

The 3rd Northeast Asia Energy Security Forum - Sustainable Energy, Energy Interconnection and Regional Energy Cooperation -

Renewable Energy Mix and Economics of Northeast Asia Supergrid

17 December 2015, Seoul, Korea

K. Komoto¹⁾ and Christian Breyer²⁾

 1)Mizuho Information & Research Institute, Inc., Tokyo, Japan (Former Operating Agent of the IEA PVPS Task8)
2) Lappeenranta University of Technology, Finland

Contents

IEA PVPS Task8: Energy from the Desert

Study on Very Large Scale PhotoVoltaic
Power Generation (VLS-PV) Systems

Study on VLS-PV Supergrid in the North East Asia

Concluding Remarks

IEA PVPS Task8: Energy from the Desert

Study on Very Large Scale PhotoVoltaic Power Generation (VLS-PV) Systems

IEA PVPS Task8

Objectives

- To examine and evaluate the feasibility of Very Large Scale Photovoltaic Power Generation (VLS-PV) Systems, which have a capacity ranging from over multi-MW to GW
- To accelerate and implement real VLS-PV projects

Activity period
1999 – 2014

MIZHO

Energy from the Desert

Feasibility of Very Large Scale Photovoltaic Power Generation (VLS-PV) Systems: Published in 2003

Practical Proposals for Very Large Scale Photovoltaic Systems: Published in 2007

THE CONTRACTOR OF

- 10381010402

from the desert

Very Large Scale Photovoltaic Systems, Socio-Economic, Financial, Technical and Environmental Aspects: Published in 2009

> ENERGY FROM THE DESERT

> > Viry Large Scale Photovoltaic Systems: Socio-economic, Financial, Technical and Environmental Aspects

e

Edited by Keiichi Komoto Masakano ho Peter van der Vieuten David Falman Kosuke Kurelawo

Very Large Scale PV Powerstate of the art and into the future Published in 2013

> Energy from the Desert Very Large Scale PV Power - State

> > Eatted by Keilichti Komoto, Christian Breyer, Edwin Cunow, Karim Megherbi, David Faiman, Pator van der Vieuten,

MIZUHO みずほ情報総研

Energy from the Desert

Very Large Scale PV Power Plants for Shifting to Renewable Energy Future (February 2015)

Available at the IEA PVPS website: http://www.iea-pvps.org

>500MW PV power plants are operational

MIZUHO みずほ情報総研

Topaz Solar Farm, AZ, USA

provided by First Solar, Inc.

120000

Longyangxia, Qinghai, China

provided by the Yellow River Hydropower Company

VLS-PV is already available!

- Currently, the large scale PV power plants account for at least 10-15 % of cumulative PV installation in the world.
- The largest PV power plants record in the world has been broken every year.
- PV power plants with several hundred MW scales (ex. over 500MW) are already in the commercial stage and technically feasible.
- PV power plants in the desert have to endure the severe environmental conditions. As one of countermeasures for soiling, cleaning option of the PV plants can be justified if the cost for cleaning is lower than the income generated by the solutions.
- When it comes to the PV power plant in the desert environment, the LCOE is already low even with the current module price level.

VLS-PV is a key for sustainable environment and social development!

- The EPBT of large scale PV power plants are within ranges of 1 to 3 years. Assuming 30 years lifetime, PV can produce 10 to 30 times more energy than the total energy consumed throughout its life-cycle.
- CO₂ emission rates of large scale PV power plants are very small and onetenth or one-twentieth of average CO₂ emission rate in China or Africa, coalbased country.
- PV technologies consume water at the production stage to some extent, but little during their operation. Clearly, PV power plants will contribute to saving ground water use by substituting conventional power plants inland.
- GW-scale PV power plant will create substantial and stable demand for PV system components as well as employment for construction, operation and maintenance if such works are managed in an appropriate manner.
- It is ideal to transfer technology as much as possible to the local labours employed to operate by themselves at certain stage. This will contribute to an intrinsic regional development with PV industry.

