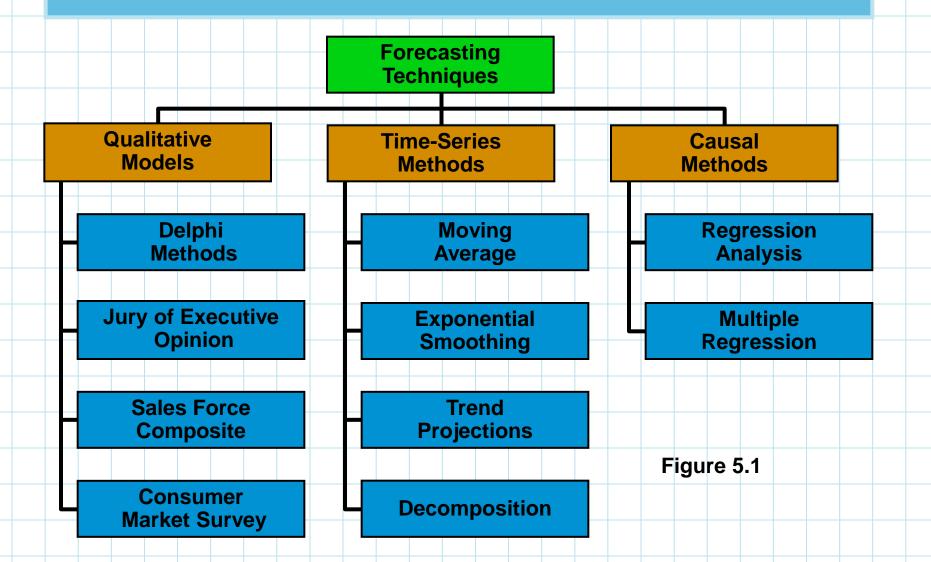
Chapter 5

Forecasting

To accompany *Quantitative Analysis for Management, Eleventh Edition,* by Render, Stair, and Hanna Power Point slides created by Brian Peterson

Forecasting Models



Copyright ©2012 Pearson Education, Inc. publishing as Prentice Hall

Qualitative Models

- **Qualitative models** incorporate judgmental or subjective factors.
- These are useful when subjective factors are thought to be important or when accurate quantitative data is difficult to obtain.
 - Common qualitative techniques are:
 - Delphi method.
 - Jury of executive opinion.
 - Sales force composite.
 - Consumer market surveys.

Qualitative Models

- *Delphi Method* This is an iterative group process where (possibly geographically dispersed) *respondents* provide input to *decision makers*.
- Jury of Executive Opinion This method collects opinions of a small group of high-level managers, possibly using statistical models for analysis.
 - *Sales Force Composite* This allows individual salespersons estimate the sales in their region and the data is compiled at a district or national level.
 - **Consumer Market Survey** Input is solicited from customers or potential customers regarding their purchasing plans.

Time-Series Models

- Time-series models attempt to predict the future based on the past.
- Common time-series models are:
 - Moving average.
 - Exponential smoothing.
 - Trend projections.
 - Decomposition.

Regression analysis is used in trend projections and one type of decomposition model.

