

# 7<sup>th</sup> International Symposium for Wetland Pollutant Dynamics and Control (WETPOL)

# REMOVAL PERFORMANCE AND CLOGGING INVESTIGATION OF AN HYBRID TREATMENT WETLAND IN MEDITERRANEAN AREA

Barbagallo S.<sup>(a)</sup>, Cirelli G.L.<sup>(a)</sup>, Consoli S. <sup>(a)</sup>, Marzo A.<sup>(b)</sup>, Milani M.<sup>(a)</sup>

(a) Department of Agri-food and Environmental Systems Management, University of Catania, Italy (b) Centro Universitario per la Tutela e la Gestione degli Ambienti Naturali e degli Agroecosistemi (CUTGANA), University of Catania, Via Santa Sofia 100, Catania, 95123, ITALY

August 21st-26th 2017 Big Sky Resort, Montana, USA

#### Objectives





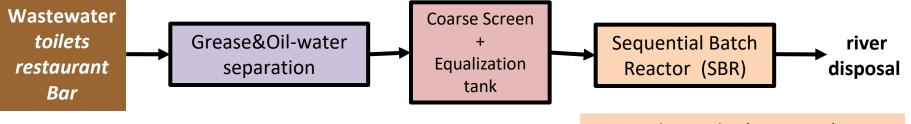
Evaluate the reliability of a **hybrid-TW system** (which includes three beds in series - one horizontal, HF and two vertical beds, V1 and V2) used as secondary wastewater treatment system of a retail store (IKEA) in South Italy, in term of:

- removal efficiency (based on physical-chemical and bacteriological concentration of the wastewater with respect to Italian Regulation for wastewater discharge into water bodies (LD 152/06) and agricultural reuse (MD 185/03);
- potential clogging risk by:
  - $\square$  hydraulic conductivity measurements in situ ( $K_s$ )
  - ☐ flow paths visualization by means of tracer tests
  - 2-D electrical resistivity tomography (ERT) imaging



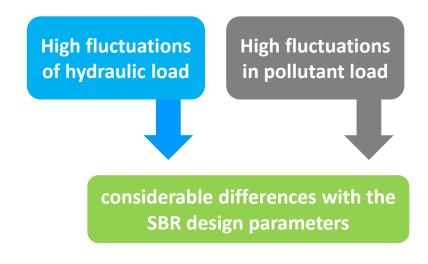
#### Area location: IKEA store







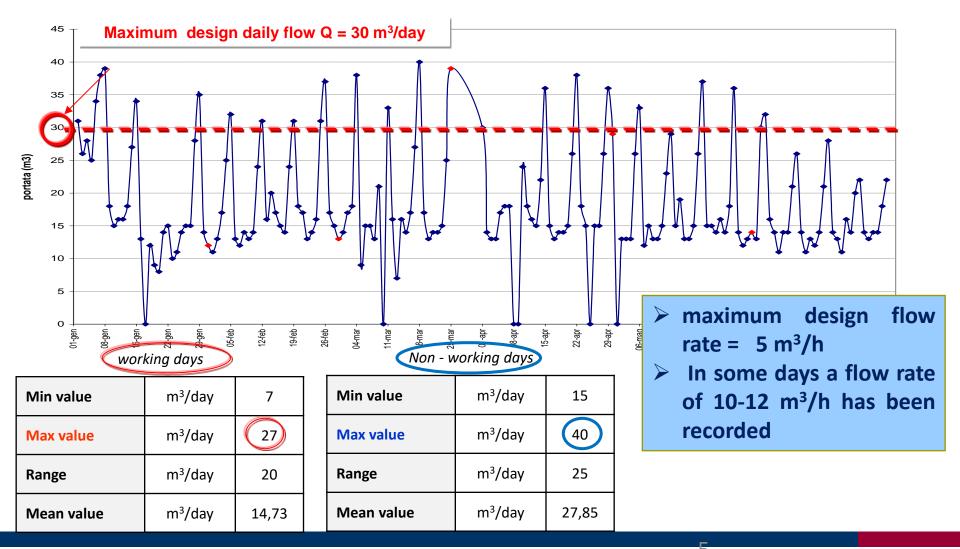

- Restaurant, bar, toilets
- □ ~ 300 employees
- □ ~ 6.000 visitors per day
- over 16.000 visitors on Sunday/ holydays (23.000 visitors on Dec 8<sup>th</sup> 2016)
- ~ 800 meals served per day (up to 2.000 per day)




