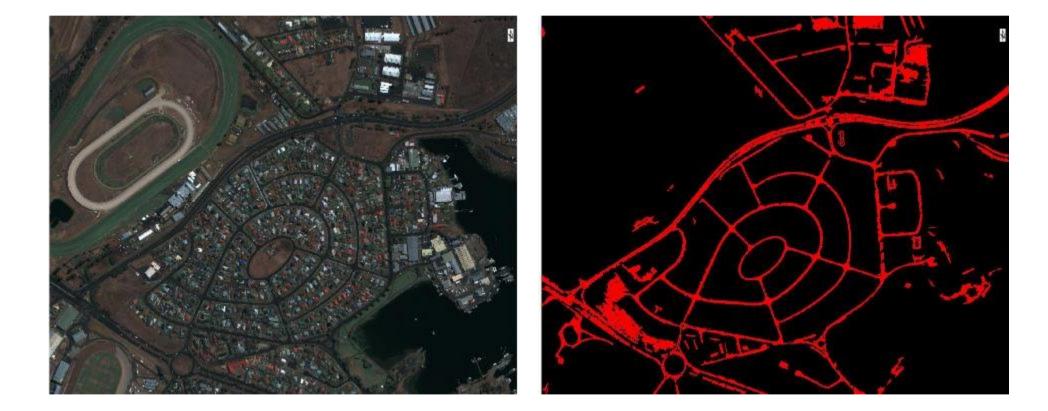
Red NIR Green

Linear 5% NDVI range: -0.2269 0.3561

Feature extraction module in ENVI

RED (0.6600)

GREEN (0.5600)

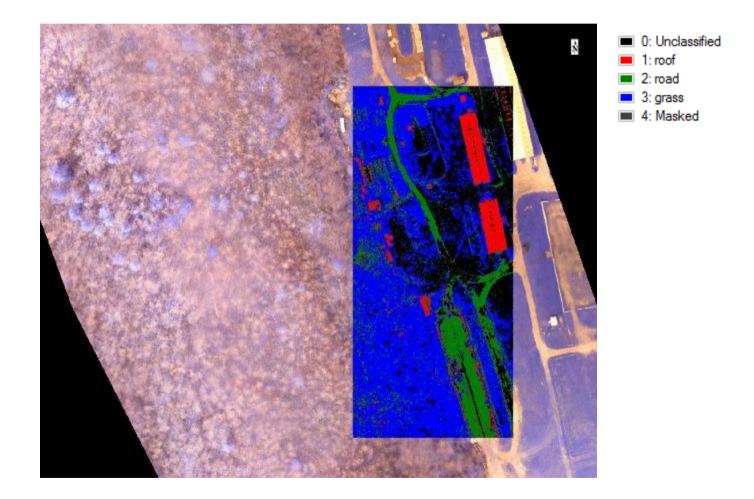


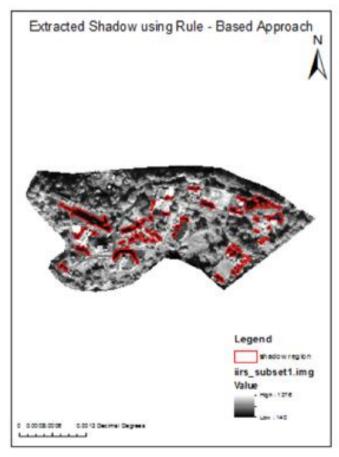
Example-based Classification

Rule-based Classification

Goshen-Extract roof (red)

Feature extraction on Goshen NIR image




Figure 3 | Example-based classification of roof

Rule-based feature extraction vegetation

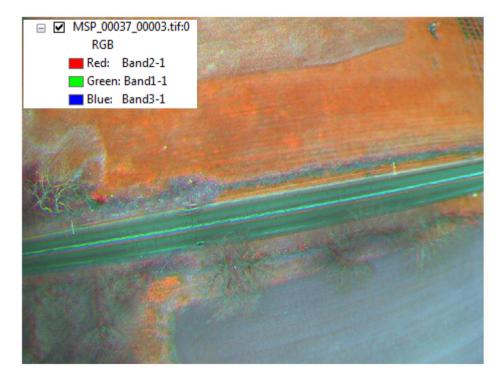
Rule: spectral mean of band 1(red): 57 to 160 spectral mean of band 2 (green): 57 to 149

