Renal Disease and PK/PD

Anjay Rastogi MD PhD Division of Nephrology

Drugs and Kidneys

- Kidney is one of the major organ of drug elimination from the human body
- Renal disease and dialysis alters the pharmacokinetics and pharmacodynamics of most commonly used drugs
- Polypharmacy is common in renal disease patients with a median of 8 drugs being used
- Patients with renal disease on an average suffer from adverse effects as compared to the general population

Renal Disease and Drugs

Decreased elimination
 Uremic effects
 Nephrotoxicity

Estimation of renal function
Effect of renal disease on PK and PD
Drug Nephrotoxicity
Management of poisoning

Nephron

Filtration

Kidney regulates:

- Water

- Acid-base balance
- Electrolytes
- Nitrogenous waste excretion

Reabsorption

Secretion

GFR as an Indicator of Kidney Function

- GFR is an important indicator of CKD
- Reduced GFR in patients with renal disease results from irreversible loss of nephrons^{1,2}
 - Greater burden is placed on remaining nephrons
 - Hyperfiltration predisposes to further nephron destruction
- 50% of nephrons can be lost without functional impairment¹
- Patients may still be asymptomatic, but are progressing toward end-stage chronic renal failure¹

Ix JH et al. Lange Pathophysiology. Lange Medical Books/McGraw Hill, Medical Publishing Division; 2006:456-481;
 Eaton DC et al. Vander's Renal Physiology. Lange Medical Books/McGraw Hill, Medical Publishing Division; 2004:24-36.

Defining GFR

Glomerular filtration

- Process by which water and solutes in the blood pass from the vascular system through a filtration barrier into Bowman space
- This filtrate is similar to blood plasma, with large plasma proteins excluded
- GFR
 - Volume of filtrate formed per unit of time
 - Normal young adult male: 180 L/d (125 mL/min/1.73 m²)
 - Entire plasma volume is filtered by kidneys 60 times per day

Factors Affecting GFR

Direct determinants of GFR

- Permeability of capillaries and surface area (filtration coefficient)
- Net filtration pressure (hydrostatic pressure in capillaries and in Bowman capsule, and glomerular capillary osmotic pressure resulting from proteins)

Other factors that affect GFR

- Changes in renal arterial pressure, renal arteriolar resistance (dilation or constriction), and renal plasma flow
- Intratubular pressure—obstruction of tubule or urinary system

JGA

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Estimation of GFR

Inulin clearance
Iothalamate scans
24 hour urine collection
eGFR
Creatinine

GFR versus Serum Creatinine

GFR versus Serum Creatinine

GFR versus 24 hr Creatinine Clearance

Available at: http://medical.dictionary.thefreedictionary.com/. Accessed on March 1, 2005. Johnson R, et al. *Comprehensive Clinical Nephrology*. 2000. Mosby. St. Louis. 4.15.1–4.15.15.

GFR Equations Compared

Cockcroft-Gault

MDRD

186.3 x PCr^{-1.154} x age^{-0.203} x

(1.212

if black)

х

(0.742)

if female)

[140 - age] x weight (kg) x (0.85 symbol for female) [72 x PCr]

6 variable: Cr, BUN, age, alb, race, sex 4 variable: Cr, age, race, sex

Pharmacokinetics

Pharmacokinetics

 Absorption and bioavailability
 Drug distribution Volume of distribution Protein binding
 Biotransformation and drug metabolism
 Elimination

Figure 101.1 The passage of a drug through the body.

Bioavailability

Proportion of oral drug reaching systemic circulation Affected by Intestinal and drug permeability First pass effect Gut motility pН

Effect of urea on gastrointestinal absorption

Figure 101.2 Effect of urea levels on gastrointestinal absorption.

Effect of food and phosphate binders on drug absorption

Drugs	Effect of Food
Acetaminophen, aspirin, digoxin	Decreased/delayed drug absorption
ACE inhibitors (captopril and moexipril)	Significant decrease in serum drug levels
Fluoroquinolones and tetracycline	Avoid taking with phosphate binders, antacids and iron products; significantly decreased drug absorption
Lovastatin, spironolactone	Food, especially high-fat meals, improves drug absorption; take with food or within 2 hours of a meal
Famotidine	Decreased/delayed drug absorption
Verapamil	Decreased pharmacodynamic effects with calcium-based phosphate binders
lron, levodopa, penicillins (most), tetracycline, erythromycin	High-carbohydrate meals decrease drug absorption

Figure 101.3 Effect of food and phosphate binders on drug absorption. ACE, angiotensin-converting enzyme.

Plasma Protein Binding

- Acidic drugs bind to albumin and basic drugs to α₁-acid glycoprotein in the plasma
- There is a decrease in binding of acidic drugs in CKD which has been attributed to changes in the binding site, accumulation of endogenous inhibitors of binding and decreased concentrations of albumin.