#### Onsite wastewater treatment plant



- 2 cycles per day (2013-2014)
- 3 cycles per day (2015- April 2017)
- 4 cycles per day (since April 2017)

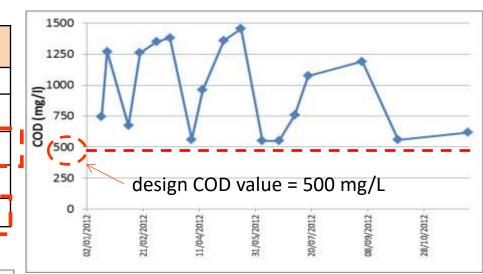

| SBR Design Parameters   | Unit   | Values |  |
|-------------------------|--------|--------|--|
| Maximum daily flow (Qi) | m³/day | 30     |  |
| Mean flow (24 hours)    | m³/day | 1,3    |  |
| TSS                     | mg/L   | 350    |  |
| COD                     | mg/L   | 500    |  |
| BOD                     | mg/L   | 300    |  |
| Total Nitrogen          | mg/L   | 135    |  |
| Total Phosphorus (P)    | mg/L   | 15     |  |

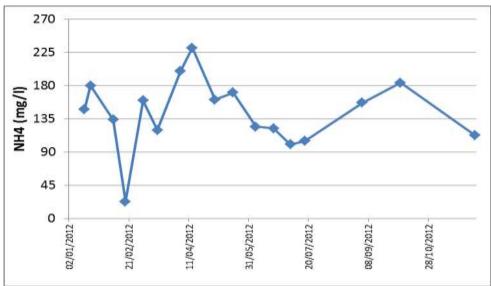




#### Wastewater volume

The daily wastewater volume from toilets, showers, kitchen sinks, ecc. has been measured by two flow meters.




(WETPOL), 21-25 August 2017, Montana, USA

## Rough wastewater characteristics

| Parameters                  | Units | Min | Max  | Mean                |
|-----------------------------|-------|-----|------|---------------------|
| SST                         | mg/L  | 68  | 200  | 140                 |
| BOD₅                        | mg/L  | 295 | 980  | <u>5</u> 3 <u>2</u> |
| COD                         | mg/L  | 600 | 1450 | 940                 |
| Total phosphorus            | mg/L  | 12  | 23   | 17                  |
| Ammonium (NH <sub>4</sub> ) | mg/L  | 20  | 231  | 114                 |







Design concentration of Total Nitrogen was 135 mg/L



#### Layout of Hybrid CW plant (implemented in June 2014)



#### Wetland characteristics: HF

| Constructed wetland | Aroa         | W  |          | 0     | Gravel macrophytes |              |         | ophytes                   |   |
|---------------------|--------------|----|----------|-------|--------------------|--------------|---------|---------------------------|---|
|                     | Area<br>(m²) |    | (m³/day) | Type  | size<br>(mm)       | depth<br>(m) | species | Density<br>(rhizomes /m²) |   |
| HF (I stage)        | 400          | 12 | 34       | 45-50 | Volcanic<br>gravel | 8-15         | 0.6     | Phragmites<br>australis   | 4 |











#### Wetland characteristics: VF

| Constructed Area wetlands m <sup>2</sup> |     | Flow rate                       | HLR<br>(m³/m²/day) | Gravel             |              |               | macrophytes                         |                           |  |
|------------------------------------------|-----|---------------------------------|--------------------|--------------------|--------------|---------------|-------------------------------------|---------------------------|--|
|                                          |     | Flow rate<br>(m³)               |                    | Туре               | size<br>(mm) | depth<br>(cm) | species                             | Density<br>(rhizomes /m²) |  |
| VF1 (II stage)                           | 520 | ≈ 8÷10 m³<br>6 times<br>per day | ≈ 0.09             | Volcanic<br>Sand   | ~ 5-15       | ~ 45          | Cyperus Papyrus<br>Canna Indica L.  | 2.5                       |  |
| VF2 (III stage)                          | 530 | (every 4<br>hours)              | ~ 0.09             | Volcanic<br>Gravel | 25-40        | 30            | Typha latifolia<br>Iris pseudacorus | 2.3                       |  |