How VLS-PV can contribute as a major power source?

- In the near future, GW-scale PV power plants will come on the market and PV power plants will become competitive against conventional power plants.
- In order that PV power plants to be one of the major power sources in the future, technology development such as grid integration with energy storage and long-distance electricity transmission including HVDC will be essential.
- One of the most efficient ways to overcome this challenge and to achieve the ambitious goals of increasing the share of renewable energy is to use high capacity transmission grids, called "Supergrid" designed to transfer large amounts of power over the long distances with lower losses.

Study on VLS-PV Supergrid in the North East Asia

Key Objective

- Definition of an optimally structured energy system based on 100% RE supply
 - optimal set of technologies, best adapted to the availability of the regions' resources,
 - optimal mix of capacities for all technologies and every sub-region of North-East Asia,
 - optimal operation modes for every element of the energy system,
 - least cost energy supply for the given constraints

LUT* Energy Model

- key features
 - linear optimization model
 - hourly resolution
 - multi-node approach
 - flexibility and expandability
- Input data
 - historical weather data for: solar irradiation, wind speed and hydro precipitation
 - available sustainable resources for biomass and geothermal energy
 - synthesized power load data
 - gas and water desalination demand
 - efficiency/ yield characteristics of RE plants
 - efficiency of energy conversion processes
 - capex, opex, lifetime for all energy resources
 - min and max capacity limits for all RE resources
 - nodes and interconnections configuration

*LUT: Lappeenranta University of Technology, Finland

Supposed scenario: Components for energy system

MIZUHO みずほ情報総研

Supposed scenarios: Regions and grid configurations

15 regions

- West and East Japan (divided by 50/60 Hz border)
- South and North Korea
- 8 regions in China (based on State Grid Corporation of China grid)
- Mongolia
- Russian regions: East Siberian and Far East economy districts
- Regional-wide open trade (no interconnections between regions)
- Country-wide open trade (no interconnections between countries)
- Area-wide open trade (interconnections by country-wide HVDC grids)
- Area-wide open trade with water desalination and industrial gas production

Ref. D. Bogdanpv, C. Breyer, et al., 31st EU-PVSEC, Sep. 2015, Hamburg, Germany

Supposed scenarios: Financial assumptions (year 2030)

Technology	Capex [∉/kW]	Opex fix [€/k\//]	Opex var [€/kWh]	Lifetime [a]	Technology	Energy/Power Ratio [h]	
PV fixed-tilted	550	8	0	35	Battery	6	
PV rooftop	813	12	0	35	PHS	8	
PV 1-axis	620	9	0	35	Gas Storage	80^24	
Wind onshore	1000	20	0	25			
Hvdro Run-of-River	2560	115.2	0.005	60		Efficiency [%]	
Hydro Dam	1650	66	0.003	60	Battery	90	
Geothermal	4860	87	0	30	PHS	92	
Water electrolysis	380	13	0.001	30	Gas Storage	100	
Methanation	234	5	0	30	Water Electrolysis	84	
CO ₂ scrubbina	356	14	0.0013	30	CO ₂ Scrubbing	78	
CCGT	775	19	0.002	30	Methanisation	77	
OCGT	475	14	0.011	30	CCGT	58	
Biomass PP	2500	175	0.001	30	OCGT	43	
Wood gasifier CHP	1500	20	0.001	40	Geothermal	24	
Biogas CHP	370	14.8	0.001	20	MSW Incinerator	34	
Steam Turbine	700	14	0	30	Biogas CHP	40	
	Capex	Opex fix	Opex var	Lifetime	Steam Turbine	42	
Technology	[€/(m ³ ·h)]	[€/(m ³ ·h)]	[€/(m ³ ·h)]	[a]	CSP collector	51	
Water Desalination	815	35	0	30	<u> WACC = 7%</u>		