On the other hand the concentration of α₁-acid glycoprotein does not change that much and actually might be increased in patients on HD and transplanted patients

Protein binding of drugs in renal disease

Albumin: Binding Sites for Acidic Compounds

Protein binding reduced in nephrotic syndrome (hypoalbuminemia) and renal failure (altered albumin affinity). Increased risk of drug toxicity Major Effects Minor Effects Ascorbic acid Barbiturates Benzodiazepine Bilirubin Carbamazepine Fatty acids Nafcillin Fibrates Furosemide Phenylbutazone Mycophenolate mofetil Probenecid Thiopental Penicillins Phenytoin Sulfonamides Tetracyclines **Globulins: Binding Site for Basic Compounds** Effect of altered protein binding less predictable in renal disease Minor Effects Major Effects Digitoxin Adenosine Methadone Amitriptyline Propranolol Chloramphenicol Warfarin Chlorpromazine Nortriptyline Quinine

Figure 101.4 Protein binding of drugs in renal disease.

Nephrotic Syndrome

Complex interaction

Hypoalbuminemia may result in lesser protein binding with more free drug in the plasma while at the same time there might be loss of albumin bound drug in the urine Some drugs are also known to produce adverse effects more readily in patients with nephrotic syndrome eg clofibrate can produce severe muscle necrosis

- Apparent number as it does not correlate with any defined anatomic space
- It is a ratio of the administered dose to plasma concentration at equilibrium
- Volume of distribution can vastly exceed any physical volume in the body because it is the volume apparently necessary to contain the amount of drug <u>homogeneously</u> at the concentration found in the blood, plasma, or water.
- Concept important for predicting the loading dose

Factors affecting V_D

Protein and tissue bindingVolume status

Half Life

Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmacology, 12th edition: www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Metabolism

- Drug metabolism occurs in the kidneys but to a lesser extent than the liver
- Progressive CKD effects most body biochemical reactions including drug biotransformation
- Reduction and hydrolysis reactions are slowed but glucuronidation, sulfation, conjugation and microsomal oxidation reactions occur at normal rates
- Also important to keep in mind is the fact that even though the drug might not be eliminated by the kidney, their active metabolite might eg meperidine, nitrofurantoin and morphine

Codeine Metabolism Pathway.

Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmacology, 12th edition: www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmacology, 12th edition: www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Dosing in a patient with renal insufficiency

Mathematics of drug elimination

Total body drug clearance equals drug dose

AUC

where AUC is the area under the concentration curve for the drug

Renal clearance equals total amount of drug in urine sample

Plasma drug concentration

where the total amount of the drug in the urine sample is the urine drug concentration \times volume of the sample collected in a fixed time

Renal clearance rate equals clearance Sample collection time

Clearance has units of volume (since the units of concentration in plasma and urine cancel out), and clearance rate has units of volume per time (e.g., ml/min)

Drug half-life (tu2) equals V x 0.693

Drug clearance

V_D is volume of distribution (dose/blood concentration)

Figure 101.5 Mathematics of drug elimination.

Parameter (abbreviation)	Clinical Application
Bioavailability (F)	Determines the amount of drug reaching the systemic circulation and therefore the amount at the site of action
Volume of distribution (V_D)	Determines the size of a loading dose
Clearance (C)	Determines the maintenance dose
Half-life (t _{1/2})	Determines the amount of time needed to reach steady-state serum concentrations

Figure 101.6 Pharmacokinetic parameters.

Prescribing for a patient with renal dysfunction

Figure 101.7 Prescribing for a patient with renal dysfunction. C_{cr}, creatinine clearance.

Extracorporeal Drug Losses

Dialysis is extracorporeal purification of blood Artificial Kidney

Diffusion of small molecules down their concentration gradient across a semipermeable membrane
Components of the hemodialysis system

© 2003, Elsevier Limited. All rights reserved.

Hollow fiber dialyzer

Solute clearance
 Diffusion
 Convection
 Fluid clearance

Hemo-Dialysis (HD)

Concentration difference across a semipermeable membrane favors diffusive transport of small solutes (<300 Da)</p>

Diffusion

Urea is used as the marker for small molecule diffusion during dialysis
Diffusive clearance is a function of
Blood flow rate
Membrane surface area
Time

Ultra-filtration

Removal of water during dialysis from the patients circulation

- HD Transmembrane pressure gradient
- PD Osmotically driven by glucose

Ultrafiltration

- UF is a function of three factors
- 1. Transmembrane hydrostatic pressure
- 2. Ultra-filtration coefficient of dialysis membrane
- 3. Duration