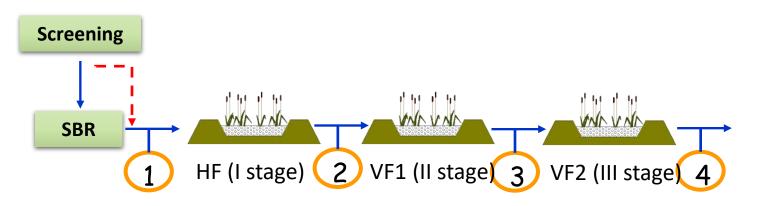











# Methodology

REMOVAL PERFORMANCE AND CLOGGING INVESTIGATION OF AN HYBRID
TREATMENT WETLAND IN MEDITERRANEAN AREA



#### Removal efficiency

- Wastewater sampling period:
  - from January 2015 -May 2017 at 30-day intervals
- Wastewater sampling points:

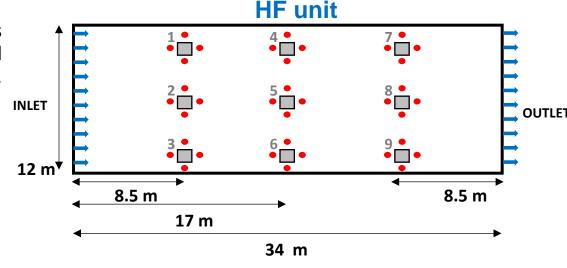


#### Legend

- 1: CWs inlet
- 2: HF outlet
- 3: VF<sub>1</sub> outlet
- 4: VF<sub>2</sub> outlet

- Wastewater analysis:
  - physicochemical parameters (mg/L): TSS, BOD<sub>5</sub>, COD, NH<sub>4</sub>, Ptot
  - microbiological parameter (Ulog): E. Coli, Salmonella




- hydraulic conductivity at saturation (K<sub>s</sub>) in situ
- flow paths visualization by means of tracer tests
- 2-D electrical resistivity tomography (ERT) imaging

#### Measurements:

- <u>hydraulic conductivity</u> (m d<sup>-1</sup>) was measured using the falling-head test method (NAVFAC, 1986, Pedescoll et al., 2009)
- 36 measurement points

#### Monitoring campaigns:

- **2016 2017**
- one survey per year



- 36 sampling points for hydraulic conductivity
- N. piezometers

<sup>•</sup>A. Pedescoll, E. Uggetti, E. Llorens, F. Granés, D. García, J. García. (2009). Practical method based on saturated hydraulic conductivity used to assess clogging in subsurface flow constructed wetlands



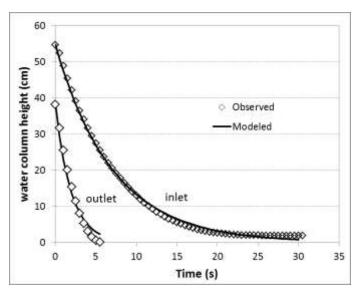
<sup>•</sup> NAVFAC, 1986. Soil Mechanics. Design Manual 7.01. Naval Facilities Engineering Command. Alexandria, Virginia, USA, 389 pp.

