
Whitepaper
Repo�ng Framework using Micro-ser�ces

Author: Manish Ranjan

Reporting Framework using Micro-services

Introduc�on

Data extraction and its representation in the form

of reports (MS Excel, PDF and data files such as

.csv, .psf, .txt, fixed length etc) has been an

essential part of systems. Organizations are paying

heavy license fees for reporting tools such as

Business Object, Actuate, Cognos, Jasper etc. We

observed that in most of the requirements clients

need reports in simple formats with little or no

modifications, but are still paying a lot for

maintaining expensive reporting tools. Java-based

HTML reports were an option from the very

beginning but developing such frameworks in

Java is still a very expensive process and

maintenance is another overhead.

In the last few years, Java has bounced back with

its new avatar – Micro-services. Micro-services

though can be written in Java or in any other tool

that can be packaged together as a service and

can be deployed independently. This gives a

unique advantage over traditional ways of

developing software and products.

Let’s revisit our age old reporting application but

with a new Micro-services based perspective.

There is no one-to-one mapping between what a

typical reporting framework needs and what the

Micro-service world can match. We have to look at

02 / 13

this from a service-based approach perspective.

Let us list features of service-based architecture

that can help us define a reporting framework:

i. Evolution is a natural phenomenon: Service-based

architecture supports evolution of services over

time. There is no need to develop the complete

solution in one go, which usually is an expensive

and impractical approach. Micro-services give us

the flexibility to develop multiple versions of the

same service: old, new and transition state all with

mutual coexistence. This gives us time to evolve

and migrate as and when users/clients are ready.

ii. Small is good: Package one functionality and

just focus on that. In service-based approach we

can package common services into one

executable that can be launched as a service. For

example, a query service that takes list of columns

as input and returns data as output in JSON

format. We can create one service per business

object to create a DAO layer that is accessible over

HTTP though APIs. Imagine how far we can go in

using such services for our master data

management, data extraction, and central data

repository related requirements.

iii. Adaptability is the real intelligence:

Service-based approach is equipped with a very

strong orchestration layer that manages sequence

of call of services. With dynamic or rule based

orchestration uncountable permutations can be

formed that gives the flexibility to adapt to new

requirements without affecting existing ones. For

example, we can have a service like validation

(business validation, functional validation, data

validation). Within this data validation we can have

different type of validations such as XML and CSV,

How Micro-ser�ces can help us
resolve our problem?

L&T Infotech Proprietary 03 / 13

Reporting Framework using Micro-services

with different versions or types of validations

under XML variation. All these can co-exist and

work simultaneously without affecting each other

as the essence of micro-services is “Independence”

and “Adaptability”.

iv. Demand-based scaling: Demand driven scale

up and down is the new normal. We monitor the

performance of and load on each service, and then

based on that decide the instances that would be

required to provide the best possible performance.

Since this is all automated, we are revisiting the

possibilities Micro-service offers to provide

solutions to long-standing issues. Isn’t that

exciting!

The industry has progressed so much so that we

do not need to talk about different reporting and

analytical platforms. We can start with basic

tabular report to highly complex advanced

analytics based report but at the core it is “data”

that plays a very important role. Let’s see how we

can re-engineer the existing reporting framework

with new knowledge of Micro-services.

Basic format of reporting means reports that are

tabular in nature and exported in PDF, Excel, HTML

and other data-extraction formats.

Repo�ng Framework – A Reverse
Enginee�ng Approach

Relational Database

Reports/
ExtractData Warehouse

Native
Format

(optional)

NoSQL Database

Extract
View

Report
Generation

Process

Fig 1: A traditional report generation process using any traditional tool.

L&T Infotech Proprietary 04 / 13

Let’s visualize how it will look using Micro-services.

We are not changing the data source for simplicity.

Albeit, Micro-services can work as a typical

Enterprise Service Bus (ESB) and can fetch data or

file from any source using any standard protocol

such as MQ, JDBC, FTP, Web-services etc. The

flexibility to provide integration with any internal

(on premise or on cloud) or any set of external

applications through APIs or any connectors,

makes Micro-services much more powerful than

traditional reporting applications. Although

traditional tools provide connectivity through FTP

and MQ, implementing that would require a lot of

custom coding, which is as good as writing a new

Micro-service.