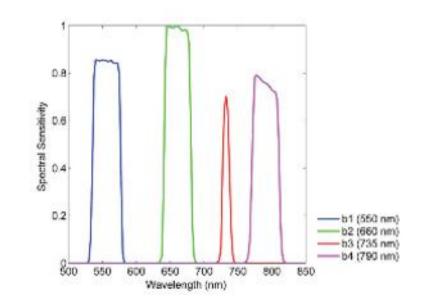
Extract shadow

Source: Raju et al, (2014)

Figure 4 | Rule-based classification of shadow for Goshen data (yellow represents shadow)

28 August 2015


Suppose building 1's height is unknown and that of building 2 is known (suppose it is 10m).


Using measuring tool in ENVI: Sl_{un}= 20.56m, sl= 14.04m H_{un} =(20.5648*10)/14.0357=14.65m

Cheshire image processing in Pix4D

- Camera: multiSPEC4C_3.6_1280*960
- (Exiftool)

Flight path (Pix4D)

Figure 5 | Flight path of Cheshire in Google map

Cheshire

Image bands separation (gdal_translate)

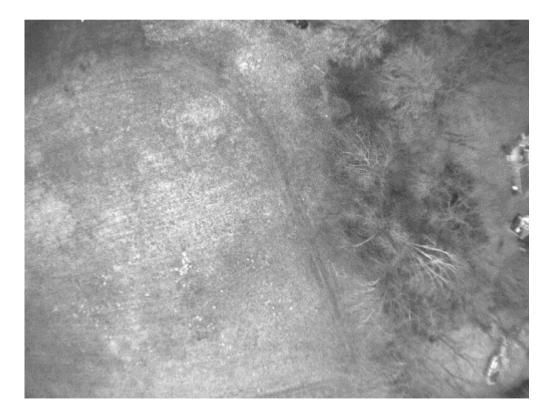


Figure 6 | Merged image of Cheshire red band

OpenDroneMap

- Install virtual machine (GitHub) and enter Linux command
- Input: UAV raw images (with geographic information)
- Output: point cloud; meshing data
- Example: Goshen November RGB Images (6 images)