- hydraulic conductivity at saturation (K<sub>s</sub>) measurements in situ
- ☐ flow paths visualization by means of tracer tests
- 2-D electrical resistivity tomography (ERT) imaging

In each point: a steel tube, was inserted into the wetted material and was filled with water in a pulse

mode using a bucket.




a pressure probe, connected to laptop, measured and record automatically pressure variatic proportional to the water columbine

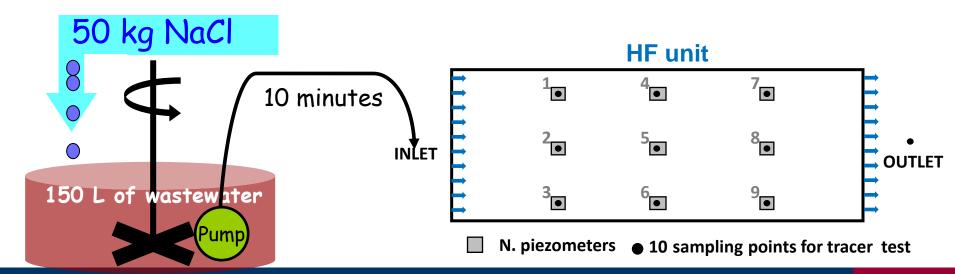
20 cm

a small hole was dug in the granular medium until the water level was reached



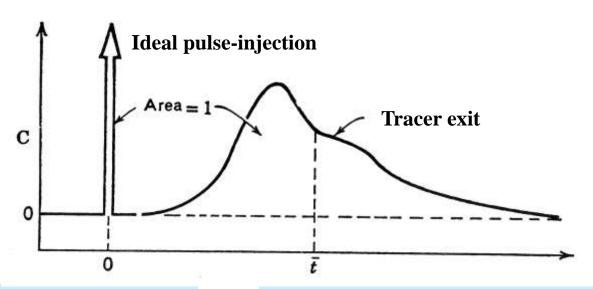
- hydraulic conductivity at saturation (K<sub>s</sub>) measurements in situ
- ☐ flow paths visualization by means of tracer tests
- 2-D electrical resistivity tomography (ERT) imaging
- $\square$  Combining the observed measurements and the geometric characteristics of the tube, **Saturated hydraulic conductivity** ( $K_s$ ) was determined according to Lefranc's formula:




Diameter of permeameter Water height at time zero  $K_S = \frac{d^2 \ln{(2L/d)}}{8Lt} \ln{\frac{h_1}{h_2}}$  e tube Water height at time t

length of the submerged part of the tube (perforated zone)




#### Clogging investigation: HF unit - tracer tests

- ☐ hydraulic conductivity at saturation (Ks) measurements *in situ*
- ☐ flow paths visualization by means of tracer tests
- 2-D electrical resistivity tomography (ERT) imaging
- □ Tracer: 50 kg sodium chloride (NaCl) dissolved in 150 L
- Measurements:
  - <u>electrical conductivity</u> (S·m<sup>-1</sup>) was measured and recorded automatically by a probe with a data logger (Delta OHM-HD 2106.2) at the wetland outlet and in the piezometers
  - 10 measurement point
- Monitoring campaigns: 2016 2017 one tracer test per year





#### Residence Time Distribution (Levenspiel, 1972)



$$f(t) = \frac{C(t)}{\int\limits_{0}^{\infty} C(t)dt}$$

$$\tau = \int_{0}^{\infty} t \cdot f(t) dt = \frac{\int_{0}^{\infty} t \cdot C(t) dt}{\int_{0}^{\infty} C(t) dt}$$

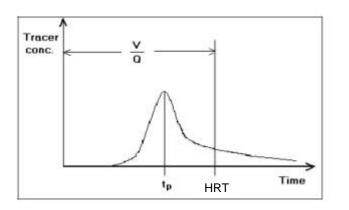
$$\sigma^{2} = \int_{0}^{\infty} (t - \tau)^{2} \cdot f(t) dt = \frac{\int_{0}^{\infty} (t - \tau)^{2} \cdot C(t) dt}{\int_{0}^{\infty} C(t) dt}$$

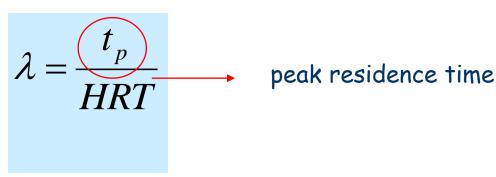
$$\sigma_{\theta}^2 = \frac{\sigma^2}{\tau^2}$$