Ref. D. Bogdanpv, C. Breyer, et al., 31st EU-PVSEC, Sep. 2015, Hamburg, Germany

Supposed scenarios: Full load hours & LCOE (PV/wind)

Dogion	PV fixed-	PV 1-axis	CSP	Wind
Region	tilted FLH	FLH	FLH	FLH
East Japan	1316	1536	1230	3362
West Japan	1365	1604	1288	3204
South Korea	1467	1733	1486	2946
North Korea	1469	1749	1495	2890
Northeast China	1457	1832	1706	3519
North China	1592	2011	1844	3541
East China	1340	1549	1228	2083
Central China	1471	1726	1284	2608
South China	1435	1678	1208	2310
Tibet	1983	2719	2417	5208
Northwest China	1739	2221	1963	3703
Uygur	1666	2124	1957	2724
Mongolia	1572	2062	1975	3288
Russia Siberia	1158	1476	1380	3082
Russia Far East	1136	1477	1397	2712

FLH of region computed as weighed average of regional sub-areas (about 50 km x 50 km each):

0%-10% best "sub-areas" of region – 0.3

10%-20% best "sub-areas" of region – 0.3

20%-30% best "sub-areas" of region – 0.2

30%-40% best "sub-areas" of region – 0.1 40%-50% best "sub-areas" of region – 0.1

Ref. D. Bogdanpv, C. Breyer, et al., 31st EU-PVSEC, Sep. 2015, Hamburg, Germany

MIZHO

みずほ情報総研

Results: Expected Capacity

2030 Scenario	Wind	PV	Hydro RoR	Hydro dams	Biogas	Biomass	s Waste Ge	eotherma	al Battery	y PHS	PtG electrolyzers	GT
	[GW]	[GW]	[GW]	[GW]	[GW]	[GW]	[GW]	[GW]	[GWh]	[GWh]	[GW _{el}]	[GW]
Region-wide	1733	3951	115	191	66	80	5	6.5	5423	98	323	540
Country-wide	1930	3093	115	191	99	67	4	6	4270	98	221	433
Area-wide	2034	2750	112	195	110	67	4	6	3734	105	173	381
Area-wide Des-Gas	2435	3929	113	195	54	50	4	5	4060	105	550	294
2030 Scenario	PV 0-axi	S	PV 1-axis	P\ prosur	/ mers	PV total	Battery system	Bati prosu	tery Imers	Battery total		
	[GW]	[GW]	[GV	V]	[GW]	[GWh]	[GV	Vh]	[GWh]		
Region-wide	481		1977	149	3	3951	3485	19	38	5423		
Country-wide	72		1528	149	3	3093	2332	19	38	4270		
Area-wide	1		1256	149	3	2750	1796	19	38	3734	Ref. D. Bo C. Breve	gdanpv, r. et al
Area-wide Des-Gas	1		2435	149	3	3929	2122	19	38	4060	31 st EU-I Sej Hamburg, G	PVSEC, p. 2015, ermany

MIZUHO みずほ情報総研

Results: Regions electricity capacity

770 GW

876 GW 318 GW

1106 GW

CN-S

1143 GW

Key insights:

- Area-wide scenario shows high PV capacities due to (prosumer) LCOE competitiveness in majority of the regions
- Importing regions generate economic benefit from significant local PV self-consumption share

Key insights:

- Area-wide desalination gas scenario is dominated by PV
- PV 1-axis and wind are the main sources of electricity for water desalination and industrial gas production, especially for importing regions

Ref. D. Bogdanpv, C. Breyer, et al., 31st EU-PVSEC, Sep. 2015, Hamburg, Germany

MIZHO みずほ情報総研

321 GW

Results: Regions storage capacity

Area-wide open trade desalination gas

Key insights:

- Excess energy for area-wide open trade desalination gas: higher in absolute numbers, but lower in relative ones (from 6.5% to 5.9% of total generation).
- Hydro dams as virtual battery very important, batteries in a key role for prosumers but also on the grid level and gas storages for balancing periods of wind and solar shortages

