RENSSELAER POLYTECHNIC INSTITUTE
TROY, NY
MAKEUP EXAM NO. 3 INTRODUCTION TO ENGINEERING ANALYSIS (ENGR-1100) - Fall 13

NAME: Solution

Section: $\qquad$

RIN:
Wednesday, November 20, 2013

$$
5: 00-6: 50
$$

Please state clearly all assumptions made in order for full credit to be given.

| Problem | Points | Score |
| :---: | :---: | :---: |
| 1 | 25 |  |
| 2 | 25 |  |
| 3 | 25 |  |
| 4 | 25 |  |
| Total | 100 |  |

## Problem \#1 (25)

The right-angle boom that supports the $400-\mathrm{kg}$ cylinder is supported by three cables and a ball-and-socket joint at $O$ attached to the vertical $x-y$ plane. Neglect the weight of the boom.
(a) Draw complete and separate free-body-diagram for the boom.
(b) Express all forces in vector form.
(c) Write equilibrium equations for the boom that include all detailed force and moment terms
(d) Determine reactions at $O$ and the magnitude of cable tensions


Note: You need to show your work to receive credit.
Solution
(a) Each force 0.5 point, coordinate system 0.5 point, totally 4 points.

(b) $\mathbf{O}=O_{x} \mathbf{i}+O_{y} \mathbf{j}+O_{z} \mathbf{k} \quad \mathrm{~N}$ (1.5, each component 0.5)
$\mathbf{T}_{A C}=T_{A C} \frac{-\mathbf{i}+\mathbf{j}-2 \mathbf{k}}{\sqrt{(-1)^{2}+1^{2}+(-2)^{2}}}=\frac{T_{A C}}{\sqrt{6}}(-\mathbf{i}+\mathbf{j}-2 \mathbf{k}) \quad \mathrm{N}$ (1.5, each component 0.5)
$\mathbf{T}_{B D}=T_{B D} \frac{2 \mathbf{j}-2 \mathbf{k}}{\sqrt{2^{2}+(-2)^{2}}}=\frac{T_{B D}}{\sqrt{2}}(\mathbf{j}-\mathbf{k}) \quad \mathrm{N}(1.5$, each component 0.5$)$
$\mathbf{T}_{B E}=-T_{B E} \mathbf{k} \quad \mathrm{~N}$ (1.0)
$\mathbf{W}=-3920 \mathbf{j} \quad \mathrm{~N}$ (0.5)
(c)

$$
\sum \mathbf{M}_{O}=\mathbf{r}_{O A} \times \mathbf{T}_{A C}+\mathbf{r}_{O F} \times \mathbf{W}+\mathbf{r}_{O B} \times\left(\mathbf{T}_{B D}+\mathbf{T}_{B E}\right)=0
$$

$$
\begin{aligned}
& \mathbf{r}_{O B} \times \mathbf{T}_{B D}+\mathbf{T}_{B E}=\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1.5 & 0 & 2 \\
0 & \frac{T_{B D}}{\sqrt{2}} & -T_{B E}+\frac{T_{B D}}{\sqrt{2}}
\end{array} \\
& =-\sqrt{2} T_{B D} \mathbf{i}+1.5 \quad T_{B E}+\frac{T_{B D}}{\sqrt{2}} \mathbf{j}+1.5 \frac{T_{B D}}{\sqrt{2}} \mathbf{k} \quad \mathrm{~N}-\mathrm{m} \text { (2 points) } \\
& \sum M_{O X}=-2 \frac{T_{A C}}{\sqrt{6}}-\sqrt{2} T_{B D}+7840=0 \mathbb{W} \mathbb{E q} 1 \text { 皿(1 point) } \\
& \sum M_{O y}=-2 \frac{T_{A C}}{\sqrt{6}}+1.5 T_{B E}+\frac{T_{B D}}{\sqrt{2}}=0 \| \mathbb{E} \mathrm{E}(2) \text { (1 point) } \\
& \sum M_{O Z}=1.5 \frac{T_{B D}}{\sqrt{2}}-2940=0 \quad \operatorname{Eq}(3)(1 \text { point }) \\
& \mathbf{R}=\mathbf{0}+\mathbf{T}_{A C}+\left[\mathbf{T}_{B D}+\mathbf{T}_{B E}+\mathbf{W}=0\right. \\
& \sum F_{x}=O_{x}-\frac{T_{A C}}{\sqrt{6}}=0 \llbracket \mathrm{~m} \mathbb{E q} \text { (4) (1 point) } \\
& \sum F_{y}=O_{y}+\frac{T_{A C}}{\sqrt{6}}+\frac{T_{B D}}{\sqrt{2}}-3920=0 \text { سШWEq(5) (1 point) } \\
& \sum F_{z}=O_{z}-2 \frac{T_{A C}}{\sqrt{6}}-\frac{T_{B D}}{\sqrt{2}}-T_{B E}=0 \amalg \mathbb{W} \mathbb{E q}(6) \quad \text { (1 point) }
\end{aligned}
$$

(a) from $\mathrm{Eq}(3), T_{B D}=2771 \mathrm{~N}$ from $\mathrm{Eq}(1), T_{A C}=4802 \mathrm{~N}$ from $\mathrm{Eq}(2), T_{B E}=654 \mathrm{~N}$ from $\mathrm{Eq}(4), O_{x}=1960 \mathrm{~N}$
from $\mathrm{Eq}(5), O_{y}=0 \mathrm{~N}$
from $\mathrm{Eq}(6), O_{z}=6534 \mathrm{~N}$
each of the above: 0.5 point.