Actual residence times (first absolute moment )

variance (second absolute moment)

dimensionless variance





#### Dispersion Number (D) and hydraulic efficiency

□ The equation for D (Dispersion Number) estimation, by trial and error, was:

dimensionless variance 
$$\sigma_{\theta}^{2} \neq 2D - 2D^{2} \left[1 - \exp(\frac{1}{D})\right]$$
 Dispersion number

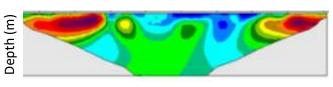
The hydraulic efficiency of wetlands (λ) was determined according to Persson et al. (1999)



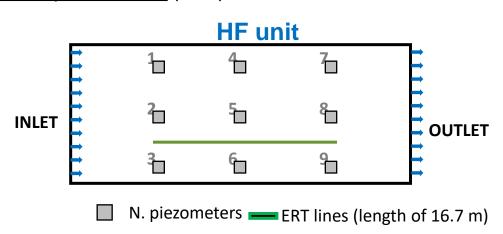


#### Clogging investigation: HF unit - ERT surveys




- hydraulic conductivity at saturation (Ks) measurements in situ
- ☐ flow paths visualization by means of tracer tests
- □ 2-D electrical resistivity tomography (ERT) imaging

#### Measurements:


- 168 superficial electrodes, spacing 10 cm, 2 m far from the inlet for a total length of 16.7 m
- electrical resistances values (ohm,  $\Omega$ ) were measured by a resistivity meter (dipole-dipole scheme) through electrical resistivity tomography technique (ERT, Binley and Kemna, 2005) and inverted to calculate the electrical resistivity distribution ( $\Omega$  m)

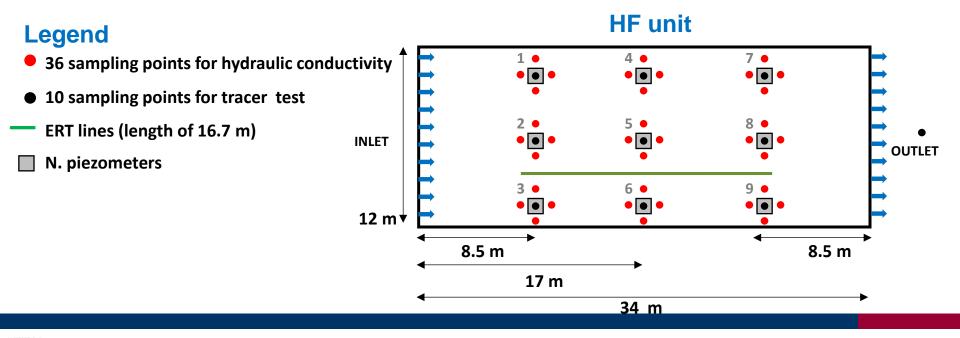
#### Monitoring campaigns:

- **2017**
- two surveys (ERT1 and ERT2)



electrical resistivity distribution ( $\Omega$  m)