In this approach, we can come up with a simple

Data Extraction layer that will represent each

business object. For example, Account is a

business object. All the data in the Account table

will be exposed through ms_account service with

API as end point. Wherever we need data from

Account we can use this API. There will be similar

Micro-services or API end points for each business

object and the cluster would work as the Data

Access layer.

The Data Extraction layer would fetch data using

sets of pre-defined/ad hoc selected fields and

logic. Then, by using structural components, which

are represented as “Helper Service”, the report

generation service can generate the report and

can pass that to the front end as HTML, Excel, PDF

or a text file.

The diagram below illustrates theis approach:

Reporting Framework using Micro-services

Relational Database

Data Warehouse

NoSQL Database

Reports/
Extract

Fig 2: Micro-service based

approach for report generation

Let’s divide this into different framework components are see how can we implement it.

Data
Objects

Helper
Service

Helper
Service

Helper
Service

Data
Objects

Data
Objects

Rule
Management

Data
Extraction

Report
Generation

Data
Objects

L&T Infotech Proprietary 05 / 13

Business Objects as APIs: Entities can expose

their data through APIs with all standard methods

of GET, POST, PUT, PATCH and DELETE. We can

fetch data from one table or from a group of

tables. Business entity or object is the set of data

that can exist independently, with no dependency

on other objects (correlation can exists). We can

make API call parameterized so only the filtered

data will be returned as JSON object.

Data Extraction Service: This layer will call APIs for

business object as per definition of the report that

can be configured in Rule Engine or Template

configurator. Let’s consider the UI angle. We

provide an UI screen where the user can choose

business object, set of columns, sequence of

appearance, groups, total required or not, and

output format. The data model can be exposed as

JSON that can be used by UI code – JSP or Angular

to create such screens.

Reporting Framework using Micro-services

The logical flow of report generation would look like this:

Authentication

Start

End

User Log in

Business Object
Drop down
Populated

Column List
Populated

Other Options
Populated

Meta-data created

Report Generation

ACL

Meta
Data

HTML

Business Object
Micro Service

Fetch Attributes
Micro Service

Option list
Micro Service

Report
Micro Service

API

API

API

API

API

L&T Infotech Proprietary 06 / 13

Reporting Framework using Micro-services

Helper Micro-service/Report Factory Service: This is the most complex but interesting part of our story. The

framework will be based on how skilfully we are creating this module. At a very high level this module will

provide the required backbone of the reporting framework. This will capture all the attributes of the reporting

meta-data. To design this, we could have used an XML-based approach. we designed this as per relational

norm of data modelling. Let’s see how this meta-data data model will look like.

Flow_ID (PK)

Flow_Name

Flow_type

Grp_After_ID (PK)

Grp_After_Name

Grp_key

BGColor

Height

Weight

Grp_total

Table_Footer_ID (PK)

Table_Footer_Name

BG_Color

Height

Weight

Font

Grp_total

Table_Header_ID (PK)

Table_Header_Name

BG_Color

Height

Weight

Font

Report_Header_ID (PK)

Report_Header_Name

Height

Weight

Image

BG Color

Logo

Logo_Position

Report_Footer_ID (PK)

Report_Footer_Name

Height

Weight

Image

BG Color

Logo

Logo_Position

Foot_Note

Grp_Before_ID (PK)

Grp_Before_Name

Grp_key

BGColor

Height

Weight

L&T Infotech Proprietary 07 / 13

Reporting Framework using Micro-services

Fig 3: Table Structure – Meta Data

1. Flow: Decides how representation will be done, i.e. –vertically (report will expand from top to bottom,

 records will be added vertically), or horizontally (records will be added horizontally and report will expand

 from left to right).

2. Report Header: Appears first in the report and can contain the logo, report’s name and background

 image or color.

3. Report Footer: Appears last in the report, and can contain the logo, footnote and background

 image or color.

4. Table Header: These will be the columns displayed in the report.

5. Table Footer: This may contain total fields if selected.

6. Group Header: This field gets populated when the group by is used, and is displayed when the group

key changes.