Factors Affecting Drug Clearance by Dialysis

Drug
Molecular weight
Protein binding
Volume of distribution

Factors Affecting Drug Clearance by Dialysis

Dialysis
Composition of the dialyzer membrane
Surface area
Blood and dialysate flow
Mode: IHD, PD or CRRT

Indications for extracorporeal detoxification

Ingestion of a dose that will cause serious toxicity or death, for which supportive care is ineffective

Extracorporeal treatment known to eliminate significant amounts of drugs (It is generally accepted that extracorporeal elimination is worthwhile if it increases total body clearance by 30%)

Clinical evidence of severe toxicity Grade IV coma Hypotension Hypothermia

Respiratory depression

Impaired clearance of the toxic compound

Excretory/metabolic pathways saturated

Genetic defect in metabolism

Coincidental hepatic or renal dysfunction (pre-existing or acute)

Undue susceptibility because of concurrent disease states or age (very young and elderly)

Figure 100.4 Indications for extracorporeal detoxification.

Common poisonings for which extracorporeal removal may be indicated

	Drug Level or Other Criterion for Extracorporeal Treatment	Comment
Hemodialysis		
Ethanol Methanol Ethylene glycol	>5 g/l (108 mmol/l) >50 mg/l (15 mmol/l) >500 mg/l (8 mmol/l)	Combine with fomepizole 15 mg/kg IV over 30 min, then 10 mg/kg every 4 hours during hemodialysis
Lithium	>4 mmol/l 2.5 mmol/l if severe symptoms	Postdialysis rebound as intracellular lithium diffuses into extracellular fluid
Salicylate	>800 mg/l (5.8 mmol/l)	Lower threshold if renal impairment or if fluid overload restricts treatment with sodium bicarbonate
Hemofiltration		
Aminoglycosides	Various	
Hemoperfusion		
Amanita mushroom Barbiturates Carbamazepine Paraquat Theophylline Valproic acid	Clinical severity Phenobarbitone 150 mg/l (630 mol/l) Clinical severity Clinical severity Acute >100 mg/l >1 g/l	Chronic >40 mg/l

Figure 100.10 Common poisonings for which extracorporeal removal may be indicated.

Hemoperfusion

- Extracorporeal form of treatment where large volumes of blood is passed over an adsorbent surface
- Activated carbon (irreversibly bound by van der Waals' forces) and resins (not irreversibly bound) are the adsorbents most commonly used.
- Higher MW (100-40,000 daltons) are well adsorbed with charcoal having greater affinity for water soluble and resin for lipid soluble compounds
- Time factor

Figure 100.5 A charcoal hemoperfusion cartridge.

Figure 100.6 Extracorporeal circuit for hemoperfusion.

Hemodialysis	Hemofiltration	Hemoperfusion
Relative molecular mass <500 d Small volume of distribution (V _D) (<1 l/kg) Poorly bound to plasma proteins Single-compartment kinetics Low endogenous clearance (<4 ml/min/kg)	Relative molecular mass less than cutoff of filter fibers (usually 40,000 d) Small V _D (<1 l/kg) Poorly bound to plasma proteins Single-compartment kinetics Low endogenous clearance (<4 ml/min/kg)	Adsorbed by activated charcoal Small V _p (<1 I/kg) Single-compartment kinetics Low endogenous clearance (<4 ml/min/kg)

Figure 100.9 Kinetic characteristics of drugs that assist extracorporeal drug removal.

Molecular Adsorbent Recirculating System
 Effectively removes protein bound toxins

Molecular adsorbents recirculating system (MARS)

Figure 100.7A Extracorporeal liver support techniques. *a*, Molecular Adsorbents Recirculating System (MARS): an albumin-impermeable high-flux membrane is impregnated with human albumin and the dialysate enriched with albumin to facilitate removal of albumin-bound toxins from the blood. The albumin is regenerated by passage through activated charcoal and an anion exchanger. A low-flux dialyzer is in series to remove water-soluble toxins. *b*, Fractionated Plasma Separation (FPS) (Prometheus): blood passes through an albumin-permeable membrane; the albumin is removed by convection and then passes through neutral and anion exchange adsorbers to regenerate the albumin. A high-flux dialyzer is in series to remove water-soluble toxins.

Fractionated plasma separation (Prometheus)

Figure 100.7B Extracorporeal liver support techniques. *a*, Molecular Adsorbents Recirculating System (MARS): an albumin-impermeable high-flux membrane is impregnated with human albumin and the dialysate enriched with albumin to facilitate removal of albumin-bound toxins from the blood. The albumin is regenerated by passage through activated charcoal and an anion exchanger. A low-flux dialyzer is in series to remove water-soluble toxins. *b*, Fractionated Plasma Separation (FPS) (Prometheus): blood passes through an albumin-permeable membrane; the albumin is removed by convection and then passes through neutral and anion exchange adsorbers to regenerate the albumin. A high-flux dialyzer is in series to remove water-soluble toxins.