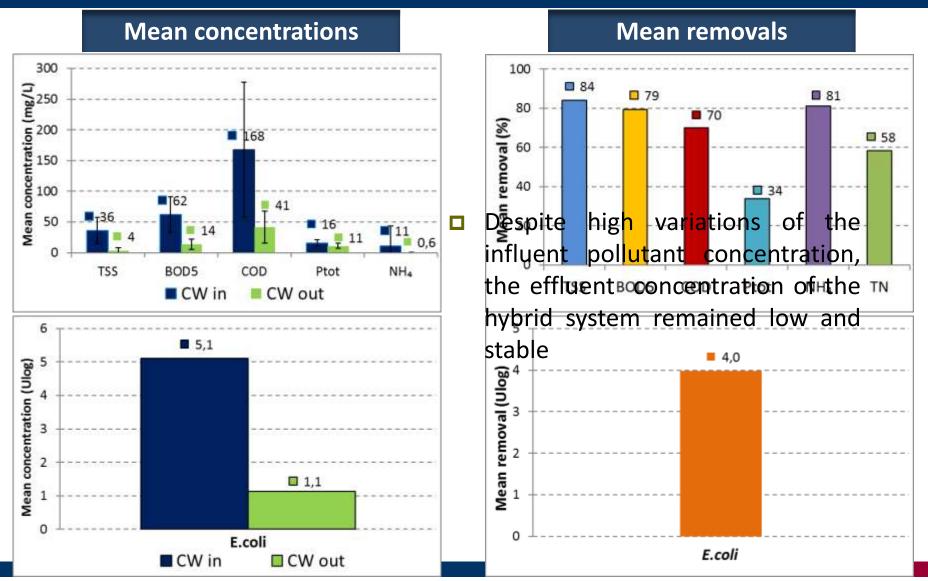

•Binley, A.M., and Kemna, A., (2005). DC resistivity and induced polarization methods. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Water Sci. Technol. Library, Ser. 50. Springer, New York, pp 129–156



## Clogging investigation: HF unit

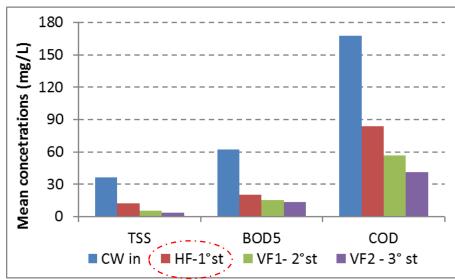
- hydraulic conductivity at saturation (K<sub>s</sub>) measurements in situ
- flow paths visualization by means of tracer tests
- □ 2-D electrical resistivity tomography (ERT) imaging

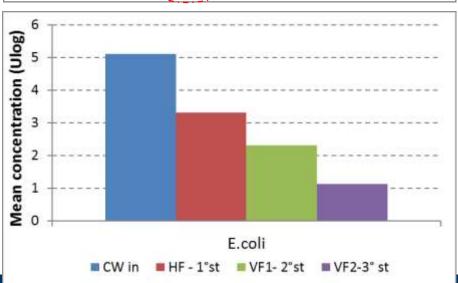
Setup of the HF unit with the indication of the measurements points

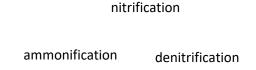





# Results


REMOVAL PERFORMANCE AND CLOGGING INVESTIGATION OF AN HYBRID TREATMENT WETLAND IN MEDITERRANEAN AREA


## hybrid CW performance






## hybrid CW performance









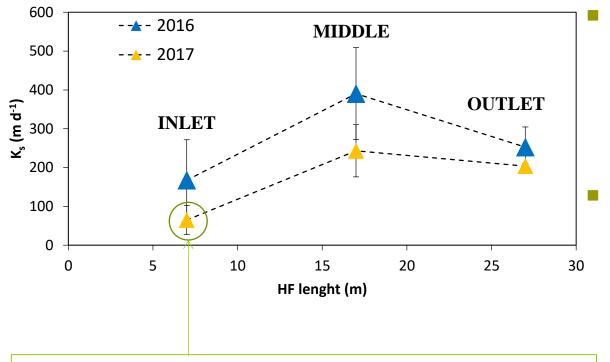
- the main part of BOD<sub>5</sub>, COD and TSS removal occurs in the 1st stage (HF)
- ammonification of N-org and the denitrification of the nitrates occurs effectively throughout the HF bed.
- the freshly formed ammonia is then almost completely oxidised by the two VF beds → high concentration of NO3 in the final effluent
- a progressive reduction in the concentrations of *E. coli*:
   1.8 Ulog decrease between the inlet and the HF outlet, and a further 1.0 Ulog and 1.2 decrease after VF1 and VF2 treatment