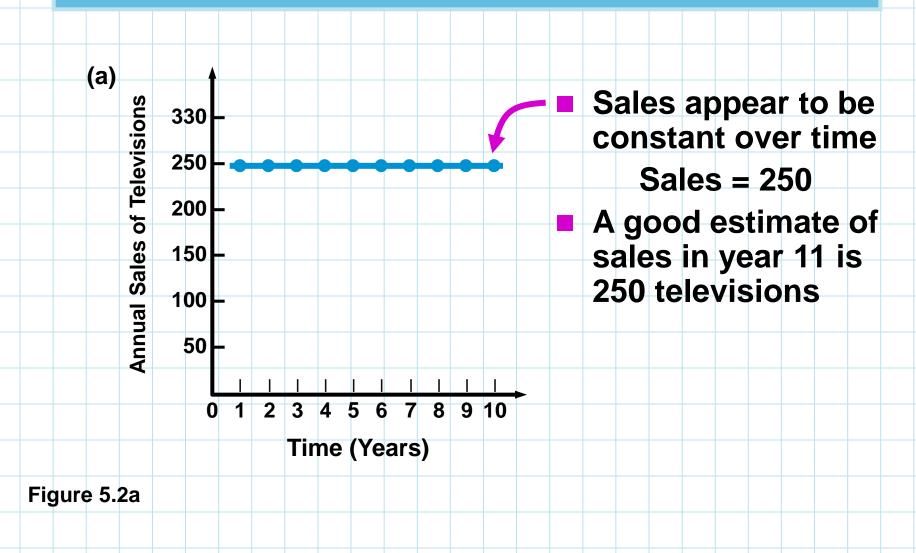
Scatter Diagrams

Wacker Distributors wants to forecast sales for three different products (annual sales in the table, in units):

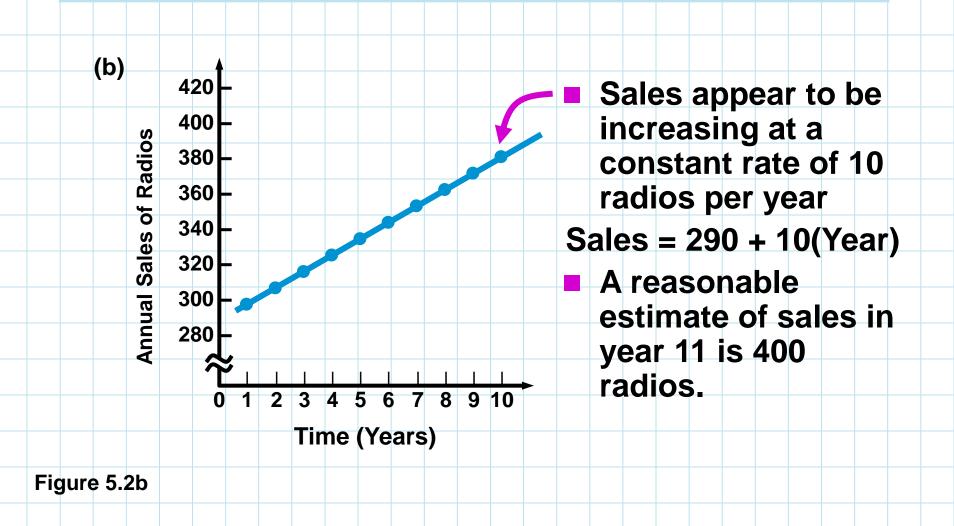
	YEAR TELEVISION SETS		RADIOS	COMPACT DISC PLAYERS	
	1	250	300	110	
	2	250	310	100	
	3	250	320	120	
	4	250	330	140	
	5	250	340	170	
	6	250	350	150	
	7	250	360	160	
	8	250	370	190	
Table 5.1	9	250	380	200	
	10	250	390	190	