Diuresis at controlled pH

Nonionized drugs are lipid soluble and will diffuse through cell membranes relatively easily, promoting passive absorption of filtered drugs. By contrast, drugs in the ionized states are poor absorbed. Alteration in the urine pH can alter the absorption of weak acids and bases.

Nephrotoxicity

Causes of Acute Renal Failure

Perazella MA. Am J Med Sci. 2000;319(6):385-391.

TENOFOVIR

Tenofovir closely related to adefovir Adefovir is a well described nephrotoxin Tenofovir freely filtered; also secreted by proximal tubule Nephrotoxicity vigilance in clinical trials

Drug-induced kidney injury					
Drug	Risk Factor	Incidence	Pathophysiology	Prevention	Management
			Antimicrobials		
Acyclovir	High dose, IV bolus dose	5%–25%	Deposition of acyclovir crystals → intratubular obstruction and foci of intersitital inflammation → ARF Crystal nephropathy Proximal tubulopathy	Avoid bolus dose, slow drug infusion over I-2 hr Prior hydration (maintain urine output >75 ml/hr)	Discontinue hydration and loop diuretic
Adefovir dipivoxil	Dose ≥30 mg/day Duration of therapy Renal impairment Pre-existing tubular dysfunction	1% Fanconi syndrome	Depletion of mitochondrial DNA from proximal tubular cells → enlargement and dysmorphia of mitochondria of PCT → acute tubular degeneration		Discontinue
Aminoglycosides	Dose, duration, and frequency of administration Concurrent renal ischemia or administration of nephrotoxins Liver disease plasma concentration > 10 mg/dl peak and >2-3 trough	5%-20%	In proximal tubule aminogly- coside bound to anionic phospholipid, delivered to megalin, endocytic uptake into the cell. Within cell, accumulates → direct toxicity → ARF	Maintain therapeutic range Give once-daily dose if necessary	Decrease dose, frequency, and duration of therapy
Amphotericin	High dose and long duration of therapy	5%-80%	Afferent vasoconstriction and direct action → ↓ GFR Distal tubular injury via creation of pores that increase membrane permeability → hypokalemia, hypomagne- semia, renal tubular acidosis, polyuria due to nephrogenic diabetes insipidus	Use liposomal formulation (does not contain deoxycholate) Sodium loading (500– 1000 ml normal saline 30 min prior to administration Regularly monitor serum Na, K, Mg	
Cidofovir		8%	Induces apoptosis in proximal tubule → tubular dysfunction, diabetes insipidus, renal failure		Probenecid (human organic anion transporter inhibitor) →reduce tubular uptake of cidofovir
Foscarnet	Duration of therapy Renal impairment Pre-existing tubular dysfunction	27%	Direct tubular toxicity → acute tubular necrosis, nephrogenic diabetes insipidus Crystals in glomerular capillary lumen and proximal tubular lumen	0.5–1 liters normal saline infusion	
Indinavir	Bolus dose	4%–14%	Crystal nephropathy, Nephrolithiasis → obstructive ARF	Hydration Establish high urine flow Avoid bolus dose	Discontinue
Sulfonamide (sulfadiazine and sulfamethoxazole)	High dose Urine pH <5.5	7%	Intrarenal precipitation → kidney stone formation	Fluid intake >3 l/day, monitor urine for crystals; if crystals seen; alkalinize urine to pH >7.1	

Figure 101.11A Drug-induced kidney injury. All drugs in this table should be dosed based on renal function. Avoid concomitant use of nephrotoxic medications and diuretics. Monitor renal function before and during treatment. Patient-related risk factors for all these drugs include age, pre-existing chronic kidney disease, volume depletion, concurrent use of nephrotoxic drugs. Adequate hydration prior to therapy and during the treatment of acute renal failure because volume depletion is one of the most important risk factors. ACE, angiotensin-converting enzyme; ARF, acute renal failure; FDA, U.S. Food and Drug Administration; GFR, glomerular filtration rate; NSAIDs, nonsteroidal anti-inflammatory drugs.