7. Group Footer: For total or group separator purpose.

8. olumns: This table stores column related meta-data.

9. Business_Objects: This table contains lists of all business objects.

L&T Infotech Proprietary 08 / 13

Report Generation Service

Using the report factory services, the Report

Generation Service captures a user’s preference for

each reporting instance and then stores that in the

Instance table. If the user schedules the report

then this Instance definition is used to re-create

the report. The report generation service will fetch

the meta-data from the Instance table and will call

individual factory/helper services and will get

HTML snippets as return. Finally it will use

selected/predefined templates to make the layout

of the report, followed by the final HTML report

with all embedded features that will render on the

user’s screen.

There will be connecting tables which will work as

collection for the reporting instance. For example,

Column_List table will list down all selected

columns (by user) with respective preferences of

position, font, and color. This will be mapped to the

instance table and at run time, it will fetch all the

columns with its meta-data selected by user. This

Let us visualize how this framework that is

explained above in bits and pieces will stitch

together to work as a working solution. Let’s look

at the requirement for a proper context. At high

level our requirement is (keeping graph related

requirement out of scope for now)

i. Application should generate standard and

custom reports.

ii. Standard reports are fixed format reports for

which layout is defined at design time.

iii. Custom reports are dynamic reports which are

defined at run time by users.

meta-data will be used to render the HTML

snippet and column name will be used to form the

query that will fetch the record from the exposed

JSON data through APIs.

iv. For custom reports, user will choose business

objects in the drop down and then corresponding

columns will be populated in the column drop

down.

v. User will choose columns and then will choose

position of columns.

vi. If any grouping is required then the user will

choose group key or multiple group keys.

vii. User will select sorting option and will choose

column on which sorting is required.

viii. User will choose total column if total is required.

ix. User will choose one among list of templates

Reporting Framework using Micro-services

End-to-End Flow

Instance_ID (PK)

Customer_Report_Name

USer_ID

Business_Object_ID

Column_list_ID

Report_Before_ID

Report_After_ID

Table_Header_ID

Table_Footer_ID

Grp_Before_ID

Grp_After_ID

Report_Format

L&T Infotech Proprietary 09 / 13

and output format such as Excel, PDF, HTML

available for the report.

x. User can save the custom report with a custom

name that will be accessible to him when he will

log in again.

xi. User will have the option to schedule the report.

Now we have to see how above requirement can

be implemented using what we have been

discussing so far.

Standard Report Flow: Standard reports are

fixed format reports which are pre-defined. For

each business objects one standard report can be

defined. The Data Extract service will fetch all the

records in the database – we can apply the

default filter of showing first 1000 records only or

can make this parameterized – for that business

object and will call predefined – columns set with

pre-defined template to generate a report. This

report will be a simple tabular report without any

grouping or sub-total.

For example, the Account Detail report lists down all the columns of Account_Detail business object and

then shows all the data that is available including filtered data.

At a high level, the flow can be illustrated as shown below:

Fig 4: Standard Report

Reporting Framework using Micro-services

DB

Authentication

Start

HTML
PDF

Excel
CSV

End

Report

Factory

Service

User Log in

User select
Standard

Report

Report
Generation

Service

ACL

Business Object
as Service

Data Extraction
Service

API

API

API API

Custom Reports: Custom reports are the real

challenge for this framework. Standard reports are

more or less static in nature so creating simple

HTML-based reports with little coding in the

JSP/Servlet is very easy. The achievement is to

provide a platform that can generate dynamic

reports as per each customer’s choice without any

code change.

Let us solve this step-by-step:

1. User logs in and his credentials are

authenticated.

2. As per pre-defined mapping (the Access Control

List) Business objects will be loaded on the UI

screen for Custom Report.

a. Business_Object will fetch all the business

objects from the metadata table that is accessible

to the user. Values will be returned through API in

JSON format.

b. Angular/JSP code can call API for Business

Object list.

3. User selects one Business Object at UI that calls

API which in turn calls ms_Column_List

micro-service. This Micro-service will fetch all the

columns that are mapped to the given Business

Object.