Copyright ©2012 Pearson Education, Inc. publishing as Prentice Hall

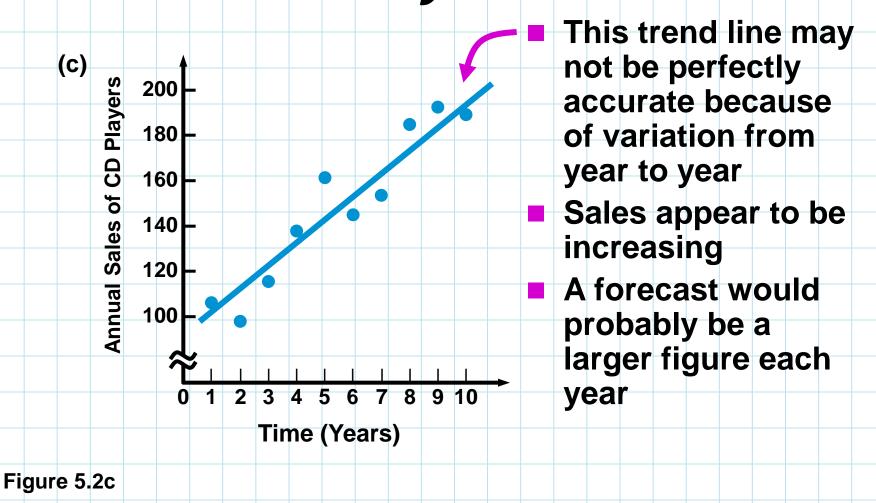
Scatter Diagram for TVs



Scatter Diagram for Radios



Scatter Diagram for CD Players



We compare forecasted values with actual values to see how well one model works or to compare models.

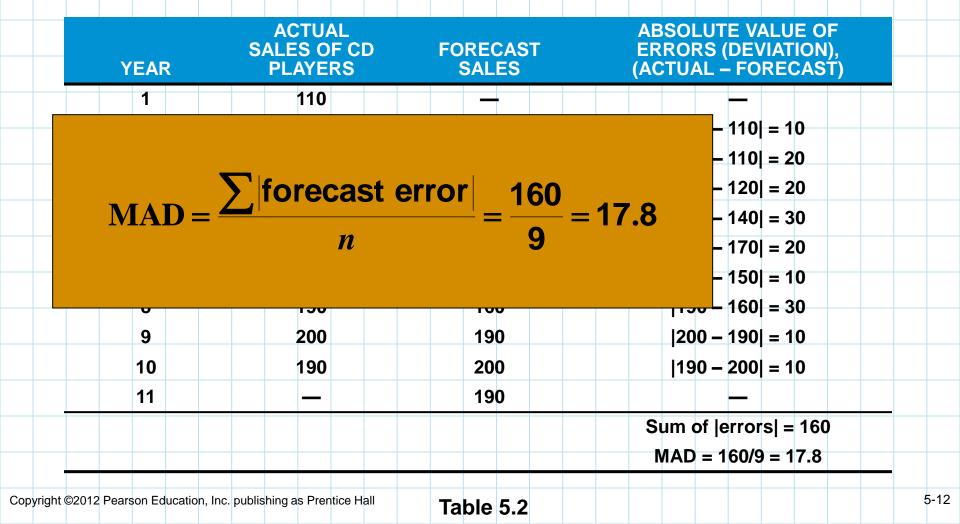
Forecast error = Actual value – Forecast value

One measure of accuracy is the mean absolute deviation (MAD):

Using a *naive* forecasting model we can compute the MAD:

	YEAR	ACTUAL SALES OF CD PLAYERS	FORECAST SALES	ABSOLUTE VALUE OF ERRORS (DEVIATION), (ACTUAL – FORECAST)
	1	110	— — I	
	2	100	110	100 – 110 = 10
	3	120	100	120 – 110 = 20
	4	140	120	140 – 120 = 20
	5	170	140	170 – 140 = 30
	6	150	170	150 – 170 = 20
	7	160	150	160 – 150 = 10
	8	190	160	190 – 160 = 30
	9	200	190	200 – 190 = 10
	10	190	200	190 – 200 = 10
able 5.2	11	_	190	
				Sum of errors = 160
				MAD = 160/9 = 17.8

Using a *naive* forecasting model we can compute the MAD:



- There are other popular measures of forecast accuracy.
- The mean squared error:

$$MSE = \frac{\sum (error)^2}{(error)^2}$$

п

The mean absolute percent error:

$$\frac{\sum_{i=1}^{n} \frac{\text{error}}{\text{actual}}}{100\%}$$

IU

And *bias* is the average error.

Time-Series Forecasting Models

- A time series is a sequence of evenly spaced events.
- Time-series forecasts predict the future based solely on the past values of the variable, and other variables are ignored.