Drug-induced kidney injury—cont d					
Drug	Risk Factor	Incidence	Pathophysiology	Prevention	Management
Tenofovir	Dose Duration	Few case reports	Tubular cell karyomegaly, degeneration, and necrosis → interstitial nephritis, diabetes insipidus, ARF Fanconi syndrome		
		Immune-mo	odulating and Chemotherapeutic	Agents	
Cyclosporine/ tacrolimus	Dose Age Postoperative ARF Diabetes Hypertension		↓ PG and ↑ 20-HETE acid production → vasoconstriction generation of H ₂ O ₂ resulting in depleted glutathione → ↓ GFR, ischemic collapse or scarring of the glomeruli, vacuolization of the tubules, and focal areas of tubular atrophy and interstitial fibrosis	Maintain in therapeutic range Avoid drugs that raise levels (CYP 3A4 inhibitors) Calcium channel blockers	Discontinue or reduc dose
Interferon		15%–20% proteinuria	Prerenal ARF Tubulointerstitial nephritis Thrombotic microangiopathy Membranoproliferative glomerulonephritis		Discontinue
Intravenous immunoglob- ulin	Sucrose-containing product Dehydration	90% contained sucrose	Accumulation of sucrose in PCT forms vesicles, ↑ osmolarity → cell swelling, vacuolization, and tubular luminal occlusion	Infusion rate <3 mg sucrose/kg/min Avoid coadministration of radiocontrast Avoid sucrose-containing product	Hydration Discontinue sucrose- containing product
Methotrexate	Acidic urine High dose		Precipitates in the urine and induces tubular injury	Prior hydration Alkalinize urine to pH >7.0 (3 l of 5% dextrose in water + 44–66 mmol of NaHCO ₃ per day)	Loop diuretic Leukovorin rescue w or without thymidine for systemic toxicities
			Chemotherapeutic Agents		
Cisplatin	Low chloride High dose	25%-42%	Chloride in cis position replaced by H ₂ O → highly reactive hydroxyl radical via Cyp450 → DNA injury tubular cell death Nephrogenic diabetes insipidus Hypomagnesemia (may be persistent)	Forced diuresis: 2.5 l/hr normal saline before and several hours after administration Mannitol or furosemide Thiophosphate, thiosulfate	Discontinue Mg supplementation
lfosfamide	Coprescription of cisplatin	Almost 100%	Direct tubular injury and mitochondrial damage → renal tubular acidosis, Fanconi-like syndrome, nephrogenic diabetes insipidus, hypokalemia	Mesna	Discontinue
			Other Agents		
ACE inhibitor			$Vasoconstriction \to prerenal \ ARF$	Avoid in bilateral renal artery	

Figure 101.11B Drug-induced kidney injury. All drugs in this table should be dosed based on renal function. Avoid concomitant use of nephrotoxic medications and diuretics. Monitor renal function before and during treatment. Patient-related risk factors for all these drugs include age, pre-existing chronic kidney disease, volume depletion, concurrent use of nephrotoxic drugs. Adequate hydration prior to therapy and during the treatment of acute renal failure because volume depletion is one of the most important risk factors. ACE, angiotensin-converting enzyme; ARF, acute renal failure; FDA, U.S. Food and Drug Administration; GFR, glomerular filtration rate; NSAIDs, nonsteroidal anti-inflammatory drugs.

Drug	Risk Factor	Incidence	Pathophysiology	Prevention	Management
Lithium	Renal impairment Dehydration Hyponatremia Diuretic use, especially thiazide	20%–54% develop urine concentration defect 12% frank diabetes insipidus (defect persists in 63% despite with- drawal of lithium)	Impairment of collecting duct concentrating ability → diabetes insipidus Chronic tubulointerstitial nephropathy (tubular atrophy and interstitial fibrosis)	Therapeutic range (0.6–1.2 mmol/l) Prevent dehydration Avoid low-sodium diet Avoid thiazide	Amiloride for nephrogenic diabetes insipidus Fluid restoration Furosemide up to 40 mg/hr Acetazolamide + NaHCO ₃ Na, K supplement Hemodialysis (rebound can occur if stop too early) Discontinue
NSAIDs	Volume and sodium depletion Diuretic use Large dose and long therapy Severe liver disease	1%5%	Hemodynamically induced ARF due to vasoconstriction via reduced prostaglandin production → Acute and chronic tubulointerstitial nephritis,with or without nephrotic syndrome Direct toxicity → chronic interstitial nephritis and papillary necrosis	Avoid coprescription of diuretic Avoid large dose	
Radiocontrast media	Dose and frequency Osmolarity of contrast media	<10% in patients with normal GFR 12%–25% if GFR ↓	High osmolarity, medullary vasoconstriction, \uparrow active transport in thick ascending loop of Henle $\rightarrow \uparrow O_2$ demand	Hydration before and after administration Acetylcysteine unproven	

Figure 101.11C Drug-induced kidney injury. All drugs in this table should be dosed based on renal function. Avoid concomitant use of nephrotoxic medications and diuretics. Monitor renal function before and during treatment. Patient-related risk factors for all these drugs include age, pre-existing chronic kidney disease, volume depletion, concurrent use of nephrotoxic drugs. Adequate hydration prior to therapy and during the treatment of acute renal failure because volume depletion is one of the most important risk factors. ACE, angiotensin-converting enzyme; ARF, acute renal failure; FDA, U.S. Food and Drug Administration; GFR, glomerular filtration rate; NSAIDs, nonsteroidal anti-inflammatory drugs.