## Italian WW law limits for discharge and reuse

|                  | WW Italian limits to      | WW Italian limits | Hybrid CW out                   |  |  |  |  |  |
|------------------|---------------------------|-------------------|---------------------------------|--|--|--|--|--|
| Parameters       | discharge in surface      | for agriculture   | % samples under % samples under |  |  |  |  |  |
|                  | water body                | reuse             | discharge limits reuse limits   |  |  |  |  |  |
| TSS              | 80 mg/L                   | 10 mg/L           | 100 93                          |  |  |  |  |  |
| BOD <sub>5</sub> | 40 mg/L                   | 20 mg/L           | <b>100</b> 82                   |  |  |  |  |  |
| COD              | 160 mg/L                  | 100 mg/L          | 100 100                         |  |  |  |  |  |
| NH4              | 15 mg/L                   | -                 | 100 -                           |  |  |  |  |  |
| NO3              | 20 mg/L                   | -                 | 41 -                            |  |  |  |  |  |
| NO2              | 0,6 mg/L                  | -                 | 100 -                           |  |  |  |  |  |
| TN               | -                         | 35                | - 100                           |  |  |  |  |  |
| TP               | 10 mg/L                   | 10 mg/L           | 100 100                         |  |  |  |  |  |
|                  |                           | 50                | 50                              |  |  |  |  |  |
| F soli           | 5000                      | UFC/100 mL (2)    |                                 |  |  |  |  |  |
| E. coli          | UFC/100 mL <sup>(1)</sup> | 200               | 100                             |  |  |  |  |  |
|                  |                           | UFC/100 mL (3)    | 75                              |  |  |  |  |  |

<sup>(1)</sup> Recommended value for P.E > 2000;


(2) Maximum value to be detected in 80% samples

(3) maximum limit;

In May 2017, after an hydraulic setup of feeding operation the limits for irrigation reuse were achieved on 100% of samples (DATA NOT SHOWN)

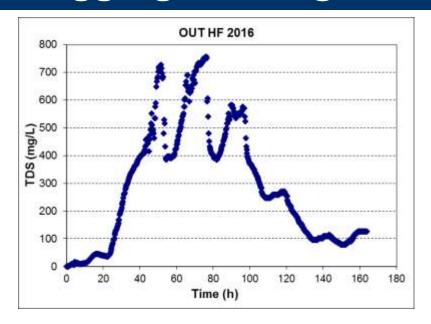


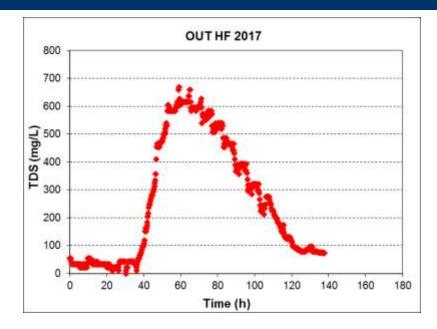
Average saturated **hydraulic conductivity** values along the length of HF wetland in 2016 and 2017



In 2017 **Ks** values at the **inlet zone** were about 1 order magnitude **lower** respect those of the other transects, as a consequence of clogging of the granular medium

**Similar trend** to both surveys, K<sub>s</sub> values tend to increase from the inlet to the central part of the bed (e.g. about half of the unit length) and to decrease a little bit at the HF outlet;


In 2017, a general sharp decrease in  $K_s$  was observed respect to 2016.