0 0 0 0	using IMG_4663.jpg dimensions: 4272x2848 / focal: 28.0mm / ccd: 22.30
Expanding patches	
EXPANSION: 1 secs	using IMG_4669.jpg dimensions: 4272x2848 / focal: 28.0mm / ccd: 22.30
Total pass fail0 fail1 refinepatch: 1578 801 375 402 1203	
Total pass fail0 fail1 refinepatch: 100 50.7605 23.7643 25.4753 76.2357	using IMG_4672.jpg dimensions: 4272x2848 / focal: 28.0mm / ccd: 22.30m
FilterOutside	
mainbody:	using IMG_4675.jpg dimensions: 4272x2848 / focal: 28.0mm / ccd: 22.30m
Gain (ave/var): 1.36946 0.239593	using IMG_4678.jpg dimensions: 4272x2848 / focal: 28.0mm / ccd: 22.30
29820 -> 29820 (100%) 0 secs	
Filter Exact: ****	using IMG_4684.jpg dimensions: 4272x2848 / focal: 28.0mm / ccd: 22.30
29820 -> 29773 (99.8424%) 0 secs	
FilterNeighbor: 29773 -> 29655 (99.6037%) 0 secs	using IMG_4696.jpg dimensions: 4272x2848 / focal: 28.0mm / ccd: 22.30m
FilterGroups: 20	
29655 -> 29609 (99.8449%) 0 secs	using IMG_4702.jpg dimensions: 4272x2848 / focal: 28.0mm / ccd: 22.30r
STATUS: 314 0 38953 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0	using IMG_4708.jpg dimensions: 4272x2848 / focal: 28.0mm / ccd: 22.30r
0 0 0 0 0 0 0 0	
	using IMG_4711.jpg dimensions: 4272x2848 / focal: 28.0mm / ccd: 22.30m
Total: 0 secs	using IMG_4714.jpg dimensions: 4272x2848 / focal: 28.0mm / ccd: 22.30
	using Im_4 (14.)pg Im_6 (1.) Im_6 (22.30)
- running meshing - Thu Aug 6 22:15:43 UTC 2015	found 11 usable images
	using max image size of 2400 x 2400
	- preparing images - Thu Aug 6 22:01:44 UTC 2015
- running texturing - Thu Aug 6 22:16:16 UTC 2015	
	resizing IMG_4663.jpg to /vagrant_data/odm_data/pacifica/reconstruct:
	n-with-image-size-2400/IMG_4663.jpg (2400 x 1600)
	resizing IMG_4669.jpg to /vagrant_data/odm_data/pacifica/reconstruct:
- running georeferencing - Thu Aug 6 22:26:48 UTC 2015	n-with-image-size-2400/IMG 4669.jpg (2400 x 1600)
running georererencing - Thu Hug 6 22:26:46 OTC 2013	resizing IMG_4672.jpg to /vagrant_data/odm_data/pacifica/reconstruct
	n-with-image-size-2400/IMG_4672.jpg (2400 x 1600)
Warning: No GCP file. Consider rerunning with argumentodm_georeferencing-useG	resizing IMG_4675.jpg to /vagrant_data/odm_data/pacifica/reconstruct:
cp falsestart-with odm georeferencing % in argument odm_georeferencing used	n-with-image-size-2400/IMG_4675.jpg (2400 x 1600)
Compressing results - Thu Aug 6 22:26:48 UTC 2015	resizing IMG_4678.jpg to /vagrant_data/odm_data/pacifica/reconstruct:
compressing results interacy of 22.20.40 of 2013	n-with-image-size-2400/IMG_4678.jpg (2400 x 1600)
	resizing IMG_4684.jpg to /vagrant_data/odm_data/pacifica/reconstruct: n-with-image-size-2400/IMG 4684.jpg (2400 x 1600)
	n-with-image-size-2400/IMG_4684.jpg (2400 x 1600) resizing IMG_4696.jpg to /vagrant_data/odm_data/pacifica/reconstruct:
	$resizing ind_reso.jpg (2400 \times 1600)$ $n-with-image-size-2400/IMG_4696.jpg (2400 \times 1600)$
- done - Thu Aug 6 22:26:51 UTC 2015	resizing IMG_4702.jpg to /vagrant_data/odm_data/pacifica/reconstruct:
done find hug o EE.EO.OF oro Eoro	p-with-image-size-2400/IMG 4702 ipg (2400 × 1600)

