

IEA Bioenergy eWorkshop 2020

RENEWABLE ACRYLONITRILE FOR CARBON FIBER PRODUCTION

Amit Goyal Director – Sustainable Chemistry and Catalysis Southern Research

Energy Efficiency & Renewable Energy

Market Perspective - Acrylonitrile

Acrylonitrile in context

- The third-largest propylene derivative
- 26 acrylonitrile producers in the world
- Most acrylonitrile produced from chemical grade propylene and ammonia
- One plant uses propane and ammonia as feedstock

© 2017 IHS Markit

Acrylonitrile demand - growth despite acrylic fibre

Total Production: 6.9 MMT/yr, CAGR of ~4-5%

ABS/SAN - Increasing at 5-6% Acrylamide – increasing at 7-8% Carbon fiber market (11-18%) is increasing rapidly

Major Producers: Ineos, Ashai Kasei Corporation, Mitsubishi Chemical Corp., and Ascend Performance Materials

Scale of ACN Production

- Typical carbon fiber line produces 1000 MT/year
- A single line requires ~ 2200 to 2500 MT of Acrylonitrile
- 5000 MT ACN plant can supply 2 carbon fiber lines most plants operate at this capacity at a single location
- Low capex for first of kind plants
- Requires ~ 100 MT biomass per day
- Sugar transportation easier than hazardous acrylonitrile

This is why small scale ACN production plants are important.

Technology Summary

□ Non-food sugar to acrylonitrile (ACN)

Renewable feedstock

❑ Three-step thermo-catalytic process

Routes to ACN

Feedstock flexibility

Validated using commercial sugar hydrolyzates and C_5/C_6 sugar mix

Process flexibility

Reduced dependency on oil/gas. H_2 +N H_3 requirement ~7% of biomass.

High performance Catalysis

One step sugar to C_3, C_2 chemicals. ~100% selectivity to acrolein. High purity ACN via ammoxidation (No HCN, CO₂).

Cost and GHG reduction

<\$1/lb ACN production cost. GHG 95% ♥

Product meets critical performance attributes (CPA) for ACN

Process Development

5

Different Phases of Development

Phase I - Laboratory scale Catalyst Development

Phase II (Pilot scale) – Process scale up

Reaction summary

Type of reaction	Feed	Pressure	Desired products	Productivity (g/L/hr)	Production scale up in phase II
Hydrocracking	Sugar,H ₂	Pressurized	Glycols*, Glycerol	180	60 – 100x
Dehydration	Glycerol	Atmospheric	Acrolein, Hydroxyacetone	290	650 - 975x
Ammoxidation	Acrolein, NH ₃ , O ₂	Atmospheric	Acrylonitrile	80-375	320 – 600x

*Glycols are propylene glycol (PG) and Ethylene glycol (EG)

Phase II Footprint

Decoupled pilot scale process with ~ 1kg/hr production capacity

Catalyst Performance

1. Hydrocracking

3. Ammoxidation –

2. Dehydration

Pilot scale results– All impurities present in the sugar hydrolyzate

Stable catalyst operation continuously for all reaction steps > 500 hours

Importance of Chemical Purity

≥ 99.2% ACN + Balance acetonitrile, propionitrile and water. No

detectable metal.

SR produced BioACN

Impact of Impurities on BioACN Properties

Impact of Impurities

Detrimental: Causes significant deviation from baseline process*
High Concern: Causes some deviation from some baseline properties*
Low Concern: May cause minor deviation from baseline properties*
Insignificant: No deviation from baseline properties can be detected*

*Above undisclosed concentrations

10

Fiber Morphology Comparison

No observable differences in fiber shape and structure

11

SR

Techno-Economic Assessment (TEA)

Variable cost analysis

Production (MT/year)Capital Investment5000 ACN\$ 15 - 19 million+(verified by independent
contractor)

SR

Sugar key cost driver

Life-Cycle Assessment (LCA)

LCA Assumptions:

- Biomass source: Corn Stover with 20% bulk moisture content
- > Biomass to sugar yield: 1 kg sugar (C_5+C_6) produced from 2.35 kg biomass

Biomass to ACN results in significantly less CO_2 footprint than Crude to ACN (0.29 versus 6.05 kg eq. CO_2 / kg of product)

Commercialization Timeline

SR

Acknowledgements

US Department of Energy

BETO Project officer: Mark Shmorhun

Southern Research

Amit Goyal (PI) Jadid Samad

Cytec Solvay Jeremy Moskowitz (Technical Lead) Billy Harmon

NJIT Zafar Iqbal (Lead)