4. User selects few columns that will be passed as

input parameters for the next API call that is to

fetch grouping option.

5. Group by option will appear on the screen and

then if the user is selecting this option then all

columns that are selected in step 4 will be

displayed to be selected as group key. If the user

selects any grouping then the selection preference

will go into group table (mentioned above).

6. Other options such as sorting options, total

options and export options will be displayed on

the screen and the selection will be stored in the

corresponding meta-data table.

7. Once all the selections are complete, the user will

be asked to assign a unique name to the custom

report. The report name will be stored against the

user ID. Meta-data about the custom report will be

stored in the instance table.

8. The user will have an option to run the report

immediately or will have the option to schedule it.

9. If the user selects “Run” then

a. A query will fetch all the mappings/meta-data

from the Instance table.

b. As we can see in the table structure, all other

details about the selection will be retrieved as well

as the selected Business Object, selected column

list ID (list of columns will be stored in a separate

table and reference will be stored in interface table

against Column_list_ID), other preferences such as

L&T Infotech Proprietary 10 / 13

Reporting Framework using Micro-services

Instance_ID (PK)

Customer_Report_Name

USer_ID

Business_Object_ID

Column_list_ID

Report_Before_ID

Report_After_ID

Table_Header_ID

Table_Footer_ID

Grp_Before_ID

Grp_After_ID

Report_Format

report before, after, report before, after, group key

etc.

c. All this data for the custom report will be

available through one API.

d. Now, the Report Generation Engine will call

Helper Micro-services (Factory services) to create

HTML snippets for the report. For example, for the

header part – corresponding Micro-service will

take the parameters stored in the DB, such as logo

file location, background color and a custom

report title, and then will return the HTML snippet

for the report header. Similarly, for the footer and

other sections the HTML snippet will be returned

by respective Micro-services.

e. The Report Generation Engine will use a

pre-defined template to arrange HTML snippets to

create reports. Once reports are created, it will be

rendered on the user’s screen.

10. For scheduled reports, the Reporting Engine

will use the instance table to find out all the

reporting preferences of the user and will form the

layout of the report at every trigger of the

schedule. We can use any standard scheduling

tool/features.

Hopefully this article has triggered some imagination and design thinking in the reader’s mind. The very

purpose of this article is to encourage application managers to revisit their strategy for reporting require-

ments. With little investment we can develop a reporting application that can serve the purpose and can

save huge licensing costs. Apart from that this framework can provide a platform that can be extended to

handle NoSQL data, transient data, log data and data from RDBMS – all within one application for us to

integrate and to extract the best of what we can!

L&T Infotech Proprietary 11 / 13

Now let’s come back to our original topic: Why

micro-services?

1. They are scalable

2. Multiple versions can co-exist

3. Evolutionary in nature – add features without

affecting existing ones

4. Cloud Ready

5. Java-based hence has endless possibilities

6. Technology agnostic

7. Strong performance and usability monitoring

options

8. Service-based architecture

Reporting Framework using Micro-services

Advantages of Using
Micro-ser�ce for Repo�ng Framework

Conclusion

12 / 13

About the Author

Manish Ranjan
Senior Technical Architect, LTI Whitefield, Bangalore, India

Manish has around 16 years of experience in Analytics and Enterprise Integration. He

is extensively working on API led micro-service architecture and helping clients in

their APIfication journey.

Reporting Framework using Micro-services

L&T Infotech Proprietary 13 / 13

info@Lntinfotech.com

LTI (NSE: LTI, BSE: 540005) is a global technology consulting and digital solutions Company helping more than 300

clients succeed in a converging world. With operations in 30 countries, we go the extra mile for our clients and

accelerate their digital transformation with LTI’s Mosaic platform enabling their mobile, social, analytics, IoT and cloud

journeys. Founded in 1997 as a subsidiary of Larsen & Toubro Limited, our unique heritage gives us unrivaled real-world

expertise to solve the most complex challenges of enterprises across all industries. Each day, our team of more than

25,000 LTItes enable our clients to improve the effectiveness of their business and technology operations, and deliver

value to their customers, employees and shareholders. Find more at www.Lntinfotech.com or follow us at @LTI_Global