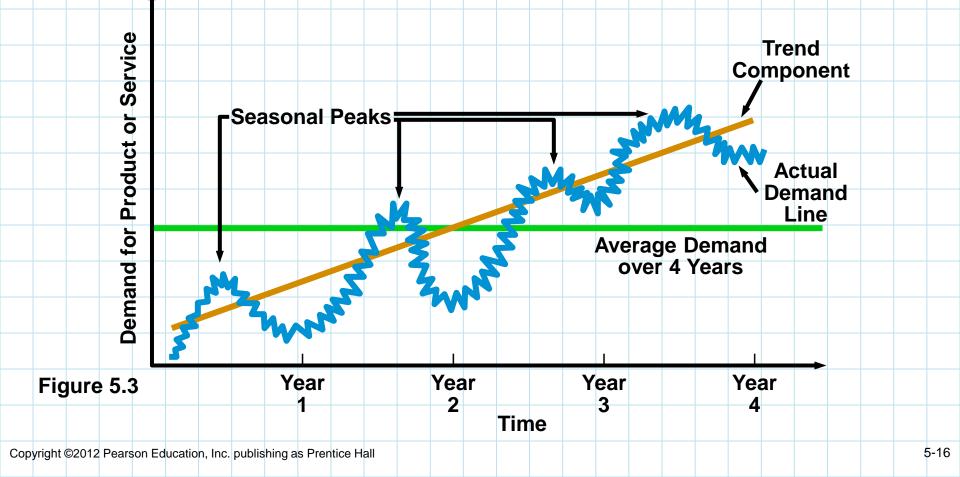
Components of a Time-Series

A time series typically has four components:

- Trend (1) is the gradual upward or downward movement of the data over time.
- 2. Seasonality (S) is a pattern of demand fluctuations above or below the trend line that repeats at regular intervals.
- 3. Cycles (C) are patterns in annual data that occur every several years.
- 4. Random variations (R) are "blips" in the data caused by chance or unusual situations, and follow no discernible pattern.

Decomposition of a Time-Series

Product Demand Charted over 4 Years, with Trend and Seasonality Indicated



Decomposition of a Time-Series

- There are two general forms of time-series models:
 - The multiplicative model:

```
Demand = T \times S \times C \times R
```

The additive model:

Demand = T + S + C + R

Models may be combinations of these two forms.

Forecasters often assume errors are normally distributed with a mean of zero.

Moving Averages

- Moving averages can be used when demand is relatively steady over time.
- The next forecast is the average of the most recent *n* data values from the time series.
- This methods tends to smooth out shortterm irregularities in the data series.

Moving average forecast = $\frac{\text{Sum of demands in previous } n \text{ periods}}{1}$

n

Moving Averages

Mathematically:

$$F_{t+1} = \frac{Y_t + Y_{t-1} + \dots + Y_{t-n+1}}{n}$$

Where:

 F_{t+1} = forecast for time period t + 1

 Y_t = actual value in time period t

n = number of periods to average

Wallace Garden Supply

- Wallace Garden Supply wants to forecast demand for its Storage Shed. They have collected data for the past year.
- They are using a three-month moving average to forecast demand (n = 3).

Wallace Garden Supply

MONTH	ACTUAL SHED SALES	THREE-MONTH MOVING AVERAGE
January	10	
February	12	
March	13 —	
April	16	(10 + 12 + 13)/3 = 11.67
May	19	(12 + 13 + 16)/3 = 13.67
June	23	(13 + 16 + 19)/3 = 16.00
July	26	(16 + 19 + 23)/3 = 19.33
August	30	(19 + 23 + 26)/3 = 22.67
September	28	(23 + 26 + 30)/3 = 26.33
October	18	(26 + 30 + 28)/3 = 28.00
November	16	(30 + 28 + 18)/3 = 25.33
December	14	(28 + 18 + 16)/3 = 20.67
January		(18 + 16 + 14)/3 = 16.00
Table 5.3		

Copyright ©2012 Pearson Education, Inc. publishing as Prentice Hall

Weighted Moving Averages

- Weighted moving averages use weights to put more emphasis on previous periods.
- This is often used when a trend or other pattern is emerging.