Pattern of	poisoning i	n accidental	and deliberate	self-harm
------------	-------------	--------------	----------------	-----------

Drug/Class	Specific Antidote Available	Extracorporeal Drug Removal May Be Indicated
Acetaminophen (paracetamol)	N-acetylcysteine	No
Benzodiazepines	Flumezanil	No
Antidepressants (most commonly amitriptyline)	No	No
Street drugs (including opioids and stimulants)	Naloxone	No
Other analgesics including opioids and NSAIDs	Naloxone	No
Aspirin	No	Yes
Anticonvulsants	No	Yes
Household compounds	No	No
Theophylline	No	Yes
Lithium	No	Yes

Figure 100.1 Pattern of poisoning in accidental and deliberate self-harm. The most common categories of drugs taken in deliberate and accidental self-harm listed in descending order of frequency. NSAIDs, nonsteroidal anti-inflammatory drugs.

(Adapted from data reported by National Poisons Information Service, United Kingdom [www.doh.gov.uk/npis.htm] and the American Association of Poison Control Centers [www.aapcc.org].)

Antidotes of proven value in common causes of poisoning

Poison	Antidote
Acetaminophen	N-acetylcysteine, methionine
Benzodiazepines	Flumazenil
Carbon monoxide	Oxygen
Coumadin (warfarin)	Vitamin K
Cyanide	Amyl nitrite, sodium nitrite, sodium thiosulfate, dicobalt edetate
Digoxin	Digoxin-specific Fab antibodies
Ethylene glycol	Fomepizole, ethanol
Iron salts	Desferoxamine
Methanol	Ethanol
Methemoglobinemia	Methylene blue
Opioids	Naloxone
Organophosphate insecticides	Atropine, pralidoxime

Figure 100.3 Antidotes of proven value in common causes of poisoning.

Antidotes of proven value in common causes of poisoning

Poison	Antidote
Acetaminophen	N-acetylcysteine, methionine
Benzodiazepines	Flumazenil
Carbon monoxide	Oxygen
Coumadin (warfarin)	Vitamin K
Cyanide	Amyl nitrite, sodium nitrite, sodium thiosulfate, dicobalt edetate
Digoxin	Digoxin-specific Fab antibodies
Ethylene glycol	Fomepizole, ethanol
Iron salts	Desferoxamine
Methanol	Ethanol
Methemoglobinemia	Methylene blue
Opioids	Naloxone
Organophosphate insecticides	Atropine, pralidoxime

Figure 100.3 Antidotes of proven value in common causes of poisoning.

Indications for extracorporeal detoxification

Ingestion of a dose that will cause serious toxicity or death, for which supportive care is ineffective

Extracorporeal treatment known to eliminate significant amounts of drugs (It is generally accepted that extracorporeal elimination is worthwhile if it increases total body clearance by 30%)

Clinical evidence of severe toxicity

Grade IV coma

Hypotension

Hypothermia

Respiratory depression

Impaired clearance of the toxic compound

Excretory/metabolic pathways saturated

Genetic defect in metabolism

Coincidental hepatic or renal dysfunction (pre-existing or acute)

Undue susceptibility because of concurrent disease states or age (very young and elderly)

Figure 100.4 Indications for extracorporeal detoxification.

Drug assays necessary for management of poisoning

Acetaminophen
Carbamazepine
Digoxin
Ethylene glycol
Ethanol
Lithium
Methemoglobin
Methanol
Phenobarbitone
Salicylate
Theophylline
Valproate

Figure 100.8 Drug assays necessary for management of poisoning. Drug assays that should be readily available around the clock for management of poisoning.

Kinetic characteristics that assist extracorporeal drug removal

Hemodialysis	Hemofiltration	Hemoperfusion
Relative molecular mass <500 d Small volume of distribution (V _D) (<1 l/kg) Poorly bound to plasma proteins Single-compartment kinetics Low endogenous clearance (<4 ml/min/kg)	Relative molecular mass less than cutoff of filter fibers (usually 40,000 d) Small V _D (<1 l/kg) Poorly bound to plasma proteins Single-compartment kinetics Low endogenous clearance (<4 ml/min/kg)	Adsorbed by activated charcoal Small V _D (<1 l/kg) Single-compartment kinetics Low endogenous clearance (<4 ml/min/kg)

Figure 100.9 Kinetic characteristics of drugs that assist extracorporeal drug removal.

