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Market Perspective - Acrylonitrile

Acrylonitrile in context Acrylonitrile demand - growth despite acrylic fibre

* The third-largest propylene  Global Propylene Demand - 2016 World Acrylonitrile Demand
derivative 2 s O .
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+ One plant uses propane and 0

ammonia as feedstock 2016 propylene demand = 97.3 million tons
Source: World Analysis - Propylene # Acrylic Fibre  ABS/SAN w Adiponitrile # Acrylamide - NB Copolymers Carbon Precursor Miscellaneous

Source: World Analysis - Acrylonitrile

Total Production: 6.9 MMT/yr, CAGR of ~4-5% ABS/SAN - Increasing at 5-6%
Acrylamide — increasing at 7-8%
Carbon fiber market (11-18%) is

increasing rapidly

Major Producers: Ineos, Ashai Kasei Corporation, Mitsubishi Chemical Corp., and
Ascend Performance Materials

Ref: IHS-Markit WPC 2017 2 E



Scale of ACN Production

« Typical carbon fiber line produces 1000 MT/year
* Asingle line requires ~ 2200 to 2500 MT of Acrylonitrile

« 5000 MT ACN plant can supply 2 carbon fiber lines — most plants
operate at this capacity at a single location

« Low capex for first of kind plants
* Requires ~ 100 MT biomass per day

e Sugar transportation easier than hazardous acrylonitrile

This Is why small scale ACN production plants are important.
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Technology Summary

U Non-food sugar to acrylonitrile (ACN)
U Renewable feedstock

U Three-step thermo-catalytic process
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Feedstock flexibility
Validated using commercial sugar
hydrolyzates and C/C, sugar mix

Process flexibility

Reduced dependency on oil/gas.
H,+NH; requirement ~7% of
biomass.

High performance Catalysis

One step sugar to C;,C, chemicals.
~100% selectivity to acrolein. High
purity ACN via ammoxidation (No
HCN, CO,).

Cost and GHG reduction
<S1/Ib ACN production cost. GHG

95% W

Product meets critical performance

soway crobr - gttributes (CPA) for ACN
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Process Development

, Sugar
Vendor

Glycols Hydroxyacetone

Biomass
Impurity BioACN
Removal T .
A
X C5, C6
: sugars
L Feedbackon Product
impurity level validation |~~~ T
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Different Phases of Development

Phase | - Laboratory scale
Catalyst Development

Phase Il (Pilot scale) —Process scale up

Reaction summary

Type of Pressure Desired products Productivity Production scale
reaction (g/L/hr) up in phase Il
Hydrocracking Sugar,H, Pressurized Glycols*, Glycerol 180 60 — 100x
Dehydration Glycerol Atmospheric Acrolein, 290 650 - 975x
Hydroxyacetone
Ammoxidation Acrolein, Atmospheric Acrylonitrile 80-375 320 — 600x
NH,, O,

*Glycols are propylene glycol (PG) and Ethylene glycol (EG)
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Phase |l Footprint

Decoupled pilot scale process with ~ 1kg/hr production capacity
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Conversion/Selectivity %

Catalyst Performance

1. Hydrocracking
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Pilot scale results— All impurities
present in the sugar hydrolyzate

Stable catalyst operation continuously
for all reaction steps > 500 hours




Importance of Chemical Purity

Sample-5
(3/127117)
100ml

> 99.2% AcCN

+

Balance acetonitrile, propionitrile and water. No
detectable metal.

SR produced BioACN
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Impact of Impurities on BIOACN Properties

Impact of Impurities

Water Propionitrile Acetonitrile Acrolein
High Concern Low Concern m Insignificant m Insignificant
B Conversion Conversion B Conversion I Conversion
B Polymer Concentration B Polymer Concentration B Polymer Concentration B Polymer Concentration
B Molecular Weight B Molecular Weight B Molecular Weight B Molecular Weight
B Polydispersity B Polydispersity B Polydispersity B Polydispersity
Rheology I Rheology I Rheology B Rheology

B Detrimental: Causes significant deviation from baseline process*

[] High Concern: Causes some deviation from some baseline properties*
[] Low Concern: May cause minor deviation from baseline properties*

B Insignificant: No deviation from baseline properties can be detected*

CYTEC

SOLVAY GROUP

3 *Above undisclosed concentrations



Fiber Morphology Comparison

CYTEC

S Bio-Mass PAN
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No observable differences in fiber shape and structure




Cost of ACN, S/Ib

Techno-Economic Assessment (TEA)
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Variable cost analysis

Sensitivity
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Sugar key cost driver

Cost distribution
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Columns
2% k / ® Pressure vessels
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» Compressor
» Condensor

Crystallizer

Filter
Pump
® Heat exchanger
W Reactors
m Reboiler
2% m Storage Tanks

= Water Treatment

Equipment cost analysis

Production (MT/year)
5000 acnN
+

5800 PG

Capital Investment

$ 15 — 19 million

(verified by independent
contractor)




Life-Cycle Assessment (LCA)

LCA Assumptions:
» Biomass source: Corn Stover with 20% bulk moisture content

» Biomass to sugar yield: 1 kg sugar (C;+C;) produced from 2.35 kg biomass

Primary feed Process water
Process stream/utility HH2
NH3 W H2504

W Water treatment o Total \
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Biomass to ACN results in significantly less CO, footprint than Crude to ACN
(0.29 versus 6.05 kg eq. CO,/ kg of product)



Commercialization Timeline

i First plant build
EPC basic . Phase I |
package Pilot plant Pilot study begins 5,000-
EPC engaged complete complete complete 10,000 MT/yr

| | ! 1

t

EPC detailed package design
begins (5,000-10,000 MT/yr

DOE- Phase I plant)

$4.5M ACN Pilot plant
construction
started

Major Milestones

€ DOE funding received

First commercial investment

@ First plant commercialization build begins
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