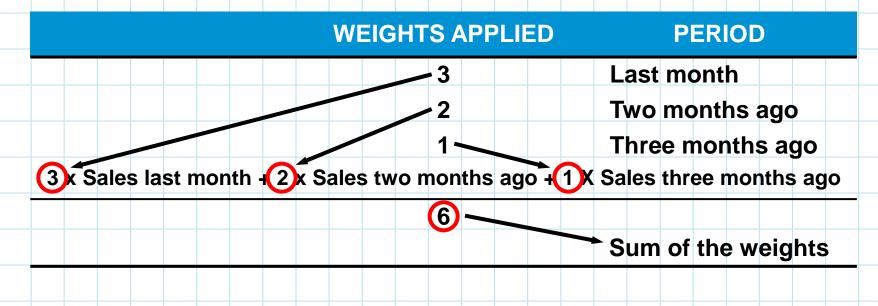
 $F_{t+1} = \frac{\sum (\text{Weight in period } i)(\text{Actual value in period})}{\sum (\text{Weights})}$ Mathematically: $F_{t+1} = \frac{w_1Y_t + w_2Y_{t-1} + \dots + w_nY_{t-n+1}}{w_1 + w_2 + \dots + w_n}$

where

 W_i = weight for the *i*th observation

Wallace Garden Supply

- Wallace Garden Supply decides to try a weighted moving average model to forecast demand for its Storage Shed.
- They decide on the following weighting scheme:



Wallace Garden Supply

TUDEE

WEIGHTED

MONTH	ACTUAL SHED SALES	IHREE-MONTH WEIGHTED MOVING AVERAGE
January	10	
February	12	
March	13	
April	16	[(3 X 13) + (2 X 12) + (10)]/6 = 12.17
Мау	19	[(3 X 16) + (2 X 13) + (12)]/6 = 14.33
June	23	[(3 X 19) + (2 X 16) + (13)]/6 = 17.00
July	26	[(3 X 23) + (2 X 19) + (16)]/6 = 20.50
August	30	[(3 X 26) + (2 X 23) + (19)]/6 = 23.83
September	28	[(3 X 30) + (2 X 26) + (23)]/6 = 27.50
October	18	[(3 X 28) + (2 X 30) + (26)]/6 = 28.33
November	16	[(3 X 18) + (2 X 28) + (30)]/6 = 23.33
December	14	[(3 X 16) + (2 X 18) + (28)]/6 = 18.67
January		[(3 X 14) + (2 X 16) + (18)]/6 = 15.33
Table 5.4		

Copyright ©2012 Pearson Education, Inc. publishing as Prentice Hall

Exponential Smoothing

- Exponential smoothing is a type of moving average that is easy to use and requires little record keeping of data.
- New forecast = Last period's forecast + α (Last period's actual demand - Last period's forecast)
 - Here *α* is a weight (or *smoothing constant*) in which 0≤*α≤1.*

Exponential Smoothing

Mathematically:

$$F_{t+1} = F_t + \alpha (Y_t - F_t)$$

Where:

 F_{t+1} = new forecast (for time period t + 1)

 F_t = pervious forecast (for time period t)

 α = smoothing constant (0 $\leq \alpha \leq$ 1)

 Y_t = pervious period's actual demand

The idea is simple – the new estimate is the old estimate plus some fraction of the error in the last period.

Exponential Smoothing Example

- In January, February's demand for a certain car model was predicted to be 142.
- Actual February demand was 153 autos
- Using a smoothing constant of α = 0.20, what is the forecast for March?

New forecast (for March demand) = 142 + 0.2(153 – 142) = 144.2 or 144 autos

If actual demand in March was 136 autos, the April forecast would be:

New forecast (for April demand) = 144.2 + 0.2(136 – 144.2) = 142.6 or 143 autos

Selecting the Smoothing Constant

- Selecting the appropriate value for α is key to obtaining a good forecast.
 - The objective is always to generate an accurate forecast.
- The general approach is to develop trial forecasts with different values of α and select the α that results in the lowest *MAD*.