Common poisonings for which extracorporeal removal may be indicated		
	Drug Level or Other Criterion for Extracorporeal Treatment	Comment
Hemodialysis		
Ethanol Methanol Ethylene glycol Lithium Methanol Saliculate	>5 g/l (108 mmol/l) >50 mg/l (15 mmol/l) >500 mg/l (8 mmol/l) >4 mmol/l 2.5 mmol/l if severe symptoms >500 mg/l (15 mmol/l) >800 mg/l (5 8 mmol/l)	Combine with fomepizole 15 mg/kg IV over 30 min, then 10 mg/kg every 4 hours during hemodialysis Postdialysis rebound as intracellular lithium diffuses into extracellular fluid
Salicylate	> 800 mg/1 (5.8 mmol/1)	overload restricts treatment with sodium bicarbonate
Hemofiltration		
Aminoglycosides	Various	
Hemoperfusion		
Amanita mushroom Barbiturates Carbamazepine Paraquat Theophylline Valproic acid	Clinical severity Phenobarbitone 150 mg/l (630 mol/l) Clinical severity Clinical severity Acute >100 mg/l >1 g/l	Chronic >40 mg/l

Figure 100.10 Common poisonings for which extracorporeal removal may be indicated.

Figure 101.1 The passage of a drug through the body.

Effect of food and phosphate binders on drug absorption

Drugs	Effect of Food
Acetaminophen, aspirin, digoxin	Decreased/delayed drug absorption
ACE inhibitors (captopril and moexipril)	Significant decrease in serum drug levels
Fluoroquinolones and tetracycline	Avoid taking with phosphate binders, antacids and iron products; significantly decreased drug absorption
Lovastatin, spironolactone	Food, especially high-fat meals, improves drug absorption; take with food or within 2 hours of a meal
Famotidine	Decreased/delayed drug absorption
Verapamil	Decreased pharmacodynamic effects with calcium-based phosphate binders
lron, levodopa, penicillins (most), tetracycline, erythromycin	High-carbohydrate meals decrease drug absorption

Figure 101.3 Effect of food and phosphate binders on drug absorption. ACE, angiotensin-converting enzyme.

Protein binding of drugs in renal disease

Albumin: Binding Sites for Acidic Compounds

Protein binding reduced in nephrotic syndrome (hypoalbuminemia) and renal failure (altered albumin affinity). Increased risk of drug toxicity Major Effects Minor Effects Ascorbic acid Barbiturates Benzodiazepine Bilirubin Carbamazepine Fatty acids Nafcillin Fibrates Furosemide Phenylbutazone Mycophenolate mofetil Probenecid Thiopental Penicillins Phenytoin Sulfonamides Tetracyclines **Globulins: Binding Site for Basic Compounds** Effect of altered protein binding less predictable in renal disease Minor Effects Major Effects Digitoxin Adenosine Methadone Amitriptyline Propranolol Chloramphenicol Warfarin Chlorpromazine Nortriptyline Quinine

Figure 101.4 Protein binding of drugs in renal disease.

Mathematics of drug elimination

Total body drug clearance equals drug dose

AUC

where AUC is the area under the concentration curve for the drug

Renal clearance equals total amount of drug in urine sample

Plasma drug concentration

where the total amount of the drug in the urine sample is the urine drug concentration \times volume of the sample collected in a fixed time

Renal clearance rate equals clearance Sample collection time

Clearance has units of volume (since the units of concentration in plasma and urine cancel out), and clearance rate has units of volume per time (e.g., ml/min)

Drug half-life (tu2) equals V x 0.693

Drug clearance

V_D is volume of distribution (dose/blood concentration)

Figure 101.5 Mathematics of drug elimination.

Parameter (abbreviation)	Clinical Application	
Bioavailability (F)	Determines the amount of drug reaching the systemic circulation and therefore the amount at the site of action	
Volume of distribution (V_D)	Determines the size of a loading dose	
Clearance (C)	Determines the maintenance dose	
Half-life (t _{1/2})	Determines the amount of time needed to reach steady-state serum concentrations	

Figure 101.6 Pharmacokinetic parameters.

Prescribing for a patient with renal dysfunction

Figure 101.7 Prescribing for a patient with renal dysfunction. C_{cr}, creatinine clearance.

Dosing calculations: use for aminoglycosides

Figure 101.8 Dosing calculations.