## Problem \#2 (25)

There is a distributed load across a 10 ' long weightless beam supported at the left end by a smooth pin and at the right end by a smooth roller. The weight on the beam per linear foot [ $\mathrm{lb} / \mathrm{ft}]$ is characterized by a function as follows:

$$
\begin{array}{ll}
0<x<2 & 0 \\
2<x<6 & (x-2)^{3} \\
6<x<10 & 64
\end{array}
$$

Where $x=0$ corresponds to the left end of the beam.
What is the centroid of the weight distribution along the $x$-axis?
What are the support reactions at $\mathrm{x}=0^{\prime}$ and $\mathrm{x}=10^{\prime}$ ?
(Show all work to maximize credit).



## Problem \#3 (25)

Determine the force in each of the 6 left-side members (including DE) of the Pratt truss illustrated below. Determine if they are in compression (C) or tension (T)

Support reaction (y-direction) at A
Support reaction (x-direction) at A
(2)
(2)

AB
(3)

AC
(3)

BC
(3)

BE
(3)

BD
CE
(3)

DE


You must show all steps and required FBD's. You may use any method you like (Joints or Sections) in your solution.




## Problem \#4 (25)

Consider the three equations

$$
\begin{gathered}
x_{1}+2 x_{2}+x_{3}=2 \\
3 x_{1}+8 x_{2}+x_{3}=12 \\
4 x_{2}+x_{3}=2
\end{gathered}
$$

(a) Write the equation $\mathrm{Ax}=\mathrm{b}$ in parametric matrix form where A is the associated coefficient matrix and $b$ is the solution matrix to the equations.
(b) Given the associated coefficient matrix A, find its determinant using cofactor expansion along column \#1.
(c) Determine $A^{-1}$, the inverse of $A$, using only row operations.
(d) Utilizing $\mathrm{A}^{-1}$, solve the system of equations, for the variables $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$, and $\boldsymbol{x}_{3}$. Show all work.
a)

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 8 & 1 \\
0 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
12 \\
2
\end{array}\right]
$$

b) $\mathrm{c}_{1,1}=[8 \times 1-1 \times 4]=4$
$\mathrm{c}_{1,2}=-[2 \times 1-1 \mathrm{x} 4]=2$
$c_{1,3}=-[2 \times 1-1 \times 8]=-6$
$\operatorname{det}(\mathrm{A})=1 \times 4+3 \times 2+0 \times 6=10$
c)

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
1 & 2 & 1 & 1 & 0 & 0 \\
3 & 8 & 1 & 0 & 1 & 0 \\
0 & 4 & 1 & 0 & 0 & 1
\end{array}\right] \text { Subtract } 3 \mathrm{R}_{1} \text { from } \mathrm{R}_{2}} \\
& {\left[\begin{array}{ccccc}
1 & 2 & 1 & 1 & 0 \\
0 & 2 & -2 & -3 & 1 \\
0 \\
0 & 4 & 1 & 0 & 0 \\
1
\end{array}\right] \text { Divide } \mathrm{R}_{2} \text { by } 2} \\
& {\left[\begin{array}{cccccc}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & -3 / 2 & 1 / 2 & 0 \\
0 & 4 & 1 & 0 & 0 & 1
\end{array}\right] \text { Subtract } 2 \text { R2 from R1, and } 4 \mathrm{R} 2 \text { from } \mathrm{R} 3} \\
& {\left[\begin{array}{ccccc}
1 & 0 & 3 & 4 & -1 \\
0 & 1 & -1 & -3 / 2 & 1 / 2 \\
0 \\
0 & 0 & 5 & 6 & -2 \\
1
\end{array}\right] \text { Divide } \mathrm{R}_{3} \text { by } 5} \\
& {\left[\begin{array}{ccccc}
1 & 0 & 3 & 4 & -1 \\
0 & 1 & -1 & -3 / 2 & 1 / 2 \\
0 & 0 & 0 \\
0 & 0 & 1 & 6 / 5 & -2 / 5 \\
1 / 5
\end{array}\right] \text { Subtract } 3 \mathrm{R}_{3} \text { from } \mathrm{R}_{1} \text { and } A d d \mathrm{R}_{3} \text { to } \mathrm{R} 2} \\
& {\left[\begin{array}{ccccc}
1 & 0 & 0 & 2 / 5 & 1 / 5 \\
0 & 1 & 0 & -3 / 10 & 1 / 10 \\
1 / 5 \\
0 & 0 & 1 & 6 / 5 & -2 / 5 \\
1 / 5
\end{array}\right]} \\
& \mathrm{A}^{-1}=\left[\begin{array}{cccc}
2 / 5 & 1 / 5 & -3 / 5 \\
-3 / 10 & 1 / 10 & 1 / 5 \\
6 / 5 & -2 / 5 & 1 / 5
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{ccc}
2 / 5 & 1 / 5 & -3 / 5 \\
-3 / 10 & 1 / 10 & 1 / 5 \\
6 / 5 & -2 / 5 & 1 / 5
\end{array}\right]\left[\begin{array}{c}
2 \\
12 \\
2
\end{array}\right]} \\
& \mathrm{x}=0.4 \times 2+0.2 \times 12-0.6 \times 2=-0.8+2.4-1.2=2 \\
& \mathrm{y}=-0.3 \times 2+0.1 \times 12+0.2 \times 2=-0.6+1.2+0.4=1 \\
& \mathrm{z}=1.2 \times 2-0.4 \times 12+0.2 \times 2=2.4-4.8+0.4=-2
\end{aligned}
$$