Exponential Smoothing

Port of Baltimore Exponential Smoothing Forecast for $\alpha = 0.1$ and $\alpha = 0.5$.

QUARTER	ACTUAL TONNAGE UNLOADED	FORECAST USING α =0.10	FORECAST USING α =0.50
1	180	175	175
2	168	175.5 = 175.00 + 0.10(180 - 175)	177.5
3	159	174.75 = 175.50 + 0.10(168 - 175.50)	172.75
4	175	173.18 = 174.75 + 0.10(159 - 174.75)	165.88
5	190	173.36 = 173.18 + 0.10(175 - 173.18)	170.44
6	205	175.02 = 173.36 + 0.10(190 - 173.36)	180.22
7	180	178.02 = 175.02 + 0.10(205 - 175.02)	192.61
8	182	178.22 = 178.02 + 0.10(180 - 178.02)	186.30
9	?	178.60 = 178.22 + 0.10(182 - 178.22)	184.15

Copyright ©2012 Pearson Education, Inc. publishing as Prentice Hall

Table 5.5

Exponential Smoothing

Absolute Deviations and MADs for the Port of Baltimore Example

QU	ARTER	ACTUAL TONNAGE UNLOADED	FORECAST WITH α = 0.10	ABSOLUTE DEVIATIONS FOR $\alpha = 0.10$	FORECAST WITH α = 0.50	ABSOLUTE DEVIATIONS FOR α = 0.50
	1	180	175	5	175	5
	2	168	175.5	7.5	177.5	9.5
	3	159	174.75	15.75	172.75	13.75
	4	175	173.18	1.82	165.88	9.12
	5	190	173.36	16.64	170.44	19.56
	6	205	175.02	29.98	180.22	24.78
	7	180	178.02	1.98	192.61	12.61
	8	182	178.22	3.78	186.30	4.3
Sun	n of abso	olute deviation	s	82.45		98.63
		MAD =	Σ deviations n	= 10.31	MA	<i>D</i> = 12.33
able 5.6						

Copyright ©2012 Pearson Education, Inc. publishing as Best Choice

- Trend projection fits a trend line to a series of historical data points.
- The line is projected into the future for medium- to long-range forecasts.
 - Several trend equations can be developed based on exponential or quadratic models.
- The simplest is a linear model developed using regression analysis.

The mathematical form is

$$\hat{Y} = b_0 + b_1 X$$

Where

- \hat{Y} = predicted value
- $b_0 = intercept$
- $b_1 =$ slope of the line
- X = time period (i.e., X = 1, 2, 3, ..., n)

Midwestern Manufacturing

Midwest Manufacturing has a demand for electrical generators from 2004 – 2010 as given in the table below.

	YEAR	ELECTRICAL GENERATORS SOLD		
	2004	74		
	2005	79		
	2006	80		
	2007	90		
	2008	105		
	2009	142		
Table 5.7	2010	122		
	2010	122		