$$Ks_{2016} = 270.3 (\pm 127.3) \text{ m/d}$$

$$Ks_{2017} = 170.5 (\pm 89.8) \text{ m/d}$$

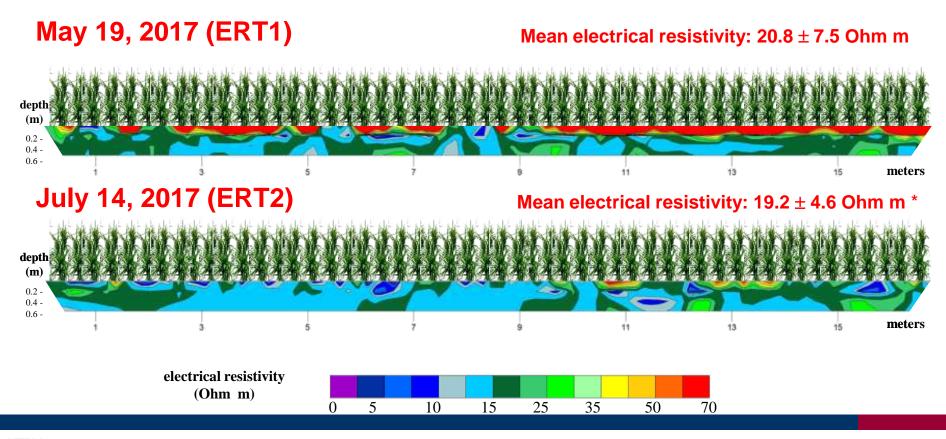


#### Clogging investigation: HF unit – Tracer test





#### good hydraulic efficiency as values are $0.5 \le \lambda < 0.75$


|      | Bed characteristics    |              |                  |             |            | Momen    | t analy               | sis result | ts   |
|------|------------------------|--------------|------------------|-------------|------------|----------|-----------------------|------------|------|
|      | Operation time (years) | Area<br>(m²) | Nominal porosity | Q<br>(m3/h) | HRT<br>(h) | τ<br>(h) | t <sub>p</sub><br>(h) | · (%)      | D    |
| 2016 | 2                      | - 400        | 0.47             | 1,1         | 88         | 74       | 51                    | 0,58       | 0,07 |
| 2017 | 3                      | - 400        | 0.47             | 1,0         | 92         | 89       | 59                    | 0,64       | 0.05 |

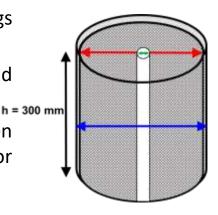
significant degree of deviation from PF, D > 0.025

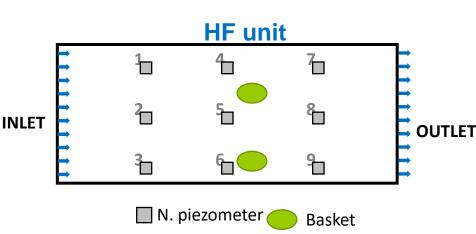


# 2-D electrical resistivity tomography (ERT)

Overall, ERT patterns in the two tests are very similar, although in ERT1 the resistivity values are higher on the surface and therefore indicate the presence of unsaturated zones (the first 15 cm) of the substrate. But these zones could be also "death zones" due to the clogging or the effect of water uptake by root apparatus. In the ERT2 test, the lower resistivity values indicate a greater presence of water and/or sediments.






#### WORK IN PROGRESS

#### Clogging investigation: K<sub>s</sub> measurements

- 4 mobile baskets (28 cm in diameter, 30 cm in height and laterals with openings spaced at 0.5 x 0.5 cm) were inserted within a HF.
- □ They were filled with the same substrate and painted in the same way of HF and remained inserted in the wetland bed at the same height
- They were positioned at 22 m from the inlet of the units since May 2017, then will be removed from wetland and will be taken to the laboratory for measurement of ks







Barreto A. B. , Vasconcellos G. R., M. von Sperling, Kuschk P. , Kappelmeyer U. and Vasel J. L. (2015) Field application of a planted fixed bed reactor (PFR) for support media and rhizosphere investigation using undisturbed samples from full-scale constructed wetlands. © IWA Publishing 2015 Water Science & Technology | 72.4 | 2015



#### Conclusions

- The hybrid constructed wetland (horizontal subsurface flow + vertical subsurface flow + vertical subsurface flow) system, built for the treatment of wastewater produced by IKEA in Catania, efficiently removed main pollutants and it has been able to manage the pollutant load and hydraulic peaks.
- The hybrid constructed wetland was able to achieve high disinfection level (up to 4 Ulog), satisfactory removal of organic content and suspend solid (up to 70%) and good nitrification level (80%).
- □ The design system tested has proven to be a reliable treatment for the decentralised wastewater treatment (wastewater discharge and irrigation reuse standards almost satisfied)
- The assessment of the clogging risk of the TW system, by methods based on Ks measurements, tracer tests and ERT provide useful information. But in some cases they don't fit in the same direction. Some of these methods are "time consuming" and may cause some disturbance of the TW beds, the minimally invasive ERT techniques could be a valid alternative, however further investigations are needed.



7<sup>th</sup> International Symposium for Wetland Pollutant Dynamics and Control (WETPOL)

# Thank you for your attention!!!

# Giuseppe Cirelli

giuseppe.cirelli@unict.it

22-26 August 2017 Big Sky Resort, Montana, USA