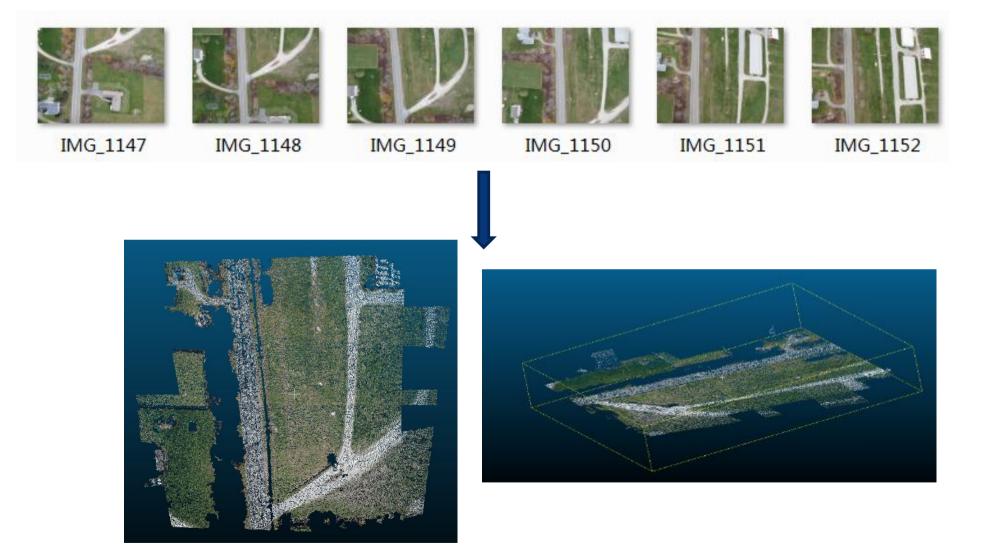


Figure 7 | Cloud point data generated from OpenDroneMap

Next work

- New index
- Image interpretation combined with field measurement
- New function exploration of UAV softwares

able 1. Secure ladies and in the mean state exclusion wine MCA corres or of hards

Index	Equation	References Broge and Leblane (2001)	
Chlorophyll absorption ratio	$CAR = \frac{[(8700 - 8300) + 6701 + 8200 - (8230 - (8230 + 8200 + 623) + 3200]}{\sqrt{((8700 - 8200) + 6200) + 6200]}}$		
Chlorophyll absorption ratio	$CAR1 = CAR^{+\frac{200}{2600}}$	Kim et al. (1994); Broge and Leblanc (2001)	
Greenness index	$GI = \frac{PSP}{PSD}$	Zarco-Tejada et al. (2005a, b)	
Green normalized difference vegetation index	GNDVI	Gitelson and Merzlyak (1998)	
Modified chlorophyll absorption in reflectance	MCARI = [(R700 - R670) - 0.2 * (R700 - R550)] * (R700/R670)	Daughtry et al. (2000)	
Modified chlorophyll absorption in reflectance	MCARI1 = 1.2 * [2.5 * (R800 - R670) - 1.3 * (R800 - R550)]	Haboudane et al. (2004)	
Modified chlorophyll absorption in reflectance	$MCARI2 = \frac{12 \cdot [23 \cdot (800 - 457)(-1.2 \cdot (600 - 455))]}{\sqrt{(2 \cdot 800 + 1)^2 - 6 \cdot (800 - 50070) - 0.5}}$	Haboudane et al. (2004)	
Improved SAVI (soil-adjusted VI) with self-adjustment factor L	$MSAVI = \frac{1}{2} * \left(2 * R800 + 1 - \sqrt{(2 * R800 + 1)^2 - 8 * (R800 - R670)} \right)$	Qi er al. (1994)	
Modified simple ratio	$MSR = \frac{(800)(800)-1}{\sqrt{(800)(800)+1}}$	Chen (1996)	
Modified triangular VI	MTVI3 = 1.2 + [1.2 + (R800 R550) 2.5 + (R670 R550)]	Rodríguez-Pérez et al. (2007)	
Normalized difference vegetation index	NDVI - 3802-8000	Rouse et al. (1974)	
Optimized soil-adjusted vegetation index	OSAVI = (1 + 0.16) * (8800 - 8670) / (8800 - 8670 - 0.16)	Rondeaux et al. (1996)	
Simple ratio index	$SRI = \frac{RE}{RE}$	Jordan (1969)	
Photochemical reflectance index	$PRI = \frac{PTO - RTN}{PTO - RTN}$	Fuentes et al. (2001); Gamon and Surfus (1999)	
Renormalized difference VI	$RDVI = \frac{8901-9000}{3800-9970}$	Reujean and Breen (1995)	
Transformed chlorophyll absorption in reflectance	$\text{TCAR1} = 3 \times [(R700 - R670) - 0.2 \times (R700 - R550) \times (R700/R670)]$	Habeudane et al. (2002)	
TCARI/OSAVI	$TCARDOSAVI = \frac{3 + [(\pi 300 - 35 \times 1) - 0.2 + [(\pi 300 - 35 \times 2) + (\pi 300 + 35 \times 1)]}{((+0.16) + (\pi 300 - 35 \times 2) \times ((\pi 300 + 35 \times 1) + (15))}$	Haboudanc et al. (2002)	

Source: Javier et al. (2012)