Midwestern Manufacturing Company Example

The forecast equation is

 $\hat{Y} = 56.71 + 10.54 X$

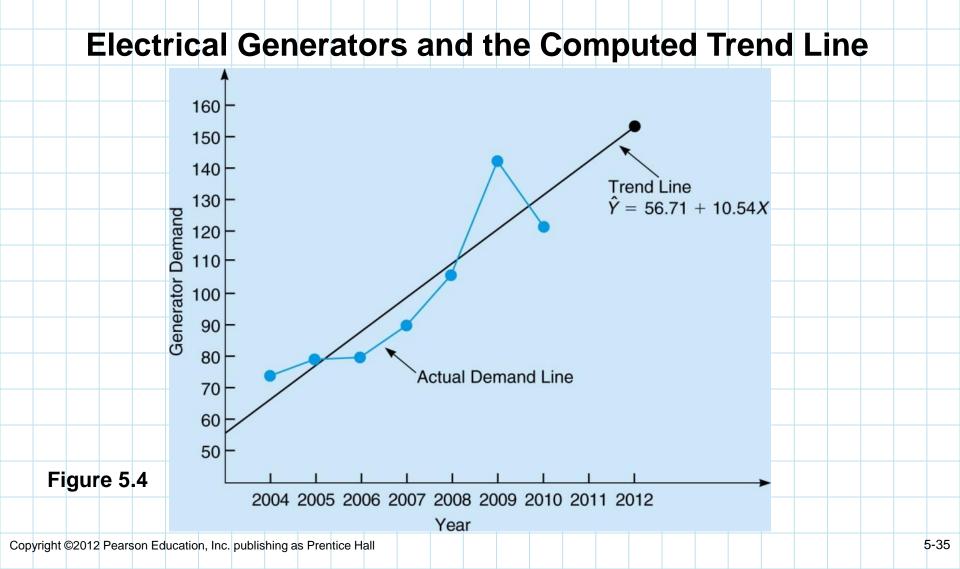
To project demand for 2011, we use the coding system to define X = 8

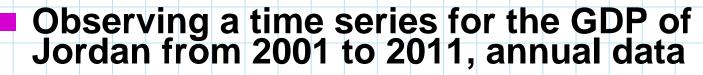
(sales in 2011) = 56.71 + 10.54(8) = 141.03, or 141 generators