Therapeutic drug monitoring in renal insufficiency				
Drug Name	Name Therapeutic Range When to Draw Sample		How Often to Check Levels	
Aminoglycosides (conventional dosing): gentamicin, tobramycin, amikacin	Gentamicin and tobramycin Trough: 0.5-2 mg/l Peak: 5-8 mg/l Amikacin Peak: 20-30 mg/l Through: <10 mg/l	Trough: immediately prior to dose Peak: 30 min after a 30-min infusion	Check peak and trough with 3rd dose. For therapy 72 hr, levels not necessary. Repeat drug levels weekly or if renal function changes	
Aminoglycosides (24-hr dosing): gentamicin, tobramycin, amikacin	0.53 mg/l	Obtain random drug level 12 hr After initial dose. Repea after dose drug level in 1 wk or renal function change		
Carbamazepine	4–12 µg/ml	Trough: immediately prior to dosing Check 2-4 days after or change in dose		
Cyclosporine	50-200 µg/ml	Trough: immediately prior to dosing	Daily for first week, then weekly	
Digoxin	0.8-2 μg/ml	12 hr after maintenance dose	5–7 days after first dose for patients with normal renal and hepatic function; 15–20 days in anephric patients	
Lidocaine	1–5 µg/ml	8 hr after IV infusion started or changed		
Lithium	Acute: 0.8–1.2 mmol/1 Chronic: 0.6–0.8 mmol/1	Trough: before AM dose at least 12 hr since last dose		
Phenobarbitone	15-40 μg/l	Trough: immediately prior to dosing Check 2 wk after fi or change in dos up level in 1–2 n		
Phenytoin Free phenytoin	10–20 µg/ml I–2 µg/ml	Trough: immediately prior to dosing 5–7 d after first dose o change in dose		
Procainamide NAPA (N-acetyl procainamide), a procainamide metabolite	4–10 μg/ml Trough: 4 μg/ml Peak: 8 μg/ml 10–30 μg/ml	Trough: immediately prior to next dose or 12–18 hr after starting or changing an infusion Draw with procalnamide sample		
Quinidine	I-5 µg/ml	Trough: immediately prior to dosing		
Sirolimus	10-20 µg/dl	Trough: immediately prior to dosing		
Tacrolimus	10-15 µg/ml	Trough: immediately prior to dosing		
Theophylline PO or aminophylline IV	15–20 µg/ml	Trough: immediately prior to dosing		
Valproic acid (divalproex sodium)	40–100 µg/ml	Trough: immediately prior to dosing	Check 2-4 days after first dose or change in dose	
Vancomycin	Trough: 5–15 mg/l Peak: 25–40 mg/l	Trough: immediately prior to dosing Peak: 60 min after a 60 min infusion	With 3rd dose (when initially starting therapy, or after each dose adjustment). For therapy <72 hr, levels not necessary. Repeat drug levels if renal function changes	

Figure 101.9 Therapeutic drug monitoring in renal insufficiency. Drugs for which monitoring of drug levels is routinely recommended.

Commonly used drugs that require replacement dosing following intermittent hemodialysis					
Acebutolol	Cefamandole	Ceftizoxime	Gabapentin	Metronidazole	Ticarcillin
Acetaminophen	Cefazolin	Cefuroxime	Ganciclovir	Mezlocillin	Tobramycin
Acyclovir	Cefdinir	Chloral hydrate	Gentamicin	Minoxidil	Trimethoprim
Allopurinol	Cefdroxil	Chloramphenicol	lfosfamide	Nadolol	Valacyclovir
Amikacin	Cefepime	Cyclophosphamide	Imipenem	Ofloxacin	Vigabatrin
Amoxicillin	Cefmenoxime	Disopyramide	lodixanol	Penicillin	Zidovudine
Ampicillin	Cefmetazole	Enalapril	Isosorbide	Piperacillin	
Aspirin	Cefotaxime	Esmolol	Lisinopril	Procainamide	
Atenolol	Cefotetan	Ethosuximide	Lithium	Pyrazinamide	
Aztreonam	Cefoxitin	Famciclovir	Loracarbef	Sotalol	
Captopril	Cefpirome	Fluconazole	Meropenem	Streptomycin	
Carboplatin	Cefradine	Flucytosine	Methotrexate	Sulfamethoxazole	
Cefaclor	Ceftazidime	5-Fluorouracil	Methylprednisolone	Sulfisoxazole	
Cefalexin	Ceftibuten	Foscarnet	Metoprolol	Theophylline	

Figure 101.10 Commonly used drugs that require replacement dosing following intermittent hemodialysis.

Aggravation by drugs of the metabolic effects of pre-existing renal impairment		
Metabolic effect	Drugs	
Hyperkalemia	Potassium supplements, potassium-sparing diuretics (especially combination diuretics), nonsteroidal anti-inflammatory drugs, potassium citrate, tetracyclines, angiatensin-converting enzyme inhibitors, angiotensin II receptor antagonists	
Uremia	Corticosteroids, tetracyclines	
Sodium and water retention	Sodium chloride, sodium bicarbonate, sodium-containing antacids (e.g., Gaviscon), fludrocortisone, carbenoxolone	
Metabolic acidosis	Acetazolamide, metformin	
Coagulopathy	Aspirin	

Figure 101.12 Aggravation by drugs of the metabolic effects of pre-existing renal impairment.

© 2003, Elsevier Limited. All rights reserved.

Sites of tubular Injury in ATN