Ref. D. Bogdanpv, C. Breyer, et al., 31st EU-PVSEC, Sep. 2015, Hamburg, Germany

MIZUHO みずほ情報総研

Results: Import/export electricity

Area-wide open trade

Ref. D. Bogdanpv, C. Breyer, et al., 31st EU-PVSEC, Sep. 2015, Hamburg, Germany

Results: Expected LCOE

2030 Scenario	Total LCOE	LCOE primary	LCOC	LCOS	LCOT	Total ann cost	. Total CAPEX	RE capacities	Generated s electricity		
	[€/kWh]	[€/kWh]	[€/kWh]	[€/kWh]	[€/kWh]	[bn €]	[bn €]	[GW]	[TWh]		
Region-wide	0.077	0.042	0.003	0.032	0.000	790	6722	6642	12447		
Country-wide	0.072	0.041	0.003	0.025	0.003	724	6326	5891	11993		
Area-wide	0.068	0.041	0.002	0.021	0.004	697	6171	5609	11753		
Area-wide Des-Gas ^{*,**}	0.058	0.038	0.002	0.013	0.005	876	7939	7057	15322		
TotalLCOELCOSTotal ann.TotalREGeneratedLCOE***primary prosumerCostCAPEXcapacities electricityprosumer prosumerprosumer prosumer prosumerprosumer											
[€/kWh] [€/	kWhj [€/l	<whj [b<="" td=""><td>n€j [b</td><td>on€] [(</td><td>GWJ [TV</td><td>VhJ</td><td>LCOW: 0</td><td>.98 €/m³</td><td></td></whj>	n€j [b	on€] [(GWJ [TV	VhJ	LCOW: 0	.98 €/m³			
0.092 0	.052 0.	040 1	42 1	290 1	492 21	84	LCOG: 0	.142 €/kW	/h,gas		

additional demand 82% gas and 18% desalination

** LCOS does not include the cost for the industrial gas (LCOG)*** fully included in table above

Ref. D. Bogdanpv, C. Breyer, et al., 31st EU-PVSEC, Sep. 2015, Hamburg, Germany

Results: Components of LCOE

Understanding

- 100% Renewable Energy system in North-East Asia reachable!
- Super grid interconnection decrease average cost of electricity to 0.068 EUR/kWh of the total area from 0.072 EUR/kWh (country-only) and 0.077 EUR/kWh (region-only)
- Integration benefit of gas and desalination is about 4-6% (generation and cost) due more efficient usage of storage and flexibility options
- In 2030, for region scenario PV technologies dominate in the electricity sector in most regions of North-East Asia, however for country and area-wide open trade scenarios wind starts to play the most important role
- Hydro dams can be used as a virtual battery for solar and wind electricity storage, in the same time RoR hydro is not cost competitive to PV and Wind
- The shift to power in the gas, desalination, heat and mobility sector will be driven by higher supply of least cost solar PV and wind sites
- Despite an upper limit 50% higher than the current capacity for hydro dams and RoR, in all the considered scenarios PV and wind are more profitable technologies according to the availability of the regions' resources
- 100% RE system is more cost competitive than nuclear-fossil option!

Concluding remarks

Direction for accelerating PV power plants

- It will be reasonable to expect that GW-scale PV power plants will come on the market in near future.
- Global deployment of PV power plants will be accelerated by developing energy supplying system combined with other renewables and energy storage technologies.
- Our precise study has revealed that 100% Renewable Energy system in North-East Asia reachable. PV will play important role although wind may dominates the region.
- The renewable energy can also be used to produce liquid fuel when the power supply surpasses the demand.
- Although there are technical and economic barriers to be solved for the renewable-based liquid fuel production system, low carbon energy system with 100 % renewable energy is certainly possible in the future.

Thank you for your attention

Keiichi Komoto Mizuho Information & Research Institute Email: <u>keiichi.komoto @ mizuho-ir.co.jp</u>