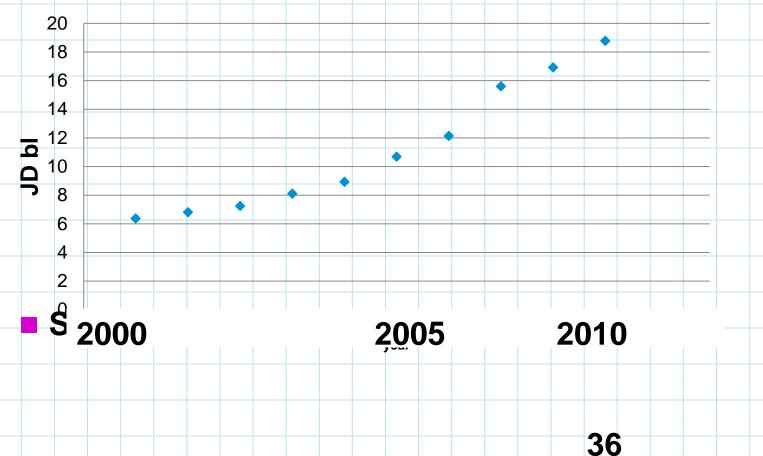
Likewise for X = 9

(sales in 2012) = 56.71 + 10.54(9) = 151.57, or 152 generators

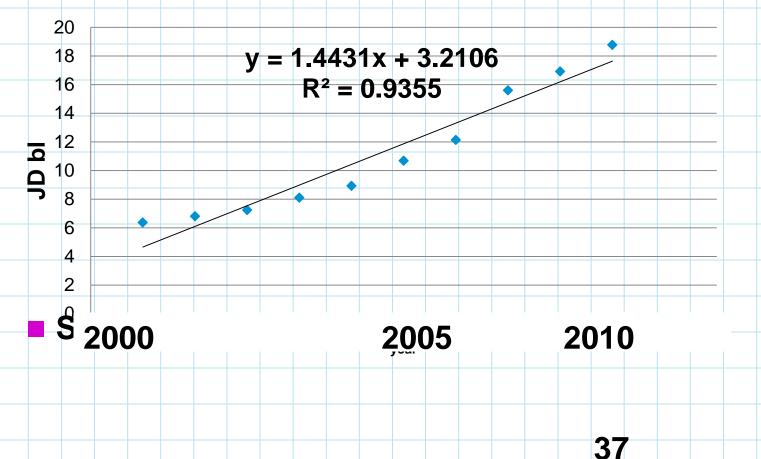
Midwestern Manufacturing



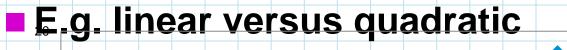


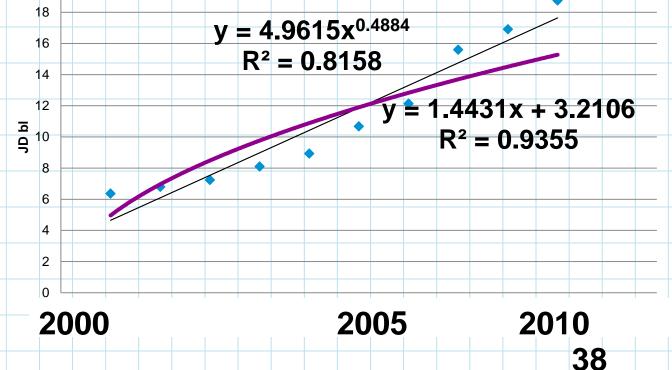


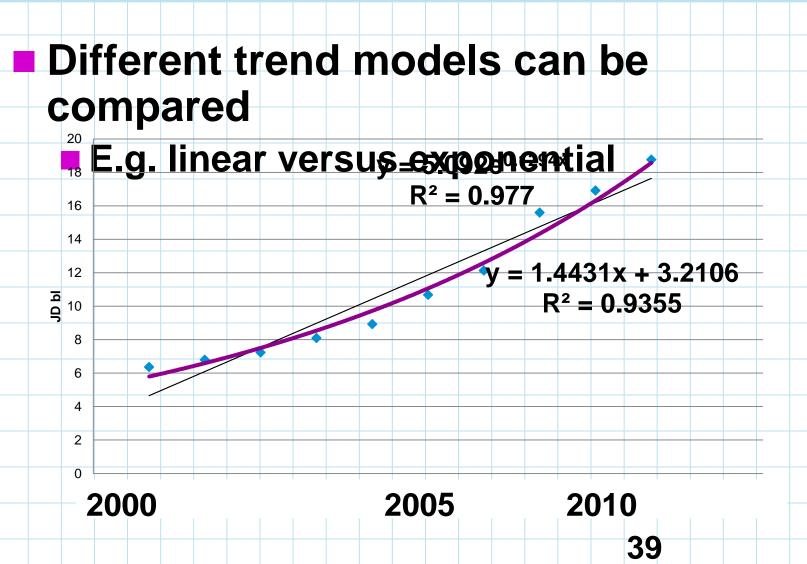
Observing a time series for the GDP of Jordan from 2001 to 2011, annual data



Different trend models can be compared







Seasonal Variations

- Recurring variations over time may indicate the need for seasonal adjustments in the trend line.
- A seasonal index indicates how a particular season compares with an average season.

When no trend is present, the seasonal index can be found by dividing the average value for a particular season by the average of all the data.

Eichler Supplies

- Eichler Supplies sells telephone answering machines.
- Sales data for the past two years has been collected for one particular model.
- The firm wants to create a forecast that includes seasonality.

Eichler Supplies Answering Machine Sales and Seasonal Indices

	SALES DEMAND		AVERAGE TWO-	MONTHLY	AVERAGE SEASONAI
MONTH	YEAR 1	YEAR 2	YEAR DEMAND	DEMAND	INDEX
January	80	100	90	94	0.957
February	85	75	80	94	0.851
March	80	90	85	94	0.904
April	110	90	100	94	1.064
Мау	115	131	123	94	1.309
June	120	110	115	94	1.223
July	100	110	105	94	1.117
August	110	90	100	94	1.064
September	85	95	90	94	0.957
October	75	85	80	94	0.851
November	85	75	80	94	0.851
December	80	80	80	94	0.85ุ1
	Tot	al average de	emand = 1,128		
verage monthl		1,128	94 Seasonal inde	Average tv	vo-year dema

Copyright ©2012 Pearson Education, Inc. publishing as Prentice Hall

Seasonal Variations

The calculations for the seasonal indices are

Copyright ©2012 Pearson Education, Inc. publishing as Prentice